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Announcements

• Final exam: 9AM August 11th @ PAC 2,4
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Why we need transactions

• A database is a shared resource accessed by many 
users and processes concurrently.
• Both queries and modifications

• Not managing this concurrent access to a shared 
resource will cause problems
• Problems due to concurrency
• Problems due to failures
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Case For Isolation During Concurrent Access
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Ø Clients want concurrency, because databases are designed to be used 

my multiple clients, and DBMSs can exploit parallelism

Ø Clients also want: to access the db in isolation, i.e., run a set of queries 

and statement as if no others are running concurrently.

Ø All or nothing guarantee: Run the set of statements only if the DBMS 

can guarantee that they were all running atomically as if in isolation.

Ø Any guarantee on subsets of statements is not useful.



Case For Atomicity To Handle Failures
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Ø All or nothing guarantee: Run the set of statements only if the DBMS 

can guarantee that they will all succeed and be persistent or all will fail 

and no update they make will be persistent.



Transactions solve Concurrency & Failure Problems
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Ø Transactions : a set of queries/updates that are treated as an atomic unit

Ø Transactions (appear to) run in isolation during concurrent access 

(different levels of isolation exist; see later in lecture).

Ø Transactions are atomic, ie., either all queries/statement will run and 

persist any modifications to the DBMS, or none will. 

Ø From users’ perspective: By wrapping a set of queries/updates in one 

transaction, users obtain concurrency and resilience guarantees

Ø Note: internally DBMSs use 2 completely different algorithms/protocols 

to provide these functionalities for transactions

Ø E.g.: locking for concurrency; logging for resilience (lecture 19)



ACID Properties
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Ø Transactions provide 4 main properties known as ACID properties:

A: Atomicity

C: Consistency

I: Isolation

D: Durability



ACID: Atomicity
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Ø Provides all-or-nothing guarantee

Ø Partial effects of a transaction must be undone when
• User explicitly aborts the transaction using ROLLBACK
• The DBMS crashes before a transaction commits

Ø Partial effects of a modification statement must be undone when 
any constraint is violated
• Some systems roll back only this statement and let the transaction 

continue; others roll back the whole transaction

How is atomicity achieved?
Logging (to support undo) –lecture 19



ACID: Consistency

9

DBMS

T6
T7
T8

T4
T5

T1
T2
T3

Ø Guaranteed by constraints and triggers declared in the 
database and/or transactions themselves
• E.g., Order amount > 0

Ø Whenever inconsistency arises, 
• abort the statement or transaction, or 
• fix the inconsistency within the transaction



ACID: Isolation (focus of this lecture)
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DBMS

Ø Serializability: A set of transactions 𝐓 might run concurrently and 

interleave but final outcome is equivalent to some serial order of 

executing the transactions in 𝐓. 

Ø But DBMSs also provide lower isolation guarantees (later).

Ø Question to ponder: How can a DBMS guarantee serializability? 

Ø Locking or “verifying modifications at commit time” (next lecture)

INSERT …
SELECT …
DELETE …
COMMIT

T1
T2
T3

T4
T5

T6
T7
T8



ACID: Durability
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DBMS

T1
T2
T3

Ø Durability: Handles guarantees for crashes after commit 

Ø Guarantee: all modifications will persist

Ø Question to ponder: How can a DBMS guarantee durability? 

Ø Logging (Lecture 19)

INSERT …
SELECT …
DELETE …
COMMIT



Problems With Serializability
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DBMS

T6
T7
T8

T4
T5

T1
T2
T3

Ø Serializability: A set of transactions 𝐓 might run concurrently and 

interleave but final outcome is equivalent to some serial order of 

executing the transactions in 𝐓. 

Ø Best consistency guarantee! 

Ø Guaranteeing at the system-level has performance overheads.

Ø Q: Can users get weaker guarantees but at higher performance?

