
Transactions 1
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Announcements

• Milestone 2
• Due today!

• Assignment 3
• Due Thursday, July 20th

2

Outline For Today
1. Motivation For Transactions

2. ACID Properties

3. Different Levels of Isolation Beyond Serializability

Serializability:

Ø Execution Histories

Ø Conflict Equivalence

Ø Checking For Conflict Equivalence

3

User’s Perspective

System’s Perspective
(and more next 2

lectures)

Thanks to Prof. Semih Salihoglu for the slides

Recall example for Lecture 1

4

Customers &
End Devices

Product
Shipments & Arrivals

Managers &
Analytics Apps

App Software/
Servers

DBMS/Storage
Software Server &

Device

Ø Ex Application: Order & Inventory Management in E-commerce

SELECT …
INSERT …
UPDATE …
DELETE …

Why we need transactions

• A database is a shared resource accessed by many
users and processes concurrently.
• Both queries and modifications

• Not managing this concurrent access to a shared
resource will cause problems
• Problems due to concurrency
• Problems due to failures

5

Example Problems With Concurrency (1)

6

Ø Read-only queries are simple to execute concurrently.

Ø Ex: Two clients concurrently update the same relation in DBMS
UPDATE Order
SET price = price + 5
WHERE oid = o1

UPDATE Order
SET price = price + 10
WHERE oid = o1

Order

o1 bust1 bookA $20

… … … …

Ø Possible attribute-level inconsistency in absence of safe concurrency:

…

tim
e

r:(…,$20)
r:(…, $20)

w:(…,$25)

w:(…,$30)

Possibility 1 …

r:(…,$20)

r:(…, $25)

w:(…,$25)

w:(…,$35)

Possibility 2

r:(…,$20)
r:(…, $20)

w:(…,$25)

w:(…,$30)

Possibility 3

Example Problems With Concurrency (2)

7

UPDATE Order
SET price = price + 5
WHERE oid = o1

UPDATE Order
SET pID = WatchA
WHERE oid = o1

Order

o1 cust1 BookA $20

… … … …

Ø Possible Tuple-level inconsistency

o1 cust1 BookA $25 o1 cust1 WatchA $25o1 cust1 WatchA $20

Example Problems With Concurrency (3)

8

Update Statement 1:
UPDATE Customer
SET membership = Gold
WHERE cid IN (Select cid FROM Orders
 WHERE price >= 20)

Update Statement 2:
UPDATE Order
SET price = price*0.9
WHERE pid = BookA

Order

oid cid pid price

o1 cust1 BookA $20

… … … …

Customer

cid name membership

cust1 Alice Silver

… … …

Ø Possible Relation-level inconsistency

Ø Statement 1’s update on Customer depends on Order table, which is

concurrently being updated.

Ø Data in Customer can be corrupted if the executions overlaps.

Example Problems With Concurrency (4)

9

Client 1
INSERT INTO 2021_Orders
SELECT * FROM Orders WHERE year = 2021

DELETE FROM Orders WHERE year = 2021

CLIENT 2:
SELECT Count(*) FROM Orders
SELECT Count(*) FROM 2021_Orders

Ø Possible Database-level inconsistency

Ø Expectation: Total # orders in the enterprise (across Orders and

2021_Orders) remains unchanged.

Ø But Client 2 can see an inconsistent number of order counts across both

databases depending on how much of the data from Orders has been

moved to 2021_Orders and also deleted.

Case For Isolation During Concurrent Access

10

Ø Clients want concurrency, because databases are designed to be used

my multiple clients, and DBMSs can exploit parallelism

Ø Clients also want: to access the db in isolation, i.e., run a set of queries

and statement as if no others are running concurrently.

Ø All or nothing guarantee: Run the set of statements only if the DBMS

can guarantee that they were all running atomically as if in isolation.

Ø Any guarantee on subsets of statements is not useful.

