
Transactions 2
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Outline For Today
1. Motivation For Transactions

2. ACID Properties

3. Different Levels of Isolation Beyond Serializability

Serializability:

Ø Execution Histories

Ø Conflict Equivalence

Ø Checking For Conflict Equivalence

Concurrency control

2

Last lecture:
User’s Perspective

Today’s lecture:
System’s Perspective

Ø Concurrency is achieved by interleaving operations across txns.

Ø Q: Does an interleaving correspond to a serializable execution?

Ø Execution history model and conflict equivalences is a formal method to

answer this question.

Goals of Execution History Model &
Conflict Equivalences

tim
e

r:(…,$20)
r:(…, $20)

w:(…,$25)

w:(…,$30)

Txn 1 Txn 2

Representing Single Transactions

• Database is a set of data items (often will denote as x, y, z…)

• Txn Ti is a total order of read/write & commit/abort operations on items

• ri(x) indicates Ti reads item x

• wi(x) indicates Ti writes item x

• c indicates commit (a indicates aborts)

• Suppose: Ti does the following in this chronological order:

• Read(x), Read(y), x ← x + y, Write(x), commit

• Ti={ri(x) < ri(y) < wi(x) < ci} or simply as:

• Ti={ri(x), ri(y), wi(x), ci} or ri(x), ri(y), wi(x), ci

• DAG representation r(x)

r(y)

w(x) c

Execution histories (or schedules)
• An execution history over a set of transactions 𝑇!…𝑇"

is an interleaving of the operations of 𝑇!…𝑇" in which
the operation ordering imposed by each transaction is
preserved.

• Two important assumptions:
• Transactions interact with each other only via reads and

writes of objects
• A database is a fixed set of independent objects

• Example: 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , c!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }
• 𝐻! = 𝑤" 𝑥 𝑟# 𝑥 𝑤" 𝑦 𝑟# 𝑦 c"c#
• 𝐻$ = 𝑤" 𝑥 𝑤" 𝑦 c"𝑟# 𝑥 𝑟# 𝑦 𝑐#
• 𝐻% = 𝑤" 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤" 𝑦 c"c#
• 𝐻& = 𝑟# 𝑥 𝑟# 𝑦 𝑐# 𝑤" 𝑥 𝑤" 𝑦 𝑐"

5

[next slide expands this example]

Examples for valid execution history
• 𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 , c!}, 𝑇" = { 𝑟" 𝑥 , 𝑟" 𝑦 , 𝑐" }

6

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻# 𝐻$ 𝐻% 𝐻&

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑇! 𝑇"

 r2(x)
 r2(y)
 c2
w1(x)
w1(y)
c1

7

𝑇! 𝑇"

w1(y)
 r2(x)
w1(x)
 r2(y)
c1
 c2

𝑇! 𝑇"

w1(x)
 r2(y)
w1(y)
 r2(x)
c1
 c2

Incorrect orders

Examples for invalid execution history
𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 , c!}, 𝑇" = { 𝑟" 𝑥 , 𝑟" 𝑦 , 𝑐" }

Serial execution histories
• 𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 , c!}, 𝑇" = { 𝑟" 𝑥 , 𝑟" 𝑦 , 𝑐" }
• Serial histories: no interleaving operations from different txns

8

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻# 𝐻$ 𝐻% 𝐻&

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑇! 𝑇"

 r2(x)
 r2(y)
 c2
w1(x)
w1(y)
c1

Equivalent histories

• 𝐻# is “equivalent” to 𝐻$ (a serial execution)

9

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻# 𝐻$

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! sees all the updates made by 𝑇"
• 𝑇! reads x written by 𝑇"
• 𝑇! reads y written by 𝑇"

Write 4 Write 4
Write 5

Write 5

Read 4

Read 5

Read 4

Read 5

x=3, y=1 (before T1 and T2)

Equivalent histories

• 𝐻% is not “equivalent” to 𝐻$ (a serial execution)

10

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝐻$ 𝐻%

Write 4
Write 5

Read 1

Read 5

Write 4

Write 5Read 4

Read 4

x=3, y=1 (before T1 and T2)

𝑇! reads different y in
𝐻# as in 𝐻$

Outline For Today
Serializability:

1. Execution Histories

2. Conflict Equivalence

3. Checking For Serializability

Concurrency control:

1. 2 phase locking

11

Check equivalence

• Two operations conflict if:
1. they belong to different transactions,
2. they operate on the same object, and
3. at least one of the operations is a write