INSERT …
SELECT …
DELETE …
COMMIT



Weaker Isolation Levels

13

Isolation Levels in SQL 
Standard

Read Uncommitted
Read Committed
Repeatable Read

Serializable

Stronger Consistency

Higher Overheads

Less Concurrency

Weaker Consistency

Lower Overheads

More Concurrency

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 
BEGIN TRANSACTION; 
SELECT * FROM Order; 
…
COMMIT TRANSACTION

How to handle two concurrent transactions with different 
isolation levels? à CS 448



READ UNCOMMITTED
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Ø Can read dirty data: an item written by an uncommitted txn
tim

e

r:(o1,$20) 

r:(o1, $25) 

commit

Txn 1:
UPDATE Order 
SET price = price + 5
WHERE oid = o1 || oid = o2

Txn 2: (READ UNCOMMITTED)
SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

w:(o1,$25)

commit

Txn 1 Txn 2

Ø This can happen and no errors would be given.

Ø If approx. results OK, e.g., computing statistics, e.g., avg price, one can 

optimize perf. over consistency and pick read uncommitted 

r:(o2,$40) 

r:(o2, $40) 

w:(o2,$45) 

If Serializable would either read:

(i) o1=20 & o2=40; Sum=60; or

(ii) o1=25 & o2=45; Sum=70



Note on Dirty Reads of The Same Transaction
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Ø There is no such thing as dirty read of the same txn!
Ø Every (uncommitted) txn will read values it has written. 
Ø That is not considered “dirty” even if it comes from uncommitted txn.

BEGIN TRANSACTION
UPDATE Order 
SET price = price + 5
WHERE oid = o1

SELECT price FROM Order
WHERE oid = o1;

COMMIT

Will read 25 (not considered 
a dirty read)

Suppose sets 20->25

Suppose there is 
only 1 transaction 

running 



READ COMMITTED
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Ø No dirty reads but reads of the same item may not be repeatable.
Txn 1:
UPDATE Order 
SET price = price + 5
WHERE oid = o1 || oid = o2

Ø This behavior is allowed.

Ø Still not serializable: serializable 

execution would give 60 or 70 twice.

Txn 2: (READ COMMITTED)
SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

tim
e

r:(o1,$20) 

r:(o1, $20) 

commit

w:(o1,$25)

commit

Txn 1 Txn 2

r:(o2,$40) 
r:(o2, $40) 

w:(o2,$45) 

r:(o1, $25) 
r:(o2, $45) 



REPEATABLE READ
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Ø No repeatable reads but phantom reads may appear
Txn 1:
UPDATE Order SET price = price+5
WHERE oid = o1

INSERT INTO Order VALUES (o3, 10)

Ø Suppose only o1 and o2 exist

Ø Still not serializable: serializable 

would give 60 or 75 twice.

Ø Provided as a by-product of 

locking protocols in DBMSs

Txn 2: (REPEATABLE READ)
SELECT sum(price) FROM Order

SELECT sum(price) FROM Order

tim
e

r:(o1,$20) 

r:(o1, $20) 

commit

w:(o1,$25)

commit

Txn 1 Txn 2

w:(o3,$10) 
r:(o2, $40) 

r:(o1, $20) 
r:(o2, $40) 

r:(o3, $10) phantom read



SERIALIZABLE

Ø All the three anomalies should be avoided:
Dirty reads
Unrepeatable reads
Phantoms

Ø For any two txns T1 and T2:
• Serial executions of T1 and T2 definitely prevent the three 

anomalies:
T1 followed by T2 or T2 followed by T1

Ø Can we run T1 and T2 concurrently and achieve the same serial 
effect?



Summary of Isolation Levels

Isolation level/read 
anomaly

Dirty reads Non-repeatable 
reads

Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible



Ø-- T1:       
INSERT INTO Order
VALUES (o3,10) 
COMMIT;
 

ØConsider other possible concurrent transactions
ØDoes not do any reads
ØNo read concern
ØLowest isolation level: read uncommitted
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Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Example: Lowest Isolation Level To Set? (1)



Ø-- T1:       
UPDATE Order
SET price = 25
WHERE oid = o1;
COMMIT;
 

ØConsider other possible concurrent transactions
ØDoes not read same item twice: reads Order only once
ØOnly concern: transaction T2 might be updating oid=o1 => 

may lead to dirty reads
ØLowest isolation level: read committed
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Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Example: Lowest Isolation Level To Set? (2)



Ø-- T1: 
SELECT sum(price)
FROM Order;
COMMIT;

ØConsider other possible concurrent transactions
ØDoes not read same item twice: reads User only once
ØOnly concern: transaction T2 might be updating Order 

