
Database recovery
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Announcements

• Assignment 3 due July 20th

• Final demo for projects:
• Option 1: Online live demo with the TA
• Option 2: Send a recording to the TA

• Send your choice to your TA by July 24th

• Lose 2 points otherwise

2

Review
• ACID
• Atomicity: TX’s are either completely done or not done

at all
• Consistency: TX’s should leave the database in a

consistent state
• Isolation: TX’s must behave as if they are executed in

isolation
• Durability: Effects of committed TX’s are resilient against

failures
• SQL transactions

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

3

Outline

• Recovery – atomicity and durability
• Naïve approaches
• Logging for undo and redo

4

Execution model

To read/write X
• The disk block containing X must be first brought

into memory
• X is read/written in memory
• The memory block containing X, if modified, must

be written back (flushed) to disk eventually

5

CPU
Memory
buffer

Disk

X
 Y…

X
Y…

X
Y…

X
Y…

Failures

• System crashes right after a transaction T1 commits;
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2;
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?

6

T1start end

time

T2start end

Naïve approach: Force -- durability

7

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500
Force: all writes must be reflected on disk
when a transaction commits

Naïve approach: Force -- durability

8

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk
commit;

Force: all writes must be reflected on disk
when a transaction commits

If system crashes right after T1 commits, effects of T1 will be lost
Without force: not all writes are on disk when T1 commits

Bad!

Naïve approach: No steal -- atomicity

9

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

No steal: Writes of a transaction can only
be flushed to disk at commit time:
• e.g. A=700 cannot be flushed to disk

before commit.

commit;

If system crashes before T1 commits, there is no way to undo the
changes

With steal: some writes are on disk before T commits
Bad!

Naïve approach

• Force: When a transaction commits, all writes of
this transaction must be reflected on disk
• Ensures durability
FProblem of force: Lots of random writes hurt

performance

• No steal: Writes of a transaction can only be flushed
to disk at commit time
• Ensures atomicity
FProblem of no steal: Holding on to all dirty blocks

requires lots of memory

10

Logging

• Database log: sequence of log records, recording all
changes made to the database, written to stable
storage (e.g., disk) during normal operation

• Hey, one change turns into two—bad for
performance?
• But writes to log are sequential (append to the end of log)

11

Update
operation

Old stable
database state

New stable
database state

Database
log

Log format

• When a transaction Ti starts
• 〈 Ti, start 〉

• Record values before and after each modification:
• 〈 Ti, X, old_value_of_X, new_value_of_X 〉
• Ti is transaction id
• X identifies the data item

• A transaction Ti is committed
when its commit log record
is written to disk
• 〈 Ti, commit 〉

12

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log

When to write log records into stable store?

• Write-ahead logging (WAL): Before X is modified on
disk, the log record pertaining to X must be flushed

• Without WAL, system might crash after X is modified
on disk but before its log record is written to disk—
no way to undo

13

Undo/redo logging example

14

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

WAL: Before A,B are modified on disk, their log info must be flushed

Undo/redo logging example cont.

15

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

If system crashes before T1 commits, we have
the old value of A stored on the log to undo T1

Undo/redo logging example cont.

16

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

commit;

No force: can flush
after commit

If system crashes before we flush the changes
of A, B to the disk, we have their new
committed values on the log to redo T1

Log example - redo

17

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log
Start of log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

Log example

18

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

redo

Start of log

Log example

19

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo

T4

Start of log

Log example

20

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4

When txn
manager receives

abort, it logs
reverse

operations before
abort

redo

Log example

21

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo
redo

50

Start of log

5150

T4
redo

Log example - Undo

22

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, z, 51
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99
y: 199
z: 51
w: 1000

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4 undo

50

Start of log

99
200

50 51

T4, abort

T1, abort

*

*

T4, y, 200

T1, x, 99

Undo/redo logging
• U: used to track the set of active transactions at crash

• Redo phase: scan forward to end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., add 〈 T, X, old 〉 before logging abort
FBasically repeats history!

• Undo phase: scan log backward
• Undo the effects of transactions in U
• That is, for each log record 〈 T, X, old, new 〉 where T is in U, issue

write(X, old), and log this operation too, i.e., add 〈 T, X, old 〉
• Log 〈 T, abort 〉 when all effects of T have been undone

23

Checkpointing
• Shortens the amount of log that needs to be undone or

redone when a failure occurs

• Assumption: Txns cannot perform any update actions, such as
writing to a buffer block or writing a log record, while a
checkpoint is in progress
• Steps:

• Output to the disk all modified buffer blocks
• Add to log: <checkpoint L>, where L is a list of txns active at the time

of the checkpoint

• After a system crash has occurred, the system examines the
log to find the last <checkpoint L> record
• The redo operations will start from the checkpoint record
• The undo operations will start from the end of the log until the list of

active transactions is empty
24

Summary

• Recovery: undo/redo logging
• Normal operation: write-ahead logging, no force, steal
• Recovery: first redo (forward), and then undo

(backward)

• Next lecture:
• Other forms of durability: data replication
• Atomicity when data is stored on different machines
• Data privacy

25