2 types of conflicts: (1) Read-Write (or write-read)
and (2) Write-Write

• Two histories are (conflict) equivalent if
1. they are over the same set of transactions, and
2. the ordering of each pair of conflicting operations is

the same in each history

12

Example

• Consider
• 𝐻# = 𝑤! 𝑥 𝑟" 𝑥 𝑤! 𝑦 𝑟" 𝑦 c!c"
• 𝐻$ = 𝑤! 𝑥 𝑤! 𝑦 𝑟" 𝑥 𝑟"[𝑦]c!c"

Step 1: check if they are over the same set of transactions
• 𝑇! = {𝑤! 𝑥 ,𝑤! 𝑦 }, 𝑇" = { 𝑟" 𝑥 , 𝑟"[𝑦] }

Step 2: check if all the conflicting pairs have the same order

13

Conflicting pairs 𝐻! 𝐻"
𝑤# 𝑥 , 𝑟$ 𝑥 < <

𝑤# 𝑦 , 𝑟$ 𝑦 < <

Motivation & Intuition For Conflict Equivalence

• If two histories Ha and Hb are conflict equivalent then, we can make Ha

exactly the same as Hb by iteratively swapping two consecutive non-

conflicting operations in Ha and/or Hb.

• 𝐻! =	 𝑤" 𝑥 𝑟# 𝑥 𝑤" 𝑦 𝑟# 𝑦 c"c#
• 𝐻$ =	 𝑤" 𝑥 𝑤" 𝑦 𝑟# 𝑥 𝑟#[𝑦]c"c#

• Proof Sketch: Move all ops on item x to the beginning by swapping with

non-conflicting ops in both Ha and Hb

• End with the order imposed by the conflicts on x

• If Ha & Hb are conflict eq. this prefix ops on x will be the same order

• Then repeat for y, z, etc. and we will arrive at the same histories

• Therefore: Every read by each txn has the same value in Ha & Hb

• Therefore: Ha & Hb lead to the same output database state.

=> 𝐻′! = 𝑤" 𝑥 𝑤" 𝑦 𝑟#[𝑥]𝑟# 𝑦 c"c#

More complicated example
Consider
• 𝐻-: 𝑟" 𝑥 𝑟. 𝑥 𝑤/ 𝑦 𝑟# 𝑢 𝑤/ 𝑧 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟. 𝑧 𝑟" 𝑧 𝑤.[𝑦]
• 𝐻0: 𝑟" 𝑥 𝑤/ 𝑦 𝑟. 𝑥 𝑟# 𝑢 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑤/ 𝑧 𝑟" 𝑧 𝑟. 𝑧 𝑤.[𝑦]

Step 1: check if they are over the same set of transactions

Step 2: check if all the conflicting pairs have the same order

15

More complicated example
Consider
• 𝐻-: 𝑟" 𝑥 𝑟. 𝑥 𝑤/ 𝑦 𝑟# 𝑢 𝑤/ 𝑧 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟. 𝑧 𝑟" 𝑧 𝑤.[𝑦]
• 𝐻0: 𝑟" 𝑥 𝑤/ 𝑦 𝑟. 𝑥 𝑟# 𝑢 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑤/ 𝑧 𝑟" 𝑧 𝑟. 𝑧 𝑤.[𝑦]

Step 1: check if they are over the same set of transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 }, {𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 }, {𝑟. 𝑥 𝑟.[𝑢] 𝑟. 𝑧 𝑤.[𝑦]},

{𝑤/ 𝑦 𝑤/ 𝑧 }

Step 2: check if all the conflicting pairs have the same order

16

Identify all the conflicting pairs
• 𝐻-: 𝑟" 𝑥 𝑟. 𝑥 𝑤/ 𝑦 𝑟# 𝑢 𝑤/ 𝑧 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟. 𝑧 𝑟" 𝑧 𝑤.[𝑦]

• Conflicting pairs:
• Related to x or u: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤% 𝑦 < 𝑟" 𝑦
• 𝑤% 𝑦 < w& 𝑦
• 𝑟" 𝑦 < w& 𝑦

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤% 𝑧 < 𝑟! 𝑧
• 𝑤% 𝑧 < 𝑤! 𝑧
• 𝑤% 𝑧 < 𝑟& 𝑧
• 𝑤% 𝑧 < 𝑟" 𝑧
• 𝑟! 𝑧 , 𝑤! 𝑧 are not, as they are from the same transactions
• w! 𝑧 < 𝑟& 𝑧
• w! 𝑧 < 𝑟" 𝑧

17

More complicated example
Consider
• 𝐻-: 𝑟" 𝑥 𝑟. 𝑥 𝑤/ 𝑦 𝑟# 𝑢 𝑤/ 𝑧 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟. 𝑧 𝑟" 𝑧 𝑤.[𝑦]
• 𝐻0: 𝑟" 𝑥 𝑤/ 𝑦 𝑟. 𝑥 𝑟# 𝑢 𝑟" 𝑦 𝑟.[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑤/ 𝑧 𝑟" 𝑧 𝑟. 𝑧 𝑤.[𝑦]

