Transactions 1

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Announcements

* Due today!

* Due Thursday, July 20th

Outline For Today

1. Motivation For Transactions User’s Perspective\

2. ACID Properties

\3. Different Levels of Isolation Beyond Serializability Y,
/§eria|izability: System’s Perspective
(and more next 2
» Execution Histories lectures)

» Conflict Equivalence

\. > Checking For Conflict Equivalence Y,

Thanks to Prof. Semih Salihoglu for the slides

Recall example for Lecture 1

» Ex Application: Order & Inventory Management in E-commerce

SELECT ...
INSERT ... — Customers & Product Managers &
UPDATE ... End Devices Shipments & Arrivals Analytics Apps
DELETE ...
2 .
@ @ -
dh D ah) ANz
App Software/ X .
ServerS cee P cee cee
DBMS/Storage

Software Server &
Device

Why we need transactions

* A databaseis a resource accessed by many
users and processes

* Both queries and modifications

* Not managing this concurrent access to a shared
resource will cause problems
* Problems due to
* Problems due to

Example Problems With Concurrency (1)

» Read-only queries are simple to execute concurrently.

» Ex: Two clients concurrently update the same relation in DBMS

UPDATE Order UPDATE Order

SET price = price + 5 SET price = price + 10

WHERE oid = 01 WHERE oid = 01
Order

o1 | bust1 bookA $20

» Possible in absence of safe concurrency:
r:(...,$20) r:(...,$20) r:(..., $20)
o ri(..., $20) | ws(...,$25) r:(...,$20)
.§ wi(...,$25) r:(..., $25) wi(...,$30)
wi(...,$30) wi(...,$35) wi(...,$25)
v Possibility 1 Possibility 2 Possibility 3

Example Problems With Concurrency (2)

>

UPDATE Order
SET price = price + 5
WHERE oid = 01

Possible

UPDATE Order

SET pID = WatchA

WHERE oid = 01

01

cust1 | BookA | $25

Order
o1 | cust1 BookA $20
o1 | custt | WatchA | $20 o1 | cust1t | WatchA | $25

Example Problems With Concurrency (3)

Update Statement 1:
UPDATE Customer

SET membership = Gold
WHERE cid IN[(Select cid FROM Orders
WHERE price >=20)

Update Statement 2:
UPDATE Order

SET price = price*0.9
WHERE pid = BookA

Customer

cid name

membership

cust1 | Alice

Silver

Order
oid | cid pid price
o1 | cust1 BookA $20

» Possible

» Statement 1’s update on Customer depends on Order table, which is

concurrently being updated.

» Datain Customer can be corrupted if the executions overlaps.

Example Problems With Concurrency (4)

Client 1
INSERT INTO 2021_Orders
SELECT * FROM Orders WHERE year = 2021

DELETE FROM Orders WHERE year = 2021

CLIENT 2:
SELECT Count(*) FROM Orders
SELECT Count(*) FROM 2021_Orders

» Possible

> Expectation: Total # orders in the enterprise (across Orders and

2021_Orders) remains unchanged.

> But Client 2 can see an inconsistent number of order counts across both

databases depending on how much of the data from Orders has been

moved to 2021_Orders and also deleted.

Case For Isolation During Concurrent Access

» Clients want , because databases are designed to be used
my multiple clients, and DBMSs can exploit parallelism

» C(lients also want: to access the db , i.e., run a set of queries
and statement as if no others are running concurrently.

» All or nothing guarantee: Run the set of statements only if the DBMS
can guarantee that they were

» Any guarantee on subsets of statements is not useful.

Problems due to failures (Slides From Lecture 1)

» What if your disk fails in the middle of an order?

» What if your server software fails due to a bug?

» What if there is a power outage in the machine storing files?
» Suppose Alice orders both BookA and BookB

Product | NumInStock

BookA 1
BookB 7

Problems due to failures (Slides From Lecture 1)

» What if your disk fails in the middle of an order?

» What if your server software fails due to a bug?