=> may lead to dirty reads
ØLowest isolation level: read committed
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Example: Lowest Isolation Level To Set? (3)

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads



Ø-- T1: 
SELECT AVG(price)
FROM Order;

SELECT MAX(price)
FROM Order;
COMMIT;

ØConsider other possible concurrent transactions
• Now reads same tuples twice
• Concerns: transaction T2  might be 

inserting/updating/deleting a row to Order, i.e., reads many 
not be repeatable and phantoms might appear
• Lowest isolation level: serializable
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Example: Lowest Isolation Level To Set? (4)

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads



Execution histories (or schedules)
• An execution history over a set of transactions 𝑇!…𝑇" 

is an interleaving of the operations of 𝑇!…𝑇" in which 
the operation ordering imposed by each transaction is 
preserved.

• Two important assumptions:
• Transactions interact with each other only via reads and 

writes of objects
• A database is a fixed set of independent objects

• Example: 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , c!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }
• 𝐻! = 𝑤" 𝑥 𝑟# 𝑥 𝑤" 𝑦 𝑟# 𝑦 c"c#
• 𝐻$ = 𝑤" 𝑥 𝑤" 𝑦 c"𝑟# 𝑥 𝑟# 𝑦 𝑐#
• 𝐻% = 𝑤" 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤" 𝑦 c"c#
• 𝐻& = 𝑟# 𝑥 𝑟# 𝑦 𝑐# 𝑤" 𝑥 𝑤" 𝑦 𝑐"
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[next slide expands this example]



Examples for valid execution history
• 𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 , c!}, 𝑇" = { 𝑟" 𝑥 , 𝑟" 𝑦 , 𝑐" }
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𝑇!    𝑇"

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻# 𝐻$ 𝐻% 𝐻&

𝑇!    𝑇"

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇!    𝑇"

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑇!    𝑇"

 r2(x)
 r2(y) 
 c2
w1(x)
w1(y) 
c1



Check equivalence

• Two operations conflict if:
1. they belong to different transactions,
2. they operate on the same object, and
3. at least one of the operations is a write

2 types of conflicts: (1) Read-Write (or write-read) 
and (2) Write-Write

• Two histories are (conflict) equivalent if
1. they are over the same set of transactions, and
2. the ordering of each pair of conflicting operations is 

the same in each history
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Example

• Consider
• 𝐻# = 𝑤! 𝑥 𝑟" 𝑥 𝑤! 𝑦 𝑟" 𝑦 c!c"
• 𝐻$ = 𝑤! 𝑥 𝑤! 𝑦 𝑟" 𝑥 𝑟"[𝑦]c!c"

Step 1: check if they are over the same set of transactions
• 𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 }, 𝑇" = { 𝑟" 𝑥 , 𝑟"[𝑦] }

Step 2: check if all the conflicting pairs have the same order
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Conflicting pairs 𝐻! 𝐻"
𝑤# 𝑥 , 𝑟$ 𝑥 < <

𝑤# 𝑦 , 𝑟$ 𝑦 < <



Serializable

• Does 𝐻% have an equivalent serial execution?
• 𝐻% = 𝑤! 𝑥 𝑟" 𝑥 𝑟"[𝑦]𝑤! 𝑦 c!c"

• Only 2 serial execution to check:
• 𝐻$: 𝑇! followed by 𝑇": 𝑤! 𝑥 𝑤! 𝑦 c!𝑟" 𝑥 𝑟" 𝑦 𝑐" 

• 𝑟![𝑦] reads different value as in 𝐻"
• 𝐻&: 𝑇" followed by 𝑇!: 𝑟" 𝑥 𝑟" 𝑦 𝑐"𝑤! 𝑥 𝑤! 𝑦 𝑐!

• 𝑟![𝑥] reads different value as in 𝐻"

• Do we need to check all the serial executions?
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Conflicting pairs 𝐻" 𝐻% 𝐻&
𝑤# 𝑥 , 𝑟$ 𝑥 < < >

𝑤# 𝑦 , 𝑟$ 𝑦 < > >



How to test for serializability?

