
Query Optimization
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time (this lecture)

2

last lecture

Overview (cont.)

3

Input

Output

Last
lecture

Today’s
lecture

Outline

• System view of query processing
• Logical plan and physical plan

• Cost calculation of the physical plan
• Cardinality estimation

• Search space and search strategy
• Transformation rules

4

Cost based
optimization

Heuristic or Rule
based

optimization

A query’s trip through the DBMS

5

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

• Validator: parse tree → logical plan
• Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

• Examples: AVG(name), name + pop, User UNION Member

• Also
• Expand *
• Expand view definitions

• Information required for semantic checking is found in
system catalog (which contains all schema information)

6

Logical plan

• Nodes are logical operators (often relational
algebra operators)
• There are many equivalent logical plans

7

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Physical (execution) plan

• A complex query may involve multiple tables and
various query processing algorithms
• E.g., table scan, basic & block nested-loop join, index

nested-loop join, sort-merge join, … (Lecture 13)

• A physical plan for a query tells the DBMS query
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams

and produces a single output table/stream

8

Examples of physical plans

• Many physical plans for a single query
• Equivalent results, but different costs and assumptions!
FDBMS query optimizer picks the “best” possible physical plan

9

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)
MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

How to pick the “best” physical plan?

• One logical plan → “best” physical plan
• Questions
• How to estimate costs
• How to enumerate possible plans
• How to pick the “best” one

• Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

10

1 second 1 hour1 minute

Any of these will do

Cost estimation

• We have: cost estimation for each operator
• Example: INDEX-NESTED-LOOP-JOIN(uid) takes

O(𝐵 𝑅 + 𝑅 ⋅ index	lookup + record	fetch)
• We need: size of intermediate results

11

Physical plan example:

Input to Join(uid):

Lecture 13

What is its input size?
How many tuples with

name=‘Bart’?

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

12

Cardinality estimation

Cardinality estimation for:

• Equality predicates

• Range predicates

• Joins

• Textbook has more operators

Selections with equality predicates

• 𝑄: 𝜎!"#𝑅
• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋"𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• 𝑄 ≈ ($ %!$
• Selectivity factor of 𝐴 = 𝑣 is =# $!%

13

Example

• |User|=1000, |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50è |𝜎!"#$%"'"()" 𝑈𝑠𝑒𝑟 | =?
• Assumptions:

• Values of 𝑛𝑎𝑚𝑒 are uniformly distributed in 𝑈𝑠𝑒𝑟

• |𝜎!"#$%"'"()" 𝑈𝑠𝑒𝑟 | =
*+++
,+

= 20

14

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Range predicates

• 𝑄: 𝜎!&#𝑅
• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ ⁄# &

• With more information
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴
• 𝑄 ≈ 𝑅 ⋅ '()' %." +,

'()' %." +-./ %."

15

low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)

Two-way equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer

distinct values for the join attribute) joins with some
tuple in the other relation
• That is, if 𝜋!𝑅 ≤ 𝜋!𝑆 then 𝜋!𝑅 ⊆ 𝜋!𝑆

• Certainly not true in general
• But holds in the common case of foreign key joins

• 𝑄 ≈ $ ⋅ -
./0 %!$, %!-

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is =# <=> $!% , $!@

16

Example
• Database:

• User(uid, name, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
• |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50
• |𝜋%&' 𝑀𝑒𝑚𝑏𝑒𝑟 | = 500

• Estimate size |𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟| =?
• | 𝜋!"# 𝑈𝑠𝑒𝑟 | = 1000
• |𝜋!"# 𝑀𝑒𝑚𝑏𝑒𝑟 | = 500
• 1000*50000/max(500,1000)=50000

17

Other estimations
• Using similar ideas, we can estimate the size of

projection, duplicate elimination, union, difference,
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate

• Not covered: better
 estimation using histograms
• Instead of assuming uniform

distribution, use the frequency
from the histogram

18

Case Study

• System requirements:
• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8

• Database:
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

19

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Case Study

• Given |User|=1000, |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50
• è |𝜎!"#$("*"+," 𝑈𝑠𝑒𝑟 | =

-...
/.

= 20 records

• INDEX-SCAN on User
• IO COST: index lookup (4 IOs, depending on the height of the index tree)

20

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)20 rows

Case Study

• |User|=1000, |𝜋!"#$ 𝑈𝑠𝑒𝑟 | = 50è |𝜎!"#$("*"+," 𝑈𝑠𝑒𝑟 | =
-...
/.

