Review of lectures 1-10

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 and 004 only

Announcements

* Assignment 2: Due on June 20
* Late policy: 5% penalty per 24 hours

* Project Milestone 1: Due on June 22"
* Late policy: 25% penalty per 24 hours

* Midterm: On June 26th
* Everything until lecture 10 (except lecture 6 on advance SQL)

Relational data model

* A database is a collection of relations (or tables)
* Each relation has a set of attributes (or columns)

* Each attribute has a unique name and a domain (or type)
* The domains are required to be atomic

Single, indivisible

piece of information

* Each relation contains a set of tuples (or rows)

* Each tuple has a value for each attribute of the relation

* Duplicate tuples are not allowed
* Two tuples are duplicates if they agree on all attributes

= Simplicity is a virtue!

Types of integrity constraints

* Tuple-level

* Domain restrictions, attribute comparisons, etc.
* E.g.age cannot be negative
* E.g.for flights table, arrival time > take off time

* Relation-level

(focus in this lecture)
* E.g.uid should be in the User relation

* Functional dependencies (Textbook, Ch. 7)

e Database-level

 Referential integrity — (focus in this lecture)
e uid in Member must refer to a row in User with the same uid

Key (Candidate Key)

Def: A set of attributes K for arelation R if

In no instance of R will two different
tuples agree on all attributes of K
 Thatis, K can serve asa

: No proper subset of K satisfies the
above condition
 Thatis, K is
* Example: User (uid, name, age, pop)
* uidis a key of User

* ageis not a key (not an identifier)
* {uid, name} is not a key (not minimal), but a

* One candidate key is assigned to be

)

Relational algebra

* Alanguage for querying relational data based on “operators”

* Not used in commercial DBMSs (SQL) S o
intermediate result

I . - I . . tables are transient
| RelOp T TN
RelOp
T T T

* Core operators:

* Selection, projection, cross product, union, difference,
and renaming

* Additional, derived operators:
* Join, natural join, intersection, etc.

* Compose operators to make complex queries

Operators can only be applied one row
at a time

 You must be able to evaluate the condition over
of the input table!

* Example: the most popular user

\
g User \NP\ONG '

Summary of operators

Core Operators

| A R Note: use
>election: 9p these operators for
Projection: ;R assignments &
Cross product: RXS exams

Difference: R — S

1.

2

3.

4. Union:RUS
5

6. Renaming: ps(4, 41 4,54},)R
Derived Operators

1. Join:R ™, §

2. Naturaljoin:R < S

3. Intersection:R NS

Why do we need core operator X?

* Difference
* The only operator
* Projection
* The only operator that
* Cross product
* The only operator that
* Union
* The only operator that

* Selection
* The only operator that

Expression tree notation

IDs of users who belong to

Tl'-Uldl

Nuid1=uid2 ANgld{#gid,

P(uid>uid,,gid—gid,) P(uid>uid,,gid—gid,)

Member Member

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

e s

uid Userq,.uid
User X Useri.pop<User,.pop
pUserl Pu T

User User

Non-monotone operators

N N .
S N I .
-RelOp What happens
Add more rows _____ to the output?
to the input... "™

* If some old output rows may become invalid = the
operator is non-monotone

* Example: difference operatorR — S

CEFTE @ CETE I | ol

becomes invalid

123 gov — 123 gov = 857 iye—
. 001 i because the new
857 abc e
row added to S

R S

13

14

Non-monotone operators

N I I .
- 1 1] |
What happens
Add more rows _____ to the output?
I N I .

to the input...

* If some old output rows may become invalid (causing some
row removal) = the operator is non-monotone

* Otherwise (old output rows always remain “correct”) = the
operator is monotone

This old row is

uid | gid__ uid | gid__ EERNEERR | always valid no

123 gov — 123 gov = 857 abc matter what
857 abc 901 edf 189 m rows are added
R o

R S

Classification of relational operators

* Selection: o, R Monotone
* Projection: T R Monotone
* Cross product: RXS Monotone
* JointR ™, § Monotone
* Naturaljoin:R ®S Monotone
* Union:tRUS Monotone

 Difference: R — S Monotone w.r.t. R; non-monotone w.r.t S
* Intersection: RNS Monotone

SQL (lectures 3-6)

User (uid int, name string, age int, pop float)
Group (gid string, name string)