» What if there is a power outage in the machine storing files?
» Suppose Alice orders both BookA and BookB

) Before (B, 6) is written, there is a crash!

Inconsistent data state!

PR: What happens when the system is back up?

—&— How torecover from inconsistent state?

w (A, 0)
Product | NumlInStock Product | NumInStock
’ BookA 0 X BookA 0
BookB 7 BookB 6

Case For Atomicity To Handle Failures

» All or nothing guarantee: Run the set of statements only if the DBMS

can guarantee that they

Transactions solve Concurrency & Failure Problems

» Transactions (appear to) runin during concurrent access
(different levels of isolation exist; see later in lecture).

» Transactions are , ie., either all queries/statement will run and
persist any modifications to the DBMS, or none will.

» From users’ perspective: By wrapping a set of queries/updates in one
transaction, users obtain concurrency and resilience guarantees

»> Note: internally DBMSs use 2 completely different algorithms/protocols
to provide these functionalities for transactions

> E.g.:locking for concurrency; logging for resilience (lecture 19)

Transactions in SQL

» InSQL Standard, transactions begin when a client issues a *
” command & ends with the “ 7 or“ 7
keyword.

» Autocommit: treats each statement as a separate transaction

Will not have any effects on the database,

time ' i
Client 1 | i.e., as if they never executed.
| >
update del del select | |insert del
select _
) insert commit
commit
Client 2 | |
select del del insert select ‘
select del

commit commit

Outline For Today

2. ACID Properties

ACID Properties

» Transactions provide 4 main properties known as
A: Atomicity
C: Consistency
|: Isolation

D: Durability

CID: Atomicity

» Provides all-or-nothing guarantee

» Partial effects of a transaction must be undone when
* User explicitly aborts the transaction using ROLLBACK
e The DBMS crashes before a transaction commits

» Partial effects of a modification statement must be undone when
any constraint is violated

* Some systems roll back only this statement and let the transaction
continue; others roll back the whole transaction

How is atomicity achieved?
Logging (to support undo) -lecture 19

ACID: Consistency

@
dh
T2 15 17
T3 T8
DBMS
» Guaranteed by declared in the

database and/or transactions themselves
* E.g.,Orderamount >0

» Whenever inconsistency arises,
e abort the statement or transaction, or
* fix the inconsistency within the transaction

ACID: Isolation (focus of this lecture)

A .
al| &0 & =
o o B €
T1 T4 T6 INSERT ...
T Ts5 T7 <——SELECT...
T3 T8 DELETE ...
COMMIT
DBMS

: A set of transactions T might run concurrently and
interleave but final outcome is equivalent to of
executing the transactionsin T.

» But DBMSs also provide lower isolation guarantees (later).
» Question to ponder: How can a DBMS guarantee serializability?

» Locking or “verifying modifications at commit time”” (next lecture)

Recall Example Problems With Concurrency (1)

Txn 1: Txn 2:

UPDATE Order UPDATE Order

SET price = price + 5 SET price = price + 10

WHERE oid = 01 WHERE oid = 01
Order

o1 | bust1 bookA $20
» Attribute-level inconsistency In absence of safe concurrency

r:(...,$20) r:(...,$20) r:(..., $20)
ri(..., $20) |ws(...,$25) r:(...,$20)
f‘é wi(...,$25) r:(..., $25) wi(...,$30)
" wi(...,$30) wi(...,$35) wi(...,$25)
v Possibility 1 Possibility 2 Possibility 3

X v X

Two possibilities now: T1; T2 (e.g possibility 2)
or T2; T1 (not shown in figure but also leading to $35)

Recall Example Problems With Concurrency (2)

>

Txn 1:
UPDATE Order

SET price = price + 5

WHERE oid = 01

Txn 2:
UPDATE Order

SET pID = WatchA

WHERE oid = 01

Possible Tuple-level inconsistency

01

cust1 | BookA

$25

X

Two possibilities again: T1; T2 or T2; T1 (both leading to possibility 3)