= 20 records

• INDEX-SCAN on User
• IO COST: index lookup (4 IOs, depending on the height of the index tree)

• JOIN: For each record with name = “Bart”, probe the index on 𝑀𝑒𝑚𝑏𝑒𝑟(𝑢𝑖𝑑)
• IO cost: 𝐵 𝑅 + 𝑅 ⋅ index	lookup + record	fetch
• 20 rows are not clustered à at worst case, 20 blocks of data to be retrieved
• 20 + 20 * (4 IOs for index + record fetches) 21

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)20 rows

Case Study

• Given | 𝜋%&' 𝜎!"#$("*"+,"𝑈𝑠𝑒𝑟 | = 20, |𝜋%&' 𝑀𝑒𝑚𝑏𝑒𝑟 | = 500

• 𝐽𝑂𝐼𝑁(𝑢𝑖𝑑) ≈ 0 ⋅ 2
345 6!0 , 6!2

= 8.⋅/.9
345 8.,/..

= -...9
/..

= 2𝑘

• |JOIN(gid)| = ?

22

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Case Study

• Given | Input = 2k, say	|𝜋:&' Input = 50, |𝐺𝑟𝑜𝑢𝑝| = 100,	|𝜋:&' 𝐺𝑟𝑜𝑢𝑝 | = 100,	

• 𝐽𝑂𝐼𝑁(𝑔𝑖𝑑) ≈ 0 ⋅ 2
345 6!0 , 6!2

= 89⋅-..
345 /.,-..

= 8..9
-..

= 2𝑘

23

Physical plan example:
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Input = JOIN(uid)

Outline

• System view of query processing
• Logical plan and physical plan

• Cost calculation of the physical plan
• Cardinality estimation

• Search space and search strategy
• Transformation rules
• Heuristic approach

24

Search space is huge
• Characterized by “equivalent” logical query plans

SELECT Group.name FROM User, Member, Group WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

25

Do we need to exam all the
logical plans?
No. We can apply heuristic
transformation rules to find a
cheaper logical plan

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Transformation rules (a sample)

• Convert 𝜎2-× to/from ⋈2: 𝜎2 𝑅×𝑆 = 𝑅 ⋈2 𝑆
• Example: 𝜎;<$+.%&'(>$#?$+.%&' 𝑈𝑠𝑒𝑟×𝑀𝑒𝑚𝑏𝑒𝑟 = 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟

• Merge/split 𝜎’s: 𝜎2/ 𝜎20𝑅 = 𝜎2/∧20𝑅
• Example: 𝜎":$@8. 𝜎ABA(..C𝑈𝑠𝑒𝑟 = 𝜎":$@8.∧ABA(..C𝑈𝑠𝑒𝑟

• Merge/split 𝜋’s: 𝜋45 𝜋40𝑅 = 𝜋4/𝑅, if 𝐿5 ⊆ 𝐿6
• Example: 𝜋":$ 𝜋":$,ABA𝑈𝑠𝑒𝑟 = 𝜋":$𝑈𝑠𝑒𝑟

26

Transformation rules (a sample)

• Push down/pull up 𝜎:
𝜎2∧21∧22 𝑅 ⋈23 𝑆 = 𝜎21𝑅 ⋈2∧23 𝜎22𝑆 , where
• 𝑝e is a predicate involving only 𝑅 columns
• 𝑝f is a predicate involving only 𝑆 columns
• 𝑝 and 𝑝g are predicates involving both 𝑅 and 𝑆 columns
• Example:

27

𝜎"#.%&'()"*.%&'(∧,#.-.-/0.1∧,*.232/0.1 𝜌,#𝑈𝑠𝑒𝑟 ⋈,#.4567,*.456 𝜌,*𝑈𝑠𝑒𝑟
= 𝜎232/0.1(𝜌,#𝑈𝑠𝑒𝑟) ⋈,#.4567,*.456∧,#.89:;),*.89:; (𝜎232/0.1(𝜌,*𝑈𝑠𝑒𝑟))

Transformation rules (a sample)

• Push down 𝜋: 𝜋4 𝜎2𝑅 = 𝜋4 𝜎2 𝜋4,43𝑅 , where
• 𝐿g is the set of columns referenced by 𝑝 that are not in 𝐿
• Example:

 𝜋hij 𝜎klkmn.o𝑈𝑠𝑒𝑟 = 𝜋hij(𝜎klkmn.o(𝜋hij,klk𝑈𝑠𝑒𝑟))

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new

ones

28

Relational query rewrite example

29

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝜎
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝜎A-× to ⋈A

Heuristics-based query optimization
• Start with a logical plan

• Push selections/projections down as much as possible
• Why? Reduce the size of intermediate results

• Join smaller relations first, and avoid cross product
• Why? Joins are more optimized and have alternate

implementations

• Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

30

Search strategy

• Heuristics-based optimization
• Apply heuristics to rewrite “logical plans” into cheaper

ones

• Cost-based optimization
• Need statistics to estimate sizes of intermediate results

to find the best “physical plan”

à Course CS448 “Database Systems Implementation”

31

Summary

• System view of query processing
• Logical plan and physical plan

• Cost calculation of the physical plan
• Cardinality estimation

• Search space and search strategy
• Transformation rules
• Heuristic approach

32

