Query Processing

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Overview

Lectures

Lecture
on SQL

-~

i relational-algebra
expression

parser and
translator

—_——

- execution plan

I ecture statistics
about data
Lectures on
Physical
data org

Overview (cont.)

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?

* All have different performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation
* Implement all alternatives

* Let the choose at run-time (next
lecture)

Outline

Number of memory
blocks available:

* Scan
select * from User where pop =0.8 Ui, uz
Memory | u3,u4
e Ind select * from User, Member where
naex User.uid = Member.uid;
— TN
User Member
. Disk
* Hash (Optional)
Number of rows for a table -

Number of disk blocks for a table

Notation

e Relations: R,

* Tuples: 7,

* Number of tuples: |R|,
 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

Scanning-based algorithms

0110101001 101010C01101001000
?OO?HO?O!OHO 101000101010
1010101 1C001010C0101010010X
)01101010011101011011101000
0}0700101911011701010001?0
10011010100111010110111010
\ﬂ)’OTOO)OIOT101110]010001
)NM@COHO‘OMHQ}
mc 1101011010100
101000101 O’bO’HO
C"\, 2101101010101
mmm 010010101

\J

C)...o

O~

—

01011
4, ’ -

e

l___) N L D

311
|

'.\.n 1 ‘\q‘," iH \‘;n
-~1-\%1~, \:- NG AN
JIU U H.,-}ﬁ/\?,\),\,‘
AN

’]’ \1 \ 1V

Table scan

Buffer output
* Scan table R and process the query Memory
over R 1for input
of R without duplicate elimination 2
° I/O’S: . Dick D

* Trick for selection:
* stop early if it is a lookup by key
* Memory requirement: 2 (blocks)

* 1forinput, 1 for buffer output N— _
* Increase memory does not improve 1/O

* Not counting the cost of writing the result out
* Same for any algorithm!

R

Basic nested-loop join

* For each r in a block B; of R:
For each s in a block By of S:
Output rs if p is true over r and s

* R is called the table; S is called the table

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once |R| number of times

* Memory requirement:

Example for basic nested loop join

* 1block =2 tuples, 3 b

°(R

r1,r2

ocks of memory

r3,r4

51,52

r1,r2 r,r2 r1,r2 r1,r2 r1,r2 r1,r2 H 3,r4 r3,r4 3,r4

s1,52 || s3,54 || s5,s6 | | s1,s2 || s3,54 |.| S5,56 || s1,s2 || s3,54 |,| S5,56
AR oL B (ARG SN, e

output output output output output output output output output

$3,54

s5,56

Disk

* Number of 1/O:

Only compares (r1,s1), (r1,s2)

B(R) + [R| * S(R) = 2 blocks + 4 * 3blocks = 14

Improvement: block nested-loop join

* For each block B; of R:
For each block Bg of S:
For each r in By :
For each s 1in Bg:
Output rs if p is true over r and s

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once B(R) number of times

* Memory requirement:

Example for block-based nested loop
join

* 1block =2 tuples, 3 blocks of memory
*R nr r,r2 || rr2 || ryr2 (@ r3,r4 | r3,r4 | | r3,r4
r3,r4 . .
51,52 ﬂ53’54 | 55,56 |) 51,52 H53’54 $5,S
output output output output output output
e S |s1,s2
3,54
Compares (r1,s1), (r2,s1),
55,56 (r1,s2),(r2,s2)

* Number of 1/O:
B(R) + B(R)* B(S) = 2 blocks + 2 * 3blocks = 8

More improvements

* Stop early if the key of the inner table is being
matched

* Make use of available memory

* Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

e |/O’s:
* Or, roughly:
* Memory requirement: M (as much as possible)

* Which table would you pick as the outer? (exercise)

Example for block-based nested loop
join

* 1block =2 tuples, 4 blocks of memory
*R nr r,r2 (| rr2 || r,r2
r3,r4
r3,r4 || r3,r4 | | r3,r4
51,52 1*53,54 R S5,56
e S |s1,52 1
output\ output output
53,54
Time 1
s5,56

Compares (r1,s1), (r2,s1), (r1,s2),(r2,s2),

(r3,51),(r3,52),(r4,51),(r4,s2)

* Number of 1/O:
B(R) + B(R)/(M-2)* S(R) = 2 blocks + 1 * 3blocks = 5

13

Case study:

System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
« #of blocks:

Q1: select * from User where pop =0.8
* 1/O cost using table scan?

Q2: select * from User, Member where User.uid = Member.uid;
* 1/O cost using blocked-based nested loop join

Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Index

e Sort

* Hash (Optional)

15

Index-based algorithms

e
|/ ot AGENTS g
LN TY |)

http://il.trekearth.com/photos/28820/p2270994.jpg

16

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
« Example: B*-tree index on R(4, B)
 How about B*tree index on R(B,A)?