• Serialization graph 𝑆𝐺-(𝑉, 𝐸) for history 𝐻:
• 𝑉 = {𝑇|𝑇 is a committed transaction in 𝐻}
• 𝐸 = {𝑇' → 𝑇( if	𝑜' ∈ 𝑇' and	𝑜( ∈ 𝑇( conflict and 𝑜' < 𝑜(}

• A history is serializable iff its serialization graph is 
acyclic.
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Example

• Example:𝐻# = 𝑤! 𝑥 𝑟" 𝑥 𝑤! 𝑦 𝑟"[𝑦] c!c"
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𝑇! 𝑇"

𝑇!    𝑇"

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻#

𝑤! 𝑥 and 𝑟" 𝑥 conflict, and 𝑤! 𝑥 < 𝑟" 𝑥
𝑤! 𝑦 and 𝑟"[𝑦] conflict, and 𝑤! 𝑦 < 𝑟" 𝑦

Serialization graph: no cycles à serializable



Example

• Example: 𝐻% = 𝑤! 𝑥 𝑟" 𝑥 𝑟"[𝑦]𝑤! 𝑦 c!c"
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𝑇! 𝑇" Not serializable𝐻%

𝑇!    𝑇"

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑤! 𝑥 and 𝑟" 𝑥 conflict, and 𝑤! 𝑥 < 𝑟" 𝑥 ; 
𝑤! 𝑦 and 𝑟"[𝑦] conflict, and 𝑟"[𝑦] < 𝑤! 𝑦



Locking

• Rules
• If a transaction wants to read an object, it must first 

request a shared lock (S mode) on that object
• If a transaction wants to modify an object, it must first 

request an exclusive lock (X mode) on that object
• Allow one exclusive lock, or multiple shared locks
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Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No



Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks
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𝑇#   𝑇!

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇# unlocks

𝑇#   𝑇!

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees a
conflict-serializable

schedule



Deadlocks 
• A transaction is deadlocked if it is blocked and will remain 

blocked until there is an intervention.
• Locking-based concurrency control algorithms may cause 

deadlocks requiring abort of one of the transactions

• Consider the partial history 
• Neither 𝑇# nor 𝑇! can make progress

34

𝑇#   𝑇!

r1(x)
w1(x)
 r2(y)
 

 r1(y)
w1(y)
… …

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain 
the lock on y
until 𝑇# unlocks

Cannot obtain 
the lock on y
until 𝑇! unlocks

unlock-X(x)
unlock-S(y)



Strict 2PL

• Only release X-locks at commit/abort time
• A writer will block all other readers until the writer 

commits or aborts

• Used in many commercial DBMS
• Avoids cascading aborts
• But deadlocks are still possible!

• Conservative 2PL: acquire all locks at the beginning 
of a txn
• Avoids deadlocks but often not practical
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Logging
• ACID
• Atomicity: TX’s are either completely done or not done 

at all
• Consistency: TX’s should leave the database in a 

consistent state
• Isolation: TX’s must behave as if they are executed in 

isolation
• Durability: Effects of committed TX’s are resilient against 

failures
• SQL transactions

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;
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Log format

• When a transaction Ti starts
• 〈 Ti, start 〉

• Record values before and after each modification:
• 〈 Ti, X, old_value_of_X, new_value_of_X 〉
• Ti is transaction id 
• X identifies the data item

• A transaction Ti is committed 
when its commit log record 
is written to disk
• 〈 Ti, commit 〉
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〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log



Log example - redo
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log
Start of log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3



Log example

39

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

redo

Start of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo

T4

Start of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4

When txn 
manager receives 

abort, it logs 
reverse 

operations before 
abort

redo



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo
redo

50

Start of log

5150

T4
redo



Log example - Undo
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99 
y: 199
z: 51
w: 1000 

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4 undo

50

Start of log

99
200

50 51

T4, abort

T1, abort

*

*

T4, y, 200

T1, x, 99



Undo/redo logging
• U: used to track the set of active transactions at crash

• Redo phase: scan forward to end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., add 〈 T, X, old 〉 before logging abort
FBasically repeats history!

• Undo phase: scan log backward
• Undo the effects of transactions in U
• That is, for each log record 〈 T, X, old, new 〉 where T is in U, issue 

write(X, old), and log this operation too, i.e., add 〈 T, X, old 〉
• Log 〈 T, abort 〉 when all effects of T have been undone
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The end!
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