D D L Member (uid int, gid string)

table_ name
(..., column_name column_type, ...);

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));

CREATE TABLE Member (uid INT, gid CHAR(10));

table name;

DROP TABLE User;
DROP TABLE Group;

DROP TABLE Member;

Basic queries for DML: SFW statement

A, Ay, ..., A,
R{,R,, ..., R,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ()
relational algebra query:

TTp, As,... Ap (O-condition (Rl ><RZ X XRm))

19

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)

Bagl Bag2 (SELECT * FROM Bag1) (SELECT * FROM Bag1) (SELECT * FROM Bagl)
; UNION EXCEPT INTERSECT
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);
apple orange apple apple orange

orange orange orange

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)

EXCEPT ALL
Bagl Bag?2 (SELECT * FROM Bag2);

proper-subtract

apple apple apple the two counts
apple orange
orange orange

apple: 2 apple: 1 apple: 1
orange:1 orange:2 orange:o

20

Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Users who poked others but Users who poked others
never got poked by others more than others poked them

Table subqueries

* Use as
* In set and bag operations, FROM clauses, etc.

* Example: names of

SELECT DISTINCT name
FROM User,
(SELECT uid1 as uid FROM Poke)

EXCEPT ALL
(SELECT uid2 as uid FROM Poke) AS T
WHERE User.uid = T.uid;

WITH clause

* The WITH clause provides a way of defining a
whose definition is
in which the with clause occurs

WITH max_pop(popVal) AS (SELECT WITH max_pop AS (SELECT max(pop) AS
max(pop) FROM user) popVal FROM user)

SELECT uid, name FROM user, max_pop SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal WHERE user.pop = max_pop.popVal

* Supported by many but not all DBMSs
* Can be written using subqueries

IN subqueries

checks if x is in the result of
subquery

» Example: users at the same age as (some) Bart

SELECT *
FROM User,

WHERE age IN (SELECT age
FROM User
WHERE name = ‘Bart’);

EXISTS subqueries

checks if

» Example: users at the same age as (some) Bart

SELECT *
FROM User AS u,

WHERE EXISTS (SELECT * FROM User
WHERE name = ‘Bart’
AND age = u.age);

* This happens to be a —a subquery
that references tuple variables in surrounding queries

Aggregates

* Standard SQL aggregate functions: , ,

))

* Example: number of users under 18, and their
average popularity
 COUNT(*) counts the number of rows

SELECT COUNT(*), AVG(pop)

FROM User
WHERE age <18, 6 0.625

Grouping

* SELECT ... FROM ... WHERE ...

)

* Example: compute average popularity

SELECT age, AVG(pop)

FROM User
GROUP BY age;

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

Compute GROUP BY: group

142 Bart 10 0.9]
857 Lisa PR rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
456 Ralph 8 0.3
jl> 142 Bart 10 0.9
Compute SELECT 123 Milhouse 10 0.2
for each group 857 Lisa 8 07
< 456 Ralph 8 03
10 0.55

8 0.50

HAVING examples

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

* List the average popularity for

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING COUNT(*)>100;

* Can be written using WHERE and table subqueries

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AST
WHERE T.gsize>100;

ORDER BY example

e List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
is the option
* Strictly speaking, only columns can appearin

ORDER BY clause (although some DBMS support more)

Three-valued logic to handle NULL

T Y rANDy <z O0Ry NOT z
_ _ _ TRUE TRUE TRUE TRUE FALSE
TRUE = 1, FALSE = 0, = 0.5 TRUE UNKNOWN | UNKNOWN ~TRUE FALSE
. TRUE FALSE | FALSE TRUE FALSE
x AND y = mln(x 4) UNKNOWN ~ TRUE UNKNOWN ~ TRUE UNKNOWN
UNKNOWN UNKNOWN | UNKNOWN UNKNOWN ~UNKNOWN
x OR Yy =max (X , y) UNKNOWN FALSE | FALSE UNKNOWN UNKNOWN
FALSE TRUE FALSE TRUE TRUE
NOTx=1—x FALSE ~ UNKNOWN | FALSE ~ UNKNOWN TRUE
FALSE FALSE | FALSE FALSE TRUE

» Comparing a with another value (including
another NULL) ., the result is

and clauses only select rows for
output if the condition evaluates to

* NULL is not enough

functions

Unfortunate consequences

e Qla=Q1b?