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples

* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples
* Say that 20% of R satisfies A > v
* Could happen even for equality predicates
* |/O’s for scan-based selection:
* |/O’s for index-based selection:

* Table scan wins if a block contains more than 5 tuples!
* B(R) = |R|/5 < 20%|R|+lookup

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s withs.B =r.4
Output rs

e |/O’s:
* Typically, the cost of an index lookup is 2-4 1/0’s (depending on the
index tree height if B+ tree)

* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree)

Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Index
* Selection, index nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash (Optional)

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sortertmediaviewer/File:Mail_sorting,1951.jpg

22

External merge sort

Recall in-memory merge sort: Sort progressively larger
runs, 2, 4, 8, ..., |R|, by merging consecutive “runs

Problem: sort R, but R does not fit in memory

:read M blocks

of R at a time them
and write out a ’ e

. (M —-1)
level-0 runs at a time, =
and write out a

LCCd

write out a

produces one sorted run

T mick Y
. Disk
}R

Level-0

===

m

-:} Ley

¥/

(M — 1) level-1 runs at a time, and

el-1

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 — N
\\ /

» Phase o 1 1]
R: |1|7]|4|5]|2|8 963

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
‘\

» Phase o 1 1]
17| 4| 5|2

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 o

> Phase o I
5

0 | g

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 o

0 | g

> Phase o I
5

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 o

> Phase o

o\ |e—
W |

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 o

> Phase o

W | g

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBlTk T L
! !
114(7| |2|5|8

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBlTk T L
! !
114(7| |2|5|8

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBlvk b L
|
114(7| |2|5|8

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBlvk b L
|
114(7| |2|5|8

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBUVIL T L
| !
114(7| |2|5|8

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBUVIL T L
| !
114(7| |2|5|8
1| 2| 4

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 aBIvIL T L
U |
114(7| |2|5|8
1| 2| 4

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 SElVIL B
I |
114/7| [2|5/8
12(45

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
~
» Phase o
» Phase 1 ElVIL B
| !
114/7| [2|5/8
12(45

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —
\
> Phase o
> Phase 1 m 7141512
! |
114(7| |2|5|8
112/ 4578

Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6, 3 —
~
> Phase o
> Phase 1 R: [1]7]4]5]2
» Phase 2 (final) 114 7| |2|5|8
!
1124 5 7| 8

Example

» 3 memory blocks available; each holds one number

> Input: 1,7, 4,5,2,8, 9,6, 3 —
‘\
» Phase o

> Phase 1 R: [1]7]4]5]2
» Phase 2 (final) 114 7| |2|5|8

!

1124 57 8
112/3/ 45 67 8

Analysis

: read M blocks of R at a time, sort them,
and write out a level-0 run

B(R)

/O costis 2 - B(R
e There are [7 level-0 sorted runs O costis 2 - B(R)

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

number of level—(i—1) runs}
M-1

e The number of level-i runs = [

number of such phases
1/O costis 2 - B(R)
produces one sorted run times # of phases

Subtract B(R) for the final pass

Performance of external merge sort

* |/O’s
» Roughly, this is

* Memory requirement: // (as much as possible)

Case study (optional):

* System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

* Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks

* Q3: select * from User order by age asg;
* 1/O cost using external merge sort?

Case study (optional):

* System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

« Database:
« User(uid, age, pop), Member(gid,uid,date), Group(gid, gname) T

¥/
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows -
» #of blocks: ; B(Group)=100/10=10; M[R
tiock]
 Q3: select * from User order by age asc;
* 1/O cost using external merge sort? I Level-0
Phase 0: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs :l
Phase 2: merge last 2 runs into a single run I_—} Level-1
L.
L |
Level-2

Operators That Use Sorting

* Pure Sort: e.g., ORDER BY

* Set Union, Difference, Intersection, or Join or R and S (next slide): When
the join condition is an equality condition e.g., R.A = S.B,
* All can be implemented by walking relations “in tandem” as in the
merge step of merge sort.

* DISTINCT

* Group-By-and-Aggregate: Exercise: Think about how you can implement

group-by-and-aggregate with sorting?

Sort-merge join

* Sort R and S by their join attributes; then merge
* 1, s =the first tuplesin sorted R and S

* Repeat until one of R and § is exhausted:
Ifr.A>s.B
then s = next tuplein §
elseifr.A <s.B
then r = next tuple in R
else output all matching tuples, and
r,s=nextinRand$S

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst caseis : everything joins

- MmN T M FT 1N
h i ! \”h n 0
AR QU O GC GO

— N MMOO
1 L [T |
bt

e = AN M < 1N
LN n n ». h \»n

— M M N OO
I L | O O VR VO |
TS SNSTSS

x ST L

Example of merge join

Summary

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Index
* Selection, index nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash (Optional) Optional (won’t

be tested)

