
Review lecture - 2
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: oo2 & 004 only



Announcements

• Milestone 2
• Due Tuesday, June 11th 
• Late policy: 25% penalty per 24 hrs 

• Assignment 3 - released
• Due July 20th 
• Late policy: 15% penalty per 24 hrs 

• Expect delays in grading due to a change in TA
• We will announce on Piazza when grades are ready
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Topics covered so far

• Relational model (lecture 2)
• SQL (lectures 3-6)
• Database design (lectures 7-10) 

• Storage management & indexing (lectures 11-12) 
• Query processing & optimizations (lectures 13-14)
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Conceptual/Logical 
level

Review these topics



Storage hierarchy
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Registers

Cache

Memory

Disk

Tapes

Non-volatile
Secondary storage

Tertiary storage



A typical hard drive
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Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow



Top view
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Track
Track
Track

Sectors

“Zoning”: more sectors/data on outer tracks

A block is a
logical unit
of transfer

consisting of
one sector



Disk access time
Disk access time:  time from when a read or write request 

is issued to when data transfer begins

Sum of:
• Seek time: time for disk heads to move to the correct cylinder
• Rotational delay: time for the desired block to rotate under 

the disk head

• Transfer time: time to read/write data in the block (= 
time for disk to rotate over the block)

• Total data access time = seek time + rotational delay + 
transfer time
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Random disk access
à Successive requests are for blocks that are 

randomly located on disk

Delay = Seek time + rotational delay + transfer time

• Average seek time
• Seek the right cylinder for each access
• “Typical” value: 5 ms 

• Average rotational delay
• Rotate for the right block for each access
• “Typical” value: 4.2 ms (7200 RPM)
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Sequential disk access
à Successive requests are for successive block numbers, 

which are on the same track, or on adjacent tracks

Delay = Seek time + rotational delay + transfer time

• Seek time
• 1 time delay: seek the right cylinder once

• Rotational delay
• 1 time delay: rotate to the right block once

• Easily an order of magnitude faster than random disk 
access!
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Record layout

Record = row in a table

• Variable-format records
• Rare in DBMS—table schema dictates the format
• Relevant for semi-structured data such as XML

• Focus on fixed-format records
• With fixed-length fields only, or
• With possible variable-length fields
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Fixed-length fields
• All field lengths and offsets are constant

• Computed from schema, stored in the system catalog

• Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop 
FLOAT);

• If block size != 36, one row maybe split across multiple blocks or 
move to next block & leave the remaining space empty

• What about NULL?
• Add a bitmap at the beginning of the record
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142

0 4
Bart (padded with space)

24
10 0.9

28 36



Variable-length records
• Example: CREATE TABLE User(uid INT, 

          name VARCHAR(20), age INT, pop FLOAT, 
          comment VARCHAR(100));
• Put all variable-length fields at the end
• Approach 1: use field delimiters (‘\0’ okay?)

• Approach 2: use an offset array

• Scheme update is messy if it changes the length of a 
field
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142

0 4
Bart\010 0.9

8 16
Weird kid!\0

142

0 4
Bart10 0.9

8 16
Weird kid!

18 22 32

22 32



Block layout

How do you organize records in a block?
• NSM (N-ary Storage Model)
• Most commercial DBMS

• PAX (Partition Attributes Across)
• Ailamaki et al., VLDB 2001
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NSM

• Store records from the beginning of each block
• Use a directory at the end of each block
• To locate records and manage free space
• Necessary for variable-length records
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142          Bart           10       0.9 123       Milhouse        10    0.2

456.       Ralph            8.   0.3

857            Lisa             8.    0.7

Why store data and directory
at two different ends?

So both can grow easily!