Problems due to failures (Slides From Lecture 1)

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

w (A, 0)

Product NumInStock

… …

BookA 1

BookB 7

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

Product NumInStock

… …

BookA 0

BookB 7

Product NumInStock

… …

BookA 0

BookB 6

✓

X

Before (B, 6) is written, there is a crash!
Inconsistent data state!
PR: What happens when the system is back up?
How to recover from inconsistent state?

w (A, 0)

Problems due to failures (Slides From Lecture 1)

Case For Atomicity To Handle Failures

13

Ø All or nothing guarantee: Run the set of statements only if the DBMS

can guarantee that they will all succeed and be persistent or all will fail

and no update they make will be persistent.

Transactions solve Concurrency & Failure Problems

14

Ø Transactions : a set of queries/updates that are treated as an atomic unit

Ø Transactions (appear to) run in isolation during concurrent access

(different levels of isolation exist; see later in lecture).

Ø Transactions are atomic, ie., either all queries/statement will run and

persist any modifications to the DBMS, or none will.

Ø From users’ perspective: By wrapping a set of queries/updates in one

transaction, users obtain concurrency and resilience guarantees

Ø Note: internally DBMSs use 2 completely different algorithms/protocols

to provide these functionalities for transactions

Ø E.g.: locking for concurrency; logging for resilience (lecture 19)

Transactions in SQL

15

Ø In SQL Standard, transactions begin when a client issues a “Begin

Transaction” command & ends with the “commit” or “rollback”

keyword.

Ø Autocommit: treats each statement as a separate transaction

time

update

select

del

commit

insertselect

commit

del …

insert

del

Will not have any effects on the database,

i.e., as if they never executed.Client 1

select

select

del

commit

select

del
commit

del …insert

Client 2

If client statement and operations really run concurrently and overlap: What

guarantees can a DBMS really give with transactions?

Outline For Today
1. Motivation For Transactions

2. ACID Properties

3. Different Levels of Isolation Beyond Serializability

16

ACID Properties

17

Ø Transactions provide 4 main properties known as ACID properties:

A: Atomicity

C: Consistency

I: Isolation

D: Durability

ACID: Atomicity

18

Ø Provides all-or-nothing guarantee

Ø Partial effects of a transaction must be undone when
• User explicitly aborts the transaction using ROLLBACK
• The DBMS crashes before a transaction commits

Ø Partial effects of a modification statement must be undone when
any constraint is violated
• Some systems roll back only this statement and let the transaction

continue; others roll back the whole transaction

How is atomicity achieved?
Logging (to support undo) –lecture 19

ACID: Consistency

19

DBMS

T6
T7
T8

T4
T5

T1
T2
T3

Ø Guaranteed by constraints and triggers declared in the
database and/or transactions themselves
• E.g., Order amount > 0

Ø Whenever inconsistency arises,
• abort the statement or transaction, or
• fix the inconsistency within the transaction

ACID: Isolation (focus of this lecture)

20

DBMS

Ø Serializability: A set of transactions 𝐓 might run concurrently and

interleave but final outcome is equivalent to some serial order of

executing the transactions in 𝐓.

Ø But DBMSs also provide lower isolation guarantees (later).

Ø Question to ponder: How can a DBMS guarantee serializability?

Ø Locking or “verifying modifications at commit time” (next lecture)

INSERT …
SELECT …
DELETE …
COMMIT

T1
T2
T3

T4
T5

T6
T7
T8

Recall Example Problems With Concurrency (1)

21

Txn 1:
UPDATE Order
SET price = price + 5
WHERE oid = o1

Txn 2:
UPDATE Order
SET price = price + 10
WHERE oid = o1

Order

o1 bust1 bookA $20

Ø Attribute-level inconsistency In absence of safe concurrency

tim
e

r:(…,$20)
r:(…, $20)

w:(…,$25)

w:(…,$30)

r:(…,$20)

r:(…, $25)

w:(…,$25)

w:(…,$35)

r:(…,$20)
r:(…, $20)

w:(…,$25)

w:(…,$30)
…

Possibility 1 Possibility 2 Possibility 3

…X✓X
Two possibilities now: T1; T2 (e.g possibility 2)

or T2; T1 (not shown in figure but also leading to $35)

Recall Example Problems With Concurrency (2)