Q1a. SELECT AVG(pop) FROM Users;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

e Q2a =Q2b?

Q2a. SELECT * FROM Users;

Q2b SELECT * FROM User WHERE pop=pop;

* Be careful: NULL breaks many equivalences
* Use or for null comparisons

Outerjoin examples

abc
gov
dps

nuk

Group

Book Club

Student Government
Dead Putting Society

United Nuclear Workers

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

33

Group > Member abe
gov
gov

dps

A full outerjoin between R and S:
* Allrowsintheresult of R ™ §, plus

Book Club
Student Government
Student Government

Dead Putting Society

857
123
857
142

789

+ “Dangling” R rows (those that do not join
with any S rows) padded with NULL’s for

S’s columns

+ “Dangling” S rows (those that do not join
with any R rows) padded with NULL’s for

R’s columns

Outerjoin examples

gov
dps

nuk

Group

Book Club

Student Government
Dead Putting Society

United Nuclear Workers

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

Group > Member 3¢

gov
gov
dps

nuk

34

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142
United Nuclear Workers NULL

« Aleftouterjoin (R »<5)includesrowsinR x4 S
plus dangling R rows padded with NULL’s

Group >t Member abc

gov
dps
oo

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142

* Aright outerjoin (R > S) includes rows in R
S plus dangling S rows padded with NULL’s

Outerjoin syntax

SELECT * FROM Group LEFT OUTER JOIN Member
ON Group.gid = Member.gid;

~ Group . . Member
Group.gid=Member.gid

SELECT * FROM Group RIGHT OUTER JOIN Member

~ D<C
ON Group.gid = Member.gid; Group Member

Group.gid=Member.gid

SELECT * FROM Group FULL OUTER JOIN Member ~ Group S Member
ON Group.gid = Member.gid; Group.gid=Member.gid

A similar construct exists for regular (“inner”) joins:

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

==For natural joins, add keyword NAT)'RAL; don’t use ON

SELECT * FROM Group NATURAL JOIN Member;

Insert/Delete/Update

* Insert one row
* User 789 joins Dead Putting Society

INSERT INTO Member VALUES (789, 'dps');

e Delete from a table

DELETE FROM Member;

* Delete according to a condition
* Example: User 789 leaves Dead Putting Society

DELETE FROM Member WHERE uid=789 AND gid="dps’;

* Update: User 142 changes name to “Barney”

UPDATE User

SET name = 'Barney’
WHERE uid = 142;

Types of SQL constraints

* NOT NULL

* Key

» Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

NOT NULL & Key constraint examples

CREATE TABLE User

(uid INT NOT NULL,

name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INT,

pop DECIMAL(3,2));

CREATE TABLE User

(uid INT NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL,

twitterid VARCHAR(15) NOT NULL UNIQUE,
age INT,

pop DECIMAL(3,2));

CREATE TABLE Member
(uid INT NOT NULL,

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

Referential integrity in SQL

» Referenced column(s) must be
» Referencing column(s) form a
* Example

CREATE TABLE Member

(uid INT NOT NULL REFERENCES User(uid),
gid CHAR(10) NOT NULL,

PRIMARY KEY/(uid,gid),

FOREIGN KEY (gid) REFERENCES, Group(gid));

CREATE TABLE MemberBenefits

o
FOREIGN KEY (uid,gid) REFERENCES l\/\ember(uid,gid));

Enforcing referential integrity

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member

User Member NQRINsMN{O2WNV]RE
REFERENCES User(uid)

142 Bart S 142 dps ON DELETE CASCADE,
123 Milhouse . -— 123 gov ;

856ptlQ;n 1: REjeCt (< 857 abc Option 2: Cascade

%456 =Rttt 857 gov)
o (ripple changes to all
789 Nelson .
referring rows)

General assertion

e assertion conditionis checked for each
modification that could potentially violate it

* Example: Member.uid references User.uid

CREATE ASSERTION MemberUserReflntegrity
CHECK (NOT EXISTS

(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

Triggers

* A is an event-condition-action (ECA) rule

* When occurs, test ; if condition is
satisfied, execute

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser

FOR EACH ROW

Conditi
WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger options

 Possible events include:

table; table; [OF column]
table

* Timing—action can be executed:
or the triggering event
the triggering event on views (lecture 5)