Step 1: check if they are over the same set of transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 }, {𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 }, {𝑟. 𝑥 𝑟.[𝑢] 𝑟. 𝑧 𝑤.[𝑦]},

{𝑤/ 𝑦 𝑤/ 𝑧 }

Step 2: check if all the conflicting pairs have the same order

18

Conflicting pairs 𝐻% 𝐻&
𝑤' 𝑦 , 𝑟# 𝑦 < <

𝑤' 𝑦 ,w(𝑦 < <

… < <

𝑤' 𝑧 , 𝑤$ 𝑧 < >

… < <

Outline For Today

Serializability:

1. Execution Histories

2. Conflict Equivalence

3. Checking For Serializability

Concurrency control:

1. 2 phase locking

19

Serializable
• A history 𝐻 is said to be (conflict) serializable if there exists

some serial history 𝐻′ that is (conflict) equivalent to 𝐻.

20

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝐻# 	 = 	 𝐻$ 𝐻%

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

Serializable

• Does 𝐻% have an equivalent serial execution?
• 𝐻% = 𝑤! 𝑥 𝑟" 𝑥 𝑟"[𝑦]𝑤! 𝑦 c!c"

• Only 2 serial execution to check:
• 𝐻$: 𝑇! followed by 𝑇": 𝑤! 𝑥 𝑤! 𝑦 c!𝑟" 𝑥 𝑟" 𝑦 𝑐"

• 𝑟![𝑦] reads different value as in 𝐻$
• 𝐻&: 𝑇" followed by 𝑇!: 𝑟" 𝑥 𝑟" 𝑦 𝑐"𝑤! 𝑥 𝑤! 𝑦 𝑐!

• 𝑟![𝑥] reads different value as in 𝐻$

• Do we need to check all the serial executions?

21

Conflicting pairs 𝐻" 𝐻) 𝐻*
𝑤# 𝑥 , 𝑟$ 𝑥 < < >

𝑤# 𝑦 , 𝑟$ 𝑦 < > >

How to test for serializability?

• Serialization graph 𝑆𝐺2(𝑉, 𝐸) for history 𝐻:
• 𝑉 = {𝑇|𝑇 is a committed transaction in 𝐻}
• 𝐸 = {𝑇' → 𝑇(if	𝑜' ∈ 𝑇' and	𝑜(∈ 𝑇(conflict and 𝑜' < 𝑜(}

• A history is serializable iff its serialization graph is
acyclic.

22

Example

• Example:𝐻# = 𝑤! 𝑥 𝑟" 𝑥 𝑤! 𝑦 𝑟"[𝑦] c!c"

23

𝑇! 𝑇"

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻#

𝑤! 𝑥 and 𝑟" 𝑥 conflict, and 𝑤! 𝑥 < 𝑟" 𝑥
𝑤! 𝑦 and 𝑟"[𝑦] conflict, and 𝑤! 𝑦 < 𝑟" 𝑦

Serialization graph: no cycles à serializable

Example

• Example: 𝐻% = 𝑤! 𝑥 𝑟" 𝑥 𝑟"[𝑦]𝑤! 𝑦 c!c"

24

𝑇! 𝑇" Not serializable𝐻%

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑤! 𝑥 and 𝑟" 𝑥 conflict, and 𝑤! 𝑥 < 𝑟" 𝑥 ;
𝑤! 𝑦 and 𝑟"[𝑦] conflict, and 𝑟"[𝑦] < 𝑤! 𝑦

More complicated example
• 𝑟! 𝑥 𝑟0 𝑥 𝑤1 𝑦 𝑟" 𝑢 𝑤1 𝑧 𝑟! 𝑦 𝑟0[𝑢]𝑟" 𝑧 𝑤" 𝑧 𝑟0 𝑧 𝑟! 𝑧 𝑤0[𝑦]

• Conflicting pairs:
• Related to x or u: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤' 𝑦 < 𝑟# 𝑦 T4 à T1
• 𝑤' 𝑦 <w(𝑦 T4 à T3
• 𝑟# 𝑦 <w(𝑦 T1 à T3

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤' 𝑧 < 𝑟$ 𝑧 T4 à T2
• 𝑤' 𝑧 < 𝑤$ 𝑧 T4 à T2
• 𝑤' 𝑧 < 𝑟(𝑧 T4 à T3
• 𝑤' 𝑧 < 𝑟# 𝑧 T4 à T1
• 𝑟$ 𝑧 , 𝑤$ 𝑧 are not, as they are from the same transactions
• w$ 𝑧 < 𝑟(𝑧 T2 à T3
• w$ 𝑧 < 𝑟# 𝑧 T2 à T1