Cache behavior of NSM

• Query: SELECT uid FROM User WHERE pop > 0.8;

• Assumptions: no index, and cache line size < record size
• Lots of cache misses & wasted prefetching
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142          Bart           10       0.9 123       Milhouse        10    0.2

456.       Ralph            8.   0.3

857            Lisa             8.    0.7
142  Bart    10 

0.9 123 Milhouse

10 0.2 857  Lisa

8  0.7          

456 Ralph      8

Cache
0.3             



PAX
• Most queries only access a few columns
• Cluster values of the same columns in each block
• Better sequential reads for queries that read a single 

column
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142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)



Column vs. row oriented db
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uid name pop age

1 Bart .6 12

2 Lisa .9 10

3 Abe .3 65

1 Bart .6 12

2 Lisa .9 10

3 Abe .3 65

Row oriented

1 2 3

Bart Lisa Abe

.6 .9 .3

12 10 65

Column oriented

User:



Indexes
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Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key on disk
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Smaller size

Must be clustered

Can tell directly if 
a record exists

May not fit 
into memory

Easier to 
update



Clustering v.s. non-clustering indexes

• An index on attribute A is a clustering index if tuples in the relation with 
similar values for A are stored together in the same block.

• Other indices are non-clustering (or secondary) indices.

• Note: A relation may have at most one clustering index, and any number 
of non-clustering indices.
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Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

A clustering index
on uid

A 
non-clustering 
index on name



B+-tree

• A hierarchy of nodes with intervals
• Balanced: good performance guarantee
• Disk-based: one node per block; large fan-out
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Sample B+-tree nodes
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Max fan-out: 4

12
0

15
0

18
0

to keys 
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘



Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;
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Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;
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And follow next-leaf pointers until you hit upper bound
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Insertion

• Insert a record with search key value 32
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And insert it right there



Another insertion example

• Insert a record with search key value 152
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Node splitting
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More node splitting
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• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level



Index-only plan

• For example: 
• SELECT firstname, pop FROM User WHERE pop > ‘0.8’ 

AND firstname = ‘Bob’;
• non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns 
needed to answer the query without having to 
access the tuples in the base relation.
• Avoid one disk I/O per tuple 
• The index is much smaller than the base relation 
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Query processing

31



Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement
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Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: 

• stop early if it is a lookup by key

• Memory requirement: 2 (blocks)
• 1 for input, 1 for buffer output
• Increase memory does not improve I/O

• Not counting the cost of writing the result out
• Same for any algorithm!
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Disk

r1 r2 R

Memory

r3 r4

….

r1 r2

r1 r2

Buffer output

1 for input 



Basic nested-loop join
𝑅 ⋈! 𝑆
• For each 𝑟	 in a block BR of 𝑅:
   For each  𝑠 in a block BS of 𝑆:
      Output 𝑟𝑠 if 𝑝 is true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + |𝑅| ⋅ 𝐵 𝑆

• Memory requirement: 3
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Blocks of R are moved 
into memory only once

Blocks of S are moved into memory 
|R| number of times



Improvement: block nested-loop join

𝑅 ⋈! 𝑆
• For each block BR of 𝑅:
   For each block BS of 𝑆:
      For each 𝑟 in BR :
  For each 𝑠 in BS:
           Output 𝑟𝑠 if 𝑝 is true over 𝑟 and 𝑠

• I/O’s: 𝐵 𝑅 + 𝐵(𝑅) ⋅ 𝐵 𝑆

• Memory requirement: 3
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Blocks of R are moved 
into memory only once

Blocks of S are moved into memory 
B(R) number of times



More improvements

• Stop early if the key of the inner table is being 
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆 

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + ! "
#$% ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer? (exercise)
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Indexes: Selection using index

• Equality predicate: 𝜎*+, 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎*-, 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴, 𝐵
• How about B+-tree index on 𝑅 𝐵, 𝐴 ?
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Index nested-loop join
𝑅 ⋈".'().! 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆(𝐵)
• For each block of 𝑅, and for each 𝑟 in the block:

    Use the index on 𝑆 𝐵  to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
         Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index	lookup + I/O	for	record	fetch
• Typically, the cost of an index lookup is 2-4 I/O’s (depending on the 

index tree height if B+ tree)
• Beats other join methods if 𝑅  is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3 (extra memory can be used to 
cache index, e.g. root of B+ tree)
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External merge sort
Recall in-memory merge sort: Sort progressively larger 

runs, 2, 4, 8, …, |R|, by merging consecutive “runs”

Problem: sort 𝑹, but 𝑹 does not fit in memory
• Phase 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Phase 1: merge 𝑀 − 1  
level-0 runs at a time, 
and write out a level-1 run

• Phase 2: merge 𝑀 − 1  level-1 runs at a time, and 
write out a level-2 run

…
• Final phase produces one sorted run 39

Memory

𝑅

Level-0

…

…

… Level-1

Disk
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

Arrows indicate the 
blocks in memory

Disk
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4



52

Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Ø Phase 2 (final)

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8 3 6 9
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Ø 3 memory blocks available; each holds one number

Ø Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

Ø Phase 0

Ø Phase 1

Ø Phase 2 (final)

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the 
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8 3 6 9

1 2 3 4 5 6 7 8 9



Sort-merge join

𝑅 ⋈3.*+4.5 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge 
• 𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆 
• Repeat until one of 𝑅 and 𝑆 is exhausted:

          If 𝑟. 𝐴 > 𝑠. 𝐵
    then 𝑠 = next tuple in 𝑆
          else if 𝑟. 𝐴 < 𝑠. 𝐵 
    then 𝑟 = next tuple in 𝑅
           else output all matching tuples, and
   𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting	+𝑂(𝐵 𝑅 + 𝐵 𝑆 ) 
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins
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Query optimization
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A query’s trip through the DBMS
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Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
      Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×



Logical plan

• Nodes are logical operators (often relational 
algebra operators)
• There are many equivalent logical plans

61

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”



Physical (execution) plan

• A complex query may involve multiple tables and 
various query processing algorithms
• E.g., table scan, basic & block nested-loop join,  index 

nested-loop join, sort-merge join, … (Lecture 13)

• A physical plan for a query tells the DBMS query 
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams 

and produces a single output table/stream
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Examples of physical plans

• Many physical plans for a single query
• Equivalent results, but different costs and assumptions!
FDBMS query optimizer picks the “best” possible physical plan
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PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)
MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;



Cost estimation

• We have: cost estimation for each operator
• Example: INDEX-NESTED-LOOP-JOIN(uid) takes

O(𝐵 𝑅 + 𝑅 ⋅ index	lookup + record	fetch )
• We need: size of intermediate results
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Physical plan example:

Input to Join(uid):

Lecture 13

What is its input size? 
How many tuples with 

name=‘Bart’?

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)
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Cardinality estimation

Cardinality estimation for:

• Equality predicates

• Range predicates

• Joins

• Textbook has more operators



Selections with equality predicates

• 𝑄: 𝜎*+,𝑅
• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋'𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• 𝑄 ≈ 33 6!3
• Selectivity factor of 𝐴 = 𝑣  is J. /!"
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Example

• |User|=1000, |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50è |𝜎!"#$%"'"()" 𝑈𝑠𝑒𝑟 | =?
• Assumptions:

• Values of 𝑛𝑎𝑚𝑒 are uniformly distributed in 𝑈𝑠𝑒𝑟

• |𝜎!"#$%"'"()" 𝑈𝑠𝑒𝑟 | =
*+++
,+

= 20

67

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)



Range predicates

• 𝑄: 𝜎*-,𝑅
• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ ⁄. 0

• With more information
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴
• 𝑄 ≈ 𝑅 ⋅ 1231 ".' $4

1231 ".' $567 ".'
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low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)



Two-way equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer 

distinct values for the join attribute) joins with some 
tuple in the other relation
• That is, if 𝜋!𝑅 ≤ 𝜋!𝑆  then 𝜋!𝑅 ⊆ 𝜋!𝑆