* Granularity—trigger can be activated:
modified
that performs modification

44

Transition variables/tables

OLD ROW: the modified row before the triggering event

NEW ROW: the modified row after the triggering event

OLD TABLE: a read-only table containing all old rows
modified by the triggering event

NEW TABLE: a table containing all modified rows after the
triggering event

Event [Row __|statement il Event |Row | tatement_

Delete oldr;oldt old t Update | old/newr -
Insert new r; new t new t Insert new r
Update old/newr; old/newt old/newt Delete |oldr

AFTER Trigger BEFORE Trigger

Certain triggers are only possible at
statement level

CREATE TRIGGER I\/IaintainAngoV

AFTER UPDATE OF pop ON User

Transiti
REFERENCING NEW TABLE AS newUsers ~

OLD TBALE AS oldUsers

FOR EACH STATEMENT /

WHEN (0.5 > (SELECT AVG(pop) from User)
BEGIN / Action

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)

INSERT INTO User (SELECT * FROM oldUsers)

END

Views

* A is like a “virtual” table
* Defined by a query, which describes

* Stored as a query by DBMS instead of query contents
* Can be used in queries just like a regular table

CREATE VIEW PopGroup AS SELECT AVG(pop)
SELECT * FROM User tables FROM (SELECT * FROM User

WHERE uid IN (SELECT ui WHERE uid IN

FROM Member (SELECT uid FROM Member
WHERE gid = ‘popgroup’); WHERE gid = ‘popgroup'))

AS popGroup;
SELECT AVG(pop) FROM PopGroup;
SELECT MIN(pop) FROM PopGroup; DROP VIEW popGroup;

SELECT ... FROM PopGroup;

DB Design (lectures 7-10):
E/R models
Design theory

E/R basics

: a “thing,” like an object

: a collection of things of the same type,
like a relation of tuples or a class of objects

* Represented as a rectangle

: an association among entities

: a set of relationships of the same
type (among same entity sets)

* Represented as a diamond 6

* Attributes: properties of entities or relationships,
like attributes of tuples or objects

* Represented as ovals

T

General cardinality constraints

* General cardinality constraints determine
bounds on the number of relationships of a
given relationship set in which a component entity
may participate

E

* Example:

Student

R >
(lower,upper) <>)

(3.5)

Takes

(6,100)

Course

Weak entity sets

* If entity E’s existence depends on entity F, then
* Fis a dominant entity
* Eisasubordinate entity

* Example: Rooms inside Buildings are partly identified by
Buildings’ name

Buildings

* Weak entity set: containing subordinate entities

* Drawn as a double rectangle N
* The relationship sets are called

, drawn as double diamonds

* A weak entity set must have a
relationship to a distinct entity set

Rooms

 Strong entity set: containing no subordinate entities

Specialization or ISA relationships

* Similar to the idea of subclasses in object-oriented
programming: subclass = special case, fewer
entities, and possibly more properties

* Represented as a triangle (direction is important)

* Example: paid users are users, but they also get
avatars (yay!)

Users

RS

PaidUsers

=

romDate

Automatically “
relationships

Groups

”? key, attributes,

Can participate in other relationships

Composite and multi-valued attributes

* Composite attributes: composed of fixed number
of other attributes

* E.g. Address
e Multi-valued attributes: attributes that are set-

valued
* e.g. Hobbies (double edges)
Employee Address o

Cprovnce

Translating entity sets

* An entity set translates directly to a table
* Attributes — columns
* Key attributes — key columns

<>

romDate

Translating weak entity sets

* Remember the “borrowed” key attributes
e Watch out for attribute name conflicts

Building (name, year)

Room (building name,)room_number, capacity)
Seat (building name, room number; seat_number, left or right)

Translating double diamonds?

* No need to translate because the relationship is
implicit in the weak entity set’s translation

Rooms Buildings

Relationship

Seats is subsumed by entity

oy

o

Comparison of three approaches of
translating subclasses & ISA

* Entity-in-all-superclasses
e User (uid, name), PaidUser (uid, avatar)
* Pro:
* Con:

* Entity-in-most-specific-class
* User (uid, name), PaidUser (uid, name, avatar)
* Pro:
* Con:
 All-entities-in-one-table
* User (uid, [type, Jname, avatar)
* Pro:
* Con:

Translating composite and multi-valued
attributes

Employee Address 0

Cromee>

Employee(eld,...,Street, City, Province,..)

