Review lecture -2

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only



Announcements

Due Tuesday, June 11th
Late policy: 25% penalty per 24 hrs

Due July 20t"
Late policy: 15% penalty per 24 hrs

* Expect delays in grading due to a change in TA
* We will announce on Piazza when grades are ready



Topics covered so far

* Relational model (lecture 2)
* SQL (lectures 3-6)
* Database design (lectures 7-10)

* 'Storage management & indexing (lectures 11-12)
* Query processing & optimizations (lectures 13-14)
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A typical hard drive
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Top view

“Zoning”’: more sectors/data on outer tracks

Sectors

A blockisa
logical unit
of transfer
consisting of
one sector



Disk access time

Disk access time: time from when a read or write request
is issued to when data transfer begins

Sum of:
: time for disk heads to move to the correct cylinder

: time for the desired block to rotate under
the disk head

: time to read/write data in the block (=
time for disk to rotate over the block)

* Total data access time = seek time + rotational delay +
transfer time



Random disk access

—> Successive requests are for blocks that are
randomly located on disk

Delay = Seek time + rotational delay + transfer time

* Average seek time
* Seek the right cylinder for each access
* “Typical” value: 5 ms

* Average rotational delay
* Rotate for the right block for each access
» “Typical” value: 4.2 ms (7200 RPM)



Sequential disk access

—> Successive requests are for successive block numbers,
which are on the same track, or on adjacent tracks

Delay = Seek time + rotational delay + transfer time

* Seek time
* 1time delay: seek the right cylinder once

* Rotational delay
* 1time delay: rotate to the right block once

* Easily an order of magnitude faster than random disk
access!



Record layout

Record =row in a table

e Variable-format records
e Rare in DBMS—table schema dictates the format

e Relevant for semi-structured data such as XML

* Focus on fixed-format records

* With fixed-length fields only, or
* With possible variable-length fields



Fixed-length fields

* All field lengths and offsets are constant
* Computed from schema, stored in the system catalog

e Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop
FLOAT);

0 4 24 28 36
‘ ‘ (padded with space) ‘ ‘ ‘

* If block size != 36, one row maybe split across multiple blocks or
move to next block & leave the remaining space empty

* What about NULL?
* Add a bitmap at the beginning of the record



Variable-length records

¢ Example: CREATE TABLE User(uid INT,
, age ;NT, pop FLOAT,

* Put all variable-length fields at the end
» Approach 1: use field delimiters (‘\0’ okay?)

O 4 8 16
EXER [0 ] |

* Approach 2: use an offset array

0 4 3 16 18 22 32

. ?.cl?c?me update is messy if it changes the length of a
ie




Block layout

How do you organize records in a block?

(N-ary Storage Model)
e Most commercial DBMS

(Partition Attributes Across)
e Ailamaki et al., VLDB 2001



NSM

* Store records from the beginning of each block

* Use a directory at the end of each block
* To locate records and manage free space
* Necessary for variable-length records

iz Bart IlOI 0.9 123 Milhouse 101 0.2

8.1 0.7

e o Yeloa

Why store data and
at two different enc

So both can grow e

14



Cache behavior of NSM

* Query: SELECT uid FROM User WHERE pop > 0.8;

* Assumptions: no index, and cache line size < record size

* Lots of cache misses & wasted prefetching

Milhouse

8.1 0.7

e raen el oa

142 Bart 10

0.9 123 Milhouse

100.2 857 Lisa

8 0.7

456 Ralph 8

0.3

Cache
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PAX

* Most queries only access a few columns
* Cluster values of the same columns in each block

* Better sequential reads for queries that read a single

column Reorganize after every update

(for variable-length records only)

FTTTT2] (number of records) and delete to keep fields together
142 1123 | 857 ] 456

B

ofio]s]s

(IS NOT NULL bitmap)

16



Column vs. row oriented db
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Indexes



Dense v.s. sparse indexes

: one index entry for each search key value
* One entry may “point” to multiple records (e.g., two users named Jessica)