• Certainly not true in general
• But holds in the common case of foreign key joins

• 𝑄 ≈ 3 ⋅ 4
:;< 6!3 , 6!4

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is J. CDE /!" , /!)
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Example
• Database: 

• User(uid, name, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows 
• |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50
• |𝜋%&' 𝑀𝑒𝑚𝑏𝑒𝑟 | = 500

• Estimate size |𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟| =?
• | 𝜋!"# 𝑈𝑠𝑒𝑟 | = 1000
• |𝜋!"# 𝑀𝑒𝑚𝑏𝑒𝑟 | = 500
• 1000*50000/max(500,1000)=50000 
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Search space is huge 
• Characterized by “equivalent” logical query plans

SELECT Group.name FROM User, Member, Group WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;
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Do we need to exam all the 
logical plans?
No. We can apply heuristic 
transformation rules to find a 
cheaper logical plan

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”



Transformation rules (a sample)

• Convert 𝜎!-× to/from ⋈!: 𝜎! 𝑅×𝑆 = 𝑅 ⋈! 𝑆
• Example: 𝜎()$*.%&',-$#.$*.%&' 𝑈𝑠𝑒𝑟×𝑀𝑒𝑚𝑏𝑒𝑟 = 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟

• Merge/split 𝜎’s: 𝜎!/ 𝜎!0𝑅 = 𝜎!/∧!0𝑅
• Example: 𝜎"/$012 𝜎343,2.5𝑈𝑠𝑒𝑟 = 𝜎"/$012∧343,2.5𝑈𝑠𝑒𝑟

• Merge/split 𝜋’s: 𝜋?@ 𝜋?0𝑅 = 𝜋?/𝑅, if 𝐿@ ⊆ 𝐿A
• Example: 𝜋"/$ 𝜋"/$,343𝑈𝑠𝑒𝑟 = 𝜋"/$𝑈𝑠𝑒𝑟
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Transformation rules (a sample)

• Push down/pull up 𝜎:
𝜎!∧!1∧!2 𝑅 ⋈!3 𝑆 = 𝜎!1𝑅 ⋈!∧!3 𝜎!2𝑆 , where
• 𝑝T is a predicate involving only 𝑅 columns
• 𝑝U is a predicate involving only 𝑆 columns
• 𝑝 and 𝑝V are predicates involving both 𝑅 and 𝑆 columns
• Example: 
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𝜎"#.%&'()"*.%&'(∧,#.-.-/0.1∧,*.232/0.1 𝜌,#𝑈𝑠𝑒𝑟 ⋈,#.4567,*.456 𝜌,*𝑈𝑠𝑒𝑟
= 𝜎232/0.1(𝜌,#𝑈𝑠𝑒𝑟) ⋈,#.4567,*.456∧,#.89:;),*.89:; (𝜎232/0.1(𝜌,*𝑈𝑠𝑒𝑟))



Transformation rules (a sample)

• Push down 𝜋: 𝜋? 𝜎!𝑅 = 𝜋? 𝜎! 𝜋?,?3𝑅 , where
• 𝐿V is the set of columns referenced by 𝑝 that are not in 𝐿
• Example:

 𝜋WXY 𝜎Z[Z\].^𝑈𝑠𝑒𝑟 = 𝜋WXY(𝜎Z[Z\].^(𝜋WXY,Z[Z𝑈𝑠𝑒𝑟))

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new 

ones
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Relational query rewrite example
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𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝜎
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝜎3-× to ⋈3



Heuristics-based query optimization
• Start with a logical plan

• Push selections/projections down as much as possible
• Why? Reduce the size of intermediate results

• Join smaller relations first, and avoid cross product
• Why? Joins are more optimized and have alternate 

implementations

• Convert the transformed logical plan to a physical 
plan (by choosing appropriate physical operators)
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