EmployeeHobbies(elD, hobby)
Foreign key:
Employee join EmployeeHobbies to get all info

Functional dependencies

* A (FD)is a constraint
between two sets of attributes in a relation

* FD has the form , where X and Y are sets of
attributes in a relation R

* X = Y means that whenever two tuplesin R agree
on all the attributes in X, they must also agree on
all attributesinY

a b c

a b ?
Must be b_/ \._ Could be anything

* If X is a superkey of R, then X — R (all the attributes)

Implied FDs: Armstrong’s Axioms

» A set of fds can imply other fds via 3 intuitive rules: Armstrong’s Axioms
1. Reflexivity: If YC X, then X — Y (trivially)

» ilD, name —ilD

» English: Each ilD and name value determine a unique ilD value
2. Augmentation: if X — Y, then XZ — YZ (trivially)

» IfiID — salary thenilD, name — salary, name

> English: if each ilD determines a unique salary value, then each (ilD,

name) value pair determines a unique (salary, name) value

InstDep
ilD | name | salary | depName | bldng | budget
11 | Alice | 5000 S DC 20000
222 | Bob | 4000 Physics PHY | 30000
333 | Carl | 5200 CS DC 20000

Implied FDs: Armstrong’s Axioms

3. Transitivity: if X - YandY — Z,then X — Z
» Suppose each instructor can be in a single department and each dep
has a single budget
» FD1:ilD — depName FD2: depName — budget, then
iID — budget
» English: If eachiID value determines a unique depName value, which in
turn determines a unique budget value, then each iID value determines a

unique budget value.

InstDep
ilD | name | salary | depName | bldng | budget
11 | Alice | 5000 S DC 20000
222 | Bob | 4000 Physics PHY | 30000
333 | Carl | 5200 CS DC 20000

Other Rules Implied by Armstrong’s Axioms

1. Decomposition: If X - YZ,thenX —>Yand X — Z

Proof:

i. X—>VYZ

ii. YZ—Y (byreflexivity); YZ — Z (by reflexivity)
ii. X— Y (by transitivity); X — Z (by transitivity)

2. Union: If X— Y and X — Z then X — YZ (Prove as exercise)

3. Pseudo-transitivity: If X — Y and YZ — T then XZ— T (Prove as exercise)

Using these rules, you can prove or disprove a (derived) FD given a
set of (base) FDs

Closure of FD sets: F*

e How do we know what FDs hold in a
schema?

* Asetof FDs F aFDX->YiftX->Y
holds in of R that satisfy F

* The of a FD set F (denoted 7): 7

* The set of all FDs that are logically implied by F

* Informally, 7 "includes all of the FDs in F, i.e.,, F € FT,
plus any dependencies they imply.

Attribute closure

* The in a relation R (denoted
) with respect to a set of FDs, F, is the set of

(thatis, Z - A4, ...)

* Algorithm for computing the closure

e Start with closure = 7

* If X - YisinF and X is already in the closure, then also
add Y to the closure

* Repeat until no new attributes can be added

64

Example for computing attribute
closure

Given relation R(ABCDEFG) F inc;\uc;ejF
ComputeZ*({B, F},F): A C

B—ED

D, F—-G
DI
initial B, F
B—E,D B,F.E,D
D,F—-G B,F,E,D,G

B,F - E D,G

64

Using attribute closure

Given arelation R and set of FD’s F

Compute X with respect to F
IfY € X%, then X - Y follows from F

Compute K with respect to F
If K contains all the attributes of R, K is a super key

Still need to verify that K is minimal (how?)

* Hint: check the attribute closure of its proper subset.

* i.e., Check that for no set X formed by removing attributes from
K is K "the set of all attributes

“Good” Schema Decomposition

* Lossless-join decompositions

* We should be able to of the
original table from the instances of the tables in the
decomposition

A decomposition {R{, R,} of R is iff the common
attributes of Ry and R, form a superkey for either schema,

R.NnR, > R{orRiNR, > R,

*If X is a superkey of R, then X — R (all the attributes) [last lecture]

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

Given a schema R and a set of FDs F,
decomposition of R is

if there is an ,

in the decomposition.