: one index entry for each block

* Records must be according to the search key on disk
123  Milhouse 10 0.2 Bart
142 Bart 10 0.9 Jessica
279 Jessica 10 0.9 Lisa
123
E 345 Martin 8 2.3 Martin
45
\ .
857 456  Ralph 8 03 Milhouse
512 Nelson 10 04 Nelson
679  Sherri 10 06 Ralph
697  Terri 10 06 Sherri
Terri
857 Lisa 8 0.7
Windel
912 Windel 8 0.5

997 Jessica 8 0.5



Dense v.s. sparse indexes

* Dense: one index entry for each search key value
* One entry may “point” to multiple records (e.g., two users named Jessica)

» Sparse: one index entry for each block
* Records must be clustered according to the search key

Can tell directly if
a record exists

Easier to May not fit
update into memory

Sparse index
on uid

Must be clustered

Dense index

on name
20



Clustering v.s. non-clustering indexes

* Anindex on attribute Ais a index if tuples in the relation with
similar values for A are stored together in the same block.
* Otherindices are indices.
* Note: A relation may have , and any number
of non-clustering indices.
123 Milhouse 10 0.2 Bart
142  Bart 10 0.9 Jessica
279 Jessica 10 0.9 Lisa
123
" 345 Martin 8 2.3 Martin
45
\ .
957 456  Ralph 8 03 Milhouse
) 512 Nelson 10 0.4 Rl
Sparse index _ Ralph
on uid 679 Sherri 10 0.6 .
697 Terri 10 06 S
Terri
857 Lisa 8 0.7
Windel
912 Windel 8 0.5 .
997  Jessica 8 0.5 Dense index

on name



Bf-tree

: good performance guarantee
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Sample B*-tree nodes

to keys
100 < k
S B ®
— v
to keys to keys to keys to keys

100 <k <120 120<k <150 150<k <180 180<k

to records with these k values;
or, store records directly in leaves

130
N

120

'|-> to next leaf node in sequence




Lookups

* SELECT * FROM R WHERE
* SELECT * FROM R WHERE k = 32;

Not found

’

-t 3
>




Range query

* SELECT * FROM R WHERE k> 32 AND k< 179;

And follow next-leaf pointers until you hit upper bound

25



Insertion

* Insert a record with search key value 32

o
o
i

120
150
180

Look up where the

inserted key
should go...

3

3
-<—1100
-«—101

o
—
—

And insert it right there

26



Another insertion example

* Insert a record with search key value 152

o
o
i

120
150

50’180
15¢

83 abl’ A p Rl & 8
— o - o - — N
R R

Oops, node is already full!



Node splitting

100

Oops, that node
becomes full!

28



More node splitting

00
156

Need to add to parent node a pointer
to the newly created node

120
150

100
101
110
1120
130
150
152

<1156
<1180

C <1200

* In the worst case, node splitting can “propagate” all the way
to the root of the tree (not illustrated here)

 Splitting the root introduces a new root of fan-out 2 and causes the tree
to grow “up’ by one level
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Index-only plan

* For example:
* SELECT firstname, pop FROM User WHERE

)

* non-clustering index on ( )

contains all the columns
needed to answer the query without having to
access the tuples in the base relation.
* Avoid one disk I/O per tuple
* The index is much smaller than the base relation



Query processing



Notation

e Relations: R,

* Tuples: 7,

* Number of tuples: |R|,
 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement



Table scan

Buffer output
* Scan table R and process the query Memory
over R 1for input
of R without duplicate elimination 2
° I/O’S: . Dick D

* Trick for selection:
* stop early if it is a lookup by key
* Memory requirement: 2 (blocks)

* 1forinput, 1 for buffer output N— _
* Increase memory does not improve 1/O

* Not counting the cost of writing the result out
* Same for any algorithm!

R




Basic nested-loop join

* For each r in a block B; of R:
For each s in a block By of S:
Output rs if p is true over r and s

* R is called the table; S is called the table

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once |R| number of times

* Memory requirement:



Improvement: block nested-loop join

* For each block B; of R:
For each block Bg of S:
For each r in By :
For each s 1in Bg:
Output rs if p is true over r and s

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once B(R) number of times

* Memory requirement:



More improvements

* Stop early if the key of the inner table is being
matched

* Make use of available memory

* Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

e |/O’s:
* Or, roughly:
* Memory requirement: M (as much as possible)

* Which table would you pick as the outer? (exercise)



Indexes: Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
« Example: B*-tree index on R(4, B)
 How about B*tree index on R(B,A)?



Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s withs.B =r.4
Output rs

e |/O’s:
* Typically, the cost of an index lookup is 2-4 1/0’s (depending on the
index tree height if B+ tree)

* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree)



External merge sort

Recall in-memory merge sort: Sort progressively larger
runs, 2, 4, 8, ..., |R|, by merging consecutive “runs

Problem: sort R, but R does not fit in memory

:read M blocks

of R at a time them
and write out a ’ e

. (M —-1)
level-0 runs at a time, =
and write out a

LCCd

write out a

produces one sorted run

T mick Y
. Disk
}R

Level-0

===

m

-:} Ley

¥/

(M — 1) level-1 runs at a time, and

el-1



Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 — N
\\ /

» Phase o 1 1]
R: |1|7]|4|5]|2|8 963




Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
‘\

» Phase o 1 1]
17| 4| 5|2
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Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
\
> Phase o
> Phase 1 m 7141512
! |
114(7| |2|5|8
112/ 4578




Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6, 3 —
~
> Phase o
> Phase 1 R: [ 1]7]4]5]2
» Phase 2 (final) 114 7| |2|5|8
!
1124 5 7| 8




Example

» 3 memory blocks available; each holds one number

> Input: 1,7, 4,5,2,8, 9,6, 3 —
‘\
» Phase o

> Phase 1 R: [1]7]4]5]2
» Phase 2 (final) 114 7| |2|5|8

!

1124 57 8
112/3/ 45 67 8




Sort-merge join

* Sort R and S by their join attributes; then merge
* 1, s =the first tuplesin sorted R and S

* Repeat until one of R and § is exhausted:
Ifr.A>s.B
then s = next tuplein §
elseifr.A <s.B
then r = next tuple in R
else output all matching tuples, and
r,s=nextinRand$S

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst caseis : everything joins



Query optimization



A query’s trip through the DBMS

SELECT name, uid
SQL %uery FROM Member, Group
WHERE Member.gid =
<Qulery> ‘ ' Group.gid;
—2fWa_
<select-list> |<where—cond> Parse tree
/1 <f9m-@> \\ ¥
" <table> <table> ‘ " ‘ 7;[name, i
Member Group LOg"CCy plan ?I\/lember.gid:Group.gid
X
. 7 N\
PROJ EfLT (name, gid) ‘ } Member Group
MERGE-JOIN (gid) Physical plan
7 ¥
SORT (gid
|(g’ ) SCAN (Group) ‘ y ‘

SCAN (Member)

Result



Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans

7|TGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
7 N\
J % N Group T[Group name

User Member WMember.gid = Group.gid
/ Group

X User uid= Member.uid

/ Member

Io-name = “Bart”

User



Physical (execution) plan

* A complex query may involve multiple tables and
various query processing algorithms

* E.g., table scan, basic & block nested-loop join, index
nested-loop join, sort-merge join, ... (Lecture 13)

* A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm

* Each operator accepts a number of input tables/streams
and produces a single output table/stream



Examples of physical plans

SELECT Group.name

FROM User, Member, Group

WHERE User.name = 'Bart’

AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJECT (Group.name) PROJECT (Group.name)
| |
INDEX-N ESTED-L%)P-JOIN (gid) MERGE-JOIN (gid)
. N
Index on Group(gid) SOR}(gid) SCAN (Group)

INDEX-NESTED\-LOOP-JOIN (uid) MERGE-JOIN (uid)
Adex on Member(uid) / N

o SORT (uid
INDEX-SCAN (name = “Bart”) FILTER (name = “Bart”) \( )

I I SCAN (Member)
Index on User(name) SCAN (User)

* Many physical plans for a single query
* Equivalent results, but different costs and assumptions!

