Relational Database
Design Theory (II)

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Outline For Today

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 37 Normal Form

A Parts/Suppliers database example

* Each type of part has a name and an identifying number and
may be supplied by zero or more suppliers.

* Each supplier has an identifying number, a name, and a
contact location for ordering parts.

* Each supplier may offer the part at a different price.

f‘/(Sno \\'w
(- o)

< City >% Supplier

G Sname P

\\Eupphesﬁ\“H1cerﬂ/_\
- S

\Pno Ve Part 7\Pna1_ne)

Single table?

Supplied_Items

Supplied_Items

Sno | Sname | City | Pno | Pname | Price
S1 | Magna | Ajax | P1 | Bolt 0.50
S1 | Magna | Ajax | P2 | Nut 0.25
S1 | Magna | Ajax | P3 | Screw | 0.30
S2 | Budd | Hull | P3 | Screw | 0.40

Decomposed tables?

e Aninstance

Suppliers
Sno | Sname | City

Supplies

S1 | Magna | Ajax

Sno | Pno | Price
S2 Budd Hull

ST | P1 | 0.0
SI | P2 | 025
S1 | P3 | 030
P1 | Bolt S2 | P3 | 040

Parts
Pno | Pname

P2 Nut
P3 Screw

Schema decomposition

* Let R be arelation schema (= set of attributes).

* The collection {R;, ...

, R, } of relations is a

decompositionof RifR = R{ U---UR,

Sunnlied Ttems

| Sno | Sname | City | Pno | Pname | Price |

S1
S1
S1
S2

Magna
Magna
Magna
Budd

Ajax
Ajax
Ajax
Hull

P1
P2
P3
P3

Bolt
Nut
Screw
Screw

0.50
0.25
0.30
0.40

Suppliers
| Sno | Sname | City | '
: Supplies
Sl | Magna | Ajax ' Sno ‘ Pno ‘ Price
S2 | Budd | Hull —_—
—_— ST [Pl | 050
arts
‘ Pro ‘ Prame S1 P2 0.25
— S1 P3 0.30
Pl | Bolt S2 | P3 | 040
P2 Nut
P3 Screw

* What is a good decomposition?

s this a good decomposition?

* Example 1

Marks

SGM AM
s [sotgmss | crowp | o s [crovp | e [s [k
Ann A1 G1 80 Ann G1 80 A1 80
Ann A2 G3 60 |:> Ann G3 60 A2 60

Bob A1 G2 60 Bob G2 60 A1 60

l | Natural Join
s | st | o |
Ann A1 G1 80

But computing the natural join of SGM and

. A A G 6
AM, we get extra data (spurious tuples). " i R
Ann A1 G3 60
. . . Bob A G2 60
We would therefore lose information if we ° ’
Bob A1 G2 60

were to replace Marks by SGM and AM

“Good” Schema Decomposition

* Lossless-join decompositions

* We should be able to of the
original table from the instances of the tables in the
decomposition

A decomposition {R{, R,} of R is iff the common
attributes of Ry and R, form a superkey for either schema,

R.NnR, > R{orRiNR, > R,

*If X is a superkey of R, then X — R (all the attributes) [last lecture]

9

Is this a lossless join decomposition?

* Example 1
* R = {Student, Assignment, Group, Mark}

Ann A1 G1 8o

Ann A2 G3 60

F includes:
Student, Assignment — Group, Mark

Bob A1 G2 60

* R, = {Student, Group, Mark}, R, = {Assignment, Mark}

R1 e R2
nn 1 A1 80

A G 80

R, N R, = {Mark}isnota

superkey of either R; or R,

Ann G3 60 A2 60

Bob G2 60 A1 60
—> This decomposition is lossy

Which one is a better decomposition?

* Example 2: a table for a company database
* R = {Proj,Dept, Div}

F includes:
FD1: Proj — Dept FD2: Dept — Div FD3: Proj — Div

* Consider 2 decompositions

D, = {Rl{PTOj, Dept}r} D., = {Rl{PTOJ, D@pt},}
1 R,{Dept, Div} 2 R,{Proj, Div}

* Both are lossless. (Why?)

* However, testing FDs is easier on one of them. (Which?)

Testing FDs

* Example 2: a table for a company database
* R = {Proj,Dept, Div}

F includes:
FD1: Proj — Dept FD2: Dept — Div FD3: Proj — Div

* Consider 2 decompositions

R,{Proj, Dept}, R,{Proj, Dept},
D1 :{] } DZ :{ i] }
R,{Dept, Div} R,{Proj, Div}
* FD1(in R1)
* FD2(in R2)

* FD3 (join R1and R2?)
« > Noneed, if FD1and FD2 hold,
then FD3 hold

Testing FDs

* Example 2: a table for a company database
* R = {Proj,Dept, Div}

F includes:
FD1: Proj — Dept FD2: Dept — Div FD3: Proj — Div

* Consider 2 decompositions

R,{Proj, Dept}, R,{Proj, Dept},
D, = { . } D, = { o~
R,{Dept, Div} R,{Proj, Div}
* FD1(in R1) * FD1(in R1)
* FD2(in R2) * FD3(in R2)
* FD3(join R1and R2?) * FD2 (join R1and R2?)
« > Noneed, if FD1and FD2 hold, - Yes. FD1and FD3 are not

then FD3 hold sufficient to guarantee FD2

Testing FDs

* Example 2: a table for a company database
R = {Proj,Dept, Div}

F includes:
FD1: Proj — Dept FD2: Dept — Div FD3: Proj — Div

* Consider 2 decompositions

D ={R1{Pr0j;Dept}»} D = {Rl{ij,Dept},}
1 R,{Dept, Div} z R,{Proj, Div}

* FD3(join R1and R2?) * FD2 (join R1and R2?)
« > Noneed, if FD1and FD2 hold, - Yes. FD1and FD3 are not
then FD3 hold sufficient to guarantee FD2

* FD1(inR1) (') Eqilya:clent ;cot?’ | FD1 (in R1) interrelational
+ FD2 (in R2) (i) Not interrelationa FD3 (in R2)

13

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

Given a schema R and a set of FDs F,
decomposition of R is

if there is an ,

in the decomposition.

* Next, how to obtain such decompositions?
* BCNF = guaranteed to be a decomposition!

oyce-