25

𝑇! 𝑇"

𝑇# 𝑇$

More complicated example

• 𝑟! 𝑥 𝑟0 𝑥 𝑤1 𝑦 𝑟" 𝑢 𝑤1 𝑧 𝑟! 𝑦 𝑟0[𝑢]𝑟" 𝑧 𝑤" 𝑧 𝑟0 𝑧 𝑟! 𝑧 𝑤0[𝑦]

• No cycles in this serialization graph
• Topological sort: T4 -> T2 -> T1->T3

• The history above is (conflict) equivalent to

𝑤1 𝑦 𝑤1 𝑧 𝑟" 𝑢 𝑟" 𝑧 𝑤" 𝑧 𝑟! 𝑥 𝑟! 𝑦 𝑟! 𝑧 𝑟0 𝑥 𝑟0[𝑢]𝑟0 𝑧 𝑤0[𝑦]

• Note: we ignore the commits at the end for simplicity

26

𝑇! 𝑇"

𝑇# 𝑇$

Outline For Today

Serializability:

1. Execution Histories

2. Conflict Equivalence

3. Checking For Serializability

Concurrency control:

1. 2 phase locking

27

Concurrency control

• Goal: ensure the “I” (isolation) in ACID

28

x y z

𝑇!:
r1(x);
w1(x);
r1(y);
w1(y);
commit;

𝑇":
r2(x);
w2(x);
r2(z);
w2(z);
commit;

Good versus bad execution histories

29

𝑇! 𝑇"

r1(x)
w1(x)
r1(y)
w1(y)
 r2(x)
 w2(x)
 r2(z)
 w2(z)

𝑇! 𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
r1(y)
 r2(C)
w1(y)
 w2(C)

𝑇! 𝑇"

r1(x)
 r2(x)
w1(x)
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Good!
Good! Why?

Hint: construct
serialization graph

Bad!

Read 400
Read 400Write

400 – 100
Write

400 – 50

𝐻# 𝐻$ 𝐻%

Serial

Good versus bad execution histories

30

𝑇! 𝑇"

r1(x)
 r2(x)
w1(x)
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Bad!

𝐻$

Not serializable

𝑇"

𝑇!

How to avoid
this?

Note: These are ‘valid’
histories but are ‘bad’: cannot
be serialized

Concurrency control

Possible classification
• Pessimistic – assume that conflicts will happen and

take preventive action
• Two-phase locking (2PL)

• Optimistic – assume that conflicts are rare and run
transactions and fix if there is a problem
• Timestamp ordering

• We will only review 2PL

31

Locking

• Rules
• If a transaction wants to read an object, it must first

request a shared lock (S mode) on that object
• If a transaction wants to modify an object, it must first

request an exclusive lock (X mode) on that object
• Allow one exclusive lock, or multiple shared locks

32

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

33

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇"

𝑇!

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

34

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇"

𝑇!

Read 100
Write 100+1

Read 101

Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both x and y
(preserve x=y)

Multiply both x and y by 2
(preserves x=y)

x ≠ y !

Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks

35

𝑇" 𝑇!

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇" unlocks

𝑇" 𝑇!

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees a
conflict-serializable

schedule

Remaining problems of 2PL

• 𝑇" has read uncommitted
data written by 𝑇!
• If 𝑇! aborts, then 𝑇" must

abort as well
• Cascading aborts possible if

other transactions have
read data written by 𝑇"

36

• Even worse, what if 𝑇" commits before 𝑇!?
• Schedule is not recoverable if the system crashes right

after 𝑇" commits

𝑇" 𝑇!

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)
Abort!

Deadlocks
• A transaction is deadlocked if it is blocked and will remain

blocked until there is an intervention.
• Locking-based concurrency control algorithms may cause

deadlocks requiring abort of one of the transactions

• Consider the partial history
• Neither 𝑇" nor 𝑇! can make progress

37

𝑇" 𝑇!

r1(x)
w1(x)
 r2(y)

 r1(y)
w1(y)
… …

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain
the lock on y
until 𝑇" unlocks

Cannot obtain
the lock on y
until 𝑇! unlocks

unlock-X(x)
unlock-S(y)

Strict 2PL

• Only release X-locks at commit/abort time
• A writer will block all other readers until the writer

commits or aborts

• Used in many commercial DBMS
• Avoids cascading aborts
• But deadlocks are still possible!

• Conservative 2PL: acquire all locks at the beginning
of a txn
• Avoids deadlocks but often not practical

38

Summary

Serializability:

1. Execution Histories

2. Conflict Equivalence

3. Checking For Serializability

Concurrency control:

1. 2 phase locking

39