Order ‘
01 | cust1 BookA \ $20
o1 | custt | WatchA | $20 o1 | cust1t | WatchA | $25

X

v

22

Recall Example Problems With Concurrency (3)

TXn 1:

Update Statement 1:

UPDATE Customer

SET membership = Gold

WHERE cid IN|(Select cid FROM Orders
WHERE price >=20)

» Possible Relation-level inconsistency

Customer

cid | name | membership

cust1 | Alice Silver

Txn 2:

Update Statement 2:
UPDATE Order

SET price = price*0.9
WHERE pid = BookA

Order
oid | cid pid price
o1 | cust1 BookA $20

Two possibilities again: T1; T2 or T2; T1
Interestingly order now matters unlike Examples 1 & 2 previously.
E.g., suppose Alice has only 1 order:
If orderis T1; T2: she becomes a Gold member
If it is T2; T1: she remains a Silver member.

Recall Example Problems With Concurrency (4)

Txn 1:
INSERT INTO 2021_Orders
SELECT * FROM Orders WHERE year = 2021

DELETE FROM Orders WHERE year = 2021

Txn 2:
SELECT Count(*) FROM Orders
SELECT Count(*) FROM 2021_Orders

» Possible Database-level inconsistency

» 2 count queries are now guaranteed to see a consistent state of the

database records (though there are 2 possible “consistent” outputs)

If T1; T2 => All 2021 records counted once in 2021_Orders

If T2; T1 => All 2021 records counted once in Order

ACID: Durability

-
INSERT ...
T SELECT ...
T2 <——pELETE ...
13 COMMIT

=

: Handles guarantees for

» Guarantee: all modifications will persist
» Question to ponder: How can a DBMS guarantee durability?

> Logging (Lecture 19)

Outline For Today

3. Different Levels of Isolation Beyond Serializability

Problems With Serializability

A .
al| &0 & =
o o B €
T, T4 T6 INSERT ..
5 Ts5 T7 <——SELECT ...
T3 T8 DELETE ...
COMMIT
DBMS

: A set of transactions T might run concurrently and

interleave but final outcome is equivalent to

of

executing the transactionsin T.

>
>

Best consistency guarantee!

Guaranteeing at the system-level has

» Q: Can users get weaker guarantees but at higher performance?

Weaker Isolation Levels

: ' ' L
Stronger Consistency Isolation Levels in SQ

Standard Weaker Consistency
Higher Overheads Read Uncommitted Lower Overheads
Less Concurrency Read Committed More Concurrency

Repeatable Read

Serializable

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT * FROM Order;

COMMIT TRANSACTION

How to handle two concurrent transactions with different
isolation levels? =2 CS 448

28

READ UNCOMMITTED

» (Canread an item written by an uncommitted txn
Txn1: Txn 2: (READ UNCOMMITTED)
UPDATE Order SELECT sum(price) FROM Order
SET price = price + 5 WHERE oid = o1 || oid=02
WHERE oid = 01| oid = 02
TxXn 1 Txn 2
r:(01,$20)
w:(01,$25) If Serializable would either read:
o r:(o1, $25) .
£ (02, $40) (i) 01=20 & 02=40; SuM=60; or
commit i — — - _
I 1=25 & 02= um=70
wi(02,545)
| commit

» This can happen and no errors would be given.

> If approx. results OK, e.g., computing statistics, e.g., avg price, one can

optimize perf. over consistency and pick read uncommitted

Note on Dirty Reads of The Same Transaction

» Thereis no such thing as dirty read of the same txn!
» Every (uncommitted) txn will read values it has written.
» Thatis not considered “dirty” even if it comes from uncommitted txn.