22

Txn 1:
UPDATE Order
SET price = price + 5
WHERE oid = o1

Txn 2:
UPDATE Order
SET pID = WatchA
WHERE oid = o1

Order

o1 cust1 BookA $20

Ø Possible Tuple-level inconsistency

o1 cust1 BookA $25 o1 cust1 WatchA $25o1 cust1 WatchA $20

Two possibilities again: T1; T2 or T2; T1 (both leading to possibility 3)

X ✓X

Recall Example Problems With Concurrency (3)

23

Txn 1:
Update Statement 1:
UPDATE Customer
SET membership = Gold
WHERE cid IN (Select cid FROM Orders
 WHERE price >= 20)

Txn 2:
Update Statement 2:
UPDATE Order
SET price = price*0.9
WHERE pid = BookA

Order

oid cid pid price

o1 cust1 BookA $20

… … … …

Ø Possible Relation-level inconsistency

Customer

cid name membership

cust1 Alice Silver

… … …

Two possibilities again: T1; T2 or T2; T1
Interestingly order now matters unlike Examples 1 & 2 previously.

E.g., suppose Alice has only 1 order:
If order is T1; T2: she becomes a Gold member

If it is T2; T1: she remains a Silver member.

Recall Example Problems With Concurrency (4)

24

Txn 1:
INSERT INTO 2021_Orders
SELECT * FROM Orders WHERE year = 2021

DELETE FROM Orders WHERE year = 2021

Txn 2:
SELECT Count(*) FROM Orders
SELECT Count(*) FROM 2021_Orders

Ø Possible Database-level inconsistency

Ø 2 count queries are now guaranteed to see a consistent state of the

database records (though there are 2 possible “consistent” outputs)

 If T1; T2 => All 2021 records counted once in 2021_Orders

 If T2; T1 => All 2021 records counted once in Order

ACID: Durability

25

DBMS

T1
T2
T3

Ø Durability: Handles guarantees for crashes after commit

Ø Guarantee: all modifications will persist

Ø Question to ponder: How can a DBMS guarantee durability?

Ø Logging (Lecture 19)

INSERT …
SELECT …
DELETE …
COMMIT

Outline For Today
1. Motivation For Transactions

2. ACID Properties

3. Different Levels of Isolation Beyond Serializability

26

Problems With Serializability

27

DBMS

T6
T7
T8

T4
T5

T1
T2
T3

Ø Serializability: A set of transactions 𝐓 might run concurrently and

interleave but final outcome is equivalent to some serial order of

executing the transactions in 𝐓.

Ø Best consistency guarantee!

Ø Guaranteeing at the system-level has performance overheads.

Ø Q: Can users get weaker guarantees but at higher performance?

INSERT …
SELECT …
DELETE …
COMMIT

Weaker Isolation Levels

28

Isolation Levels in SQL
Standard

Read Uncommitted
Read Committed
Repeatable Read

Serializable

Stronger Consistency

Higher Overheads

Less Concurrency

Weaker Consistency

Lower Overheads

More Concurrency

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT * FROM Order;
…
COMMIT TRANSACTION

How to handle two concurrent transactions with different
isolation levels? à CS 448

READ UNCOMMITTED

29

Ø Can read dirty data: an item written by an uncommitted txn
tim

e

r:(o1,$20)

r:(o1, $25)

commit

Txn 1:
UPDATE Order
SET price = price + 5
WHERE oid = o1 || oid = o2

Txn 2: (READ UNCOMMITTED)
SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

w:(o1,$25)

commit

Txn 1 Txn 2

Ø This can happen and no errors would be given.

Ø If approx. results OK, e.g., computing statistics, e.g., avg price, one can

optimize perf. over consistency and pick read uncommitted

r:(o2,$40)

r:(o2, $40)

w:(o2,$45)

If Serializable would either read:

(i) o1=20 & o2=40; Sum=60; or

(ii) o1=25 & o2=45; Sum=70

Note on Dirty Reads of The Same Transaction

30

Ø There is no such thing as dirty read of the same txn!
Ø Every (uncommitted) txn will read values it has written.
Ø That is not considered “dirty” even if it comes from uncommitted txn.