* Next, how to obtain such decompositions?
* BCNF = guaranteed to be a decomposition!

oyce-Codd Normal Form (BCNF)

e Arelation R isin iff whenever (X - Y) e F*
and , then either

or

* That s, all non-trivial FDs follow from “key — other attributes”

* Example: R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

* The schema is not in BCNF because, for example, Sno
determines Sname,City, is non-trivial but is not a
superkey of R

BCNF decomposition algorithm

 Find a

 That is, a non-trivial FD in F* of R where X is
a super key of R
« Example: R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

* Decompose R into R; and R,, where
* R, has attributes ;

* R, has attributes , Where Z contains all attributes

of R that are in neither X nor Y R = {Sno,Sname,City,Pno,Pname,Price}

» Repeat (till all are in BCNF) —

R2{Sno,Pno,Pname,Price} R1{Sno,Sname,City}

70

BCNF decomposition example

* R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

{Sno,Sname,City,Pno,Pname,Price}

BCNF violation: Sno — Sname, City

4/\;

R2{Snho,Pno,Pname,Price} R1{Sno,Sname,City} ~ BCNF: Sno — Sname, City
Pno - Pname Sno,Pno — Price {SNo}={Sno, Shame, City}
BCNF violation: Pno - Pname - a superkey of R1

R2b{Sno,Pno,Price} R2a{Pno,Pname}
BCNF: Sno, Pno — Price BCNF: Pno —» Pname

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

* BCNF = guaranteed to be alossless join

decomposition!
* Depend on the on the sequence of FDs for decomposition

Example: consider R={A, B, (} Fincludes: FD1:AB > FD2:C~B

N

{A G {C, B}
AB - (isinterrelational and cannot be tested directly

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

* BCNF = guaranteed to be alossless join

decomposition!
* Depend on the on the sequence of FDs for decomposition

* 3NF = both lossless join and dependency preserving

/3

Third normal form (3NF)

e Arelation R isin 3NF iff
whenever (X - Y) € F* and XY € R, then either

* (X - Y)istrivial (i.e.,, Y € X), or
e XisasuperkeyofR(i.e., X - R)or
* Each attribute in Y — X is contained in a candidate key of R

d Example: consider R={A, B, C} F includes: FD1: AB—>C FD2:C - B

 Satisfies 3NF, but not BCNF
{B}-{C} = {B}is part of the key {AB}

* 3NF is looser than BCNF - Allows more redundancy

74

Finding minimal cover

* A minimal cover for F can be computed in 3 steps.
1. Replace X — YZ with the pairX »Yand X —» Z

2. Remove A from the left-hand sideof X > BinFifB €
computeXt(X — {A}, F)

3. Remove X — Afrom Fif A € computeX*(X,F — {X - A})

* Note that each step must be repeated until it no longer succeeds in
updating F.

* Example: R = {Sno,Sname,City,Pno,Pname,Price, PType }

F:FD1: Sno —» Sname, City—— Sno — Sngme,
FD2: Pno — Pname Sno - Cit

FD3: Sno, Pno — Price Remove FD3
FD4: Sno, Pname — Price
FD5: Pno, Pname — Ptype -_—

Pno — Ptype

Computing 3NF decomposition

Efficient algorithm for computing a 3NF
decomposition of R with FDs F:

1. Initialize the decomposition with empty set
2. Find a minimal cover for F, let it be F~

3. Forevery (X = Y) € %, add arelation {XY} to the
decomposition

4. If norelation contains a candidate key for R, then
compute a candidate key K for R, and add
relation {K} to the decomposition.

76

Example for 3NF decomposition

* R = {Sno,Sname,City,Pno,Pname,Price}

F:FD1: Sno — Sname, City
FD2: Pno — Pname
FD3: Sno, Pno — Price
FD4: Sno, Pname — Price

e Minimal cover F*

R1a(Sno, Sname)
R1b(Sno, City)
R2(Pno, Pname)

F*:FD1a: Sno —» Sname
FD1b: Sno — City
FD2: Pno — Pname
FD4: Sno, Pname — Price

Exercise

R4(Sno,Pname,Price)

R5(Sno,Pno)

* Add relation for candidate key

* Optimization for this example: combine relations R1a
and R1b

Next lecture

* DB Architecture Overview & Physical Data
Organization

77