Suppose there is
only 1 transaction
running

BEGIN TRANSACTION
UPDATE Order
SET price = price + 5 < Suppose sets 20->25

WHERE oid = 01

SELECT price FROM Order
WHERE oid = o1;
’ Will read 25 (not considered

COMMIT a dirty read)

READ COMMITTED

» No dirty reads but

Txn 1:

UPDATE Order

SET price = price + 5
WHERE oid = 01| oid = 02

Txn 2: (READ COMMITTED)
SELECT sum(price) FROM Order
WHERE oid = 01 || oid=02

XN 1 XN 2
r:(01,$20)
wi(01,$25)
r:(o1, $20)
v r:(ozf $4O)
£ r:(02,$40)
1 wi(02,545)
commit
r:(o1, $25)
r:(02, $45)
! commit

SELECT sum(price) FROM Order
WHERE oid = 01 || oid=02

» This behavior is allowed.
> Still not serializable: serializable

execution would give 60 or 70 twice.

REPEATABLE READ

» Norepeatable reads but

Txn 1:
UPDATE Order SET price = price+5
WHERE oid = 01

INSERT INTO Order VALUES (03, 10)

Txn 2: (REPEATABLE READ)
SELECT sum(price) FROM Order

SELECT sum(price) FROM Order

XN 1 Txn 2
r:(01,$20)
wi(01,625)
r:(o1, $20)
r:(02, $40)
vl .
£ r:(03,510)
= commit
r:(o1, $20)
r:(02, $40)
v commit

» Suppose only o1 and 02 exist

» Still not serializable: serializable
would give 60 or 75 twice.

» Provided as a by-product of
locking protocols in DBMSs

r:(03, $10) |<—— phantom read

SERIALIZABLE

» All the three anomalies should be avoided:
Dirty reads
Unrepeatable reads
Phantoms

» For any two txns T1and T2:
* Serial executions of T1 and T2 definitely prevent the three
anomalies:

» Can we run T1and T2 concurrently and achieve the same serial
effect?

Summary of Isolation Levels

Isolation level/read | Dirty reads Non-repeatable | Phantoms
anomaly reads
READ UNCOMMITTED
READ COMMITTED Impossible
REPEATABLE READ Impossible Impossible
SERIALIZABLE Impossible Impossible Impossible

Example: Lowest Isolation Level To Set? (1)

»>--T1:
INSERT INTO Order
VALUES (03,10)
COMMIT;

Isolation level

Dirty reads

Unrepeatable Reads

Phantoms

None

» Consider other possible concurrent transactions
»Does not do any reads

> No read concern

> Lowest isolation level: read uncommitted

Example: Lowest Isolation Level To Set? (2)

>--T1: Isolation level
UPDATE Order Dirty reads
SET price = 25 Unrepeatable Reads
WHERE oid = o1, Phantoms
COMMIT;,
None

» Consider other possible concurrent transactions
»Does not read same item twice: reads Order only once
»Only concern: transaction T2 might be updating oid=01=>

may lead to dirty reads
> Lowest isolation level: read committed

Example: Lowest Isolation Level To Set? (3)

»>--T1:
SELECT sum(price)
FROM Order;
COMMIT;

Isolation level

Dirty reads

Unrepeatable Reads

Phantoms

None

» Consider other possible concurrent transactions
»Does not read same item twice: reads User only once

»Only concern: transaction T2 might be updating Order
=>may lead to dirty reads

> Lowest isolation level: read committed

Example: Lowest Isolation Level To Set? (4)

»>--T1:
SELECT AVG(price)
FROM Order;

SELECT MAX(price)
FROM Order;
COMMIT;

Isolation level

Dirty reads

Unrepeatable Reads

Phantoms

None

» Consider other possible concurrent transactions
* Now reads same tuples twice

* Concerns: transaction T2 might be

inserting/updating/deleting a row to Order, i.e., reads many
not be repeatable and phantoms might appear

 Lowest isolation level: serializable

Summary

1. Motivation For Transactions

2. ACID Properties

\3. Different Levels of Isolation Beyond Serializability Y,

User’s Perspective\

(Serializability:
» Execution Histories

» Conflict Equivalence

» Checking For Conflict Equivalence
_ g

System’s Perspectiva
(and more next 2
lectures)

39