BEGIN TRANSACTION
UPDATE Order
SET price = price + 5
WHERE oid = o1

SELECT price FROM Order
WHERE oid = o1;

COMMIT

Will read 25 (not considered
a dirty read)

Suppose sets 20->25

Suppose there is
only 1 transaction

running

READ COMMITTED

31

Ø No dirty reads but reads of the same item may not be repeatable.
Txn 1:
UPDATE Order
SET price = price + 5
WHERE oid = o1 || oid = o2

Ø This behavior is allowed.

Ø Still not serializable: serializable

execution would give 60 or 70 twice.

Txn 2: (READ COMMITTED)
SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

SELECT sum(price) FROM Order
WHERE oid = o1 || oid=o2

tim
e

r:(o1,$20)

r:(o1, $20)

commit

w:(o1,$25)

commit

Txn 1 Txn 2

r:(o2,$40)
r:(o2, $40)

w:(o2,$45)

r:(o1, $25)
r:(o2, $45)

REPEATABLE READ

32

Ø No repeatable reads but phantom reads may appear
Txn 1:
UPDATE Order SET price = price+5
WHERE oid = o1

INSERT INTO Order VALUES (o3, 10)

Ø Suppose only o1 and o2 exist

Ø Still not serializable: serializable

would give 60 or 75 twice.

Ø Provided as a by-product of

locking protocols in DBMSs

Txn 2: (REPEATABLE READ)
SELECT sum(price) FROM Order

SELECT sum(price) FROM Order

tim
e

r:(o1,$20)

r:(o1, $20)

commit

w:(o1,$25)

commit

Txn 1 Txn 2

r:(o3,$10)
r:(o2, $40)

r:(o1, $20)
r:(o2, $40)

r:(o3, $10) phantom read

SERIALIZABLE

Ø All the three anomalies should be avoided:
Dirty reads
Unrepeatable reads
Phantoms

Ø For any two txns T1 and T2:
• Serial executions of T1 and T2 definitely prevent the three

anomalies:
T1 followed by T2 or T2 followed by T1

Ø Can we run T1 and T2 concurrently and achieve the same serial
effect?

Summary of Isolation Levels

Isolation level/read
anomaly

Dirty reads Non-repeatable
reads

Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

Ø-- T1:
INSERT INTO Order
VALUES (o3,10)
COMMIT;

ØConsider other possible concurrent transactions
ØDoes not do any reads
ØNo read concern
ØLowest isolation level: read uncommitted

35

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Example: Lowest Isolation Level To Set? (1)

Ø-- T1:
UPDATE Order
SET price = 25
WHERE oid = o1;
COMMIT;

ØConsider other possible concurrent transactions
ØDoes not read same item twice: reads Order only once
ØOnly concern: transaction T2 might be updating oid=o1 =>

may lead to dirty reads
ØLowest isolation level: read committed

36

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Example: Lowest Isolation Level To Set? (2)

Ø-- T1:
SELECT sum(price)
FROM Order;
COMMIT;

ØConsider other possible concurrent transactions
ØDoes not read same item twice: reads User only once
ØOnly concern: transaction T2 might be updating Order

=> may lead to dirty reads
ØLowest isolation level: read committed

37

Example: Lowest Isolation Level To Set? (3)

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Ø-- T1:
SELECT AVG(price)
FROM Order;

SELECT MAX(price)
FROM Order;
COMMIT;

ØConsider other possible concurrent transactions
• Now reads same tuples twice
• Concerns: transaction T2 might be

inserting/updating/deleting a row to Order, i.e., reads many
not be repeatable and phantoms might appear
• Lowest isolation level: serializable

38

Example: Lowest Isolation Level To Set? (4)

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED Unrepeatable Reads

REPEATABLE READ Phantoms

SERIALIZABLE None

Dirty reads

Summary
1. Motivation For Transactions

2. ACID Properties

3. Different Levels of Isolation Beyond Serializability

Serializability:

Ø Execution Histories

Ø Conflict Equivalence

Ø Checking For Conflict Equivalence

39

User’s Perspective

System’s Perspective
(and more next 2

lectures)