63



Cost estimation

Physical plan example: PROJECT (Group.name)

INDEX-N ESTED-LC{)P-JOI N (gid)

Index on Group(gid)

Input to Join(uid): INDEX—NESTED\-LOOP-JOIN(uid)
iy e : Adex on Member(uid)
at is its input size: o« ’
How many/Riples with INDEX-SCAN (name = “Bart”) :

name=‘Bart”? . Index on User(name)

* We have: cost estimation for each operator m

- Example: INDEX-NESTED-LOOP-JOIN(uid) takes
O(B(R) + |R| - (index lookup + record fetch))

e We need: size of intermediate results



Cardinality estimation

Cardinality estimation for:

* Equality predicates

Range predicates

e Joins

Textbook has more operators



Selections with equality predicates

° Q:
* DBMSs typically store the following in the catalog

e Size of R:
e Number of distinct 4 values in R:

* Assumptions
* Values of A4 are uniformly distributed in R

* Selectivity factor of (A = v) is



Example

PROJECT (Group.name)

. . |
PhySICaI plan examp|e° INDEX—NESTED—L%)P-JOIN(gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

Index on Member(uid)

* |User|=1000, |Tpame (User)| = 50 = |0name="gart"(User)| =7

* Assumptions:
* Values of name are uniformly distributed in User

1000
* Io-name="Bart”(U537")| = T 20



Range predicates

° Q: O-A>vR
* Not enough information!
* Just pick, say, |0] = |R[ - '/3

* With more information
* Largest R.A value: high(R.A)

e Smallest R.A value: low(R.A)

) _ . high(R.A)—v
|Q| ~ |R| high(R.A)—low(R.A)

high(R.A) — low(R. A)

high(R.A) — v

68



Two-way equi-join

] Q:
* Assumption:

* Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if [T4R| < |m4S| thenmyR S m,4S
* Certainly not true in general
* But holds in the common case of foreign key joins

* Selectivity factorof R.A=S5.4is



Example

e Database:
* User(uid, name, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
* |Tname(User)| = 50
o |myiq(Member)| = 500

* Estimate size |User @ Member| =?
* | myiq(User)| = 1000
o |myq(Member)| = 500
* 1000*%50000/mMax(500,1000)=50000



Search space is huge

 Characterized by “equivalent” logical query plans

SELECT Group.name FROM User, Member, Group WHERE User.name = 'Bart’
AND User.uid = Member.uid AND Member.gid = Group.gid;

7;[Group.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
_ X< aoup 7TGroup name
User Member WMember.gid = Group.gid
/ Group
Do we need to exam all the MUSer uid= Member.uid

I ?
logical plans: N / Member

No. We can apply heuristic
€ »
transformation rules to find a ¥ name = “Bart
User

cheaper logical plan
71



Transformation rules (a sample)

* Convert g,,-X toffrom ,;:

* Example: oyseruid=memperuia (UserXMember) = User X< Member

* Merge/split o’s:

* Example: O-age>20(0-pop=0.8User ) = O-age>20/\pop=0.8User

* Merge/split ir’s: ,ifLy € L,

* Example: nage(nage,popUser) = MggeUser



Transformation rules (a sample)

* Push down/pull up o
, where

* p, is a predicate involving only R columns

* ps is a predicate involving only S columns

* p and p’ are predicates involving both R and S columns
* Example:

O-U1.name=U2.name/\Ul.pop>0.8/\U2.pop>O.8(pUlUser X1 uidzU2uid PuzUser)
= O'pop>0.8(pU1User) NU1.uid#U2.uidAU1.name=U2.name (O'pop>0.8(pU2U5'er))



Transformation rules (a sample)

e Push down m: , where

L' is the set of columns referenced by p that are notin L
* Example:

7Tage (Upop>0.8 US@T') = T[age (Gpop>0.8 (T[age,pop US@T'))

* Many more (seemingly trivial) equivalences...

* Can be systematically used to transform a plan to new
ones



Relational query rewrite example

7FGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X

N
PN roup
User Member T[Group name
O-Member gid = Group.gid
/ Group T[Group name
OI-User.uxd Member.uid
X Member.gid = Group.gid
N /
Member Group
O name = “Bart” X User uid = Member.uid
U;er IVlember

Io-name = “Bart”

User



Heuristics-based query optimization

* Start with a logical plan

* Why? Reduce the size of intermediate results

* Why? Joins are more optimized and have alternate
implementations

* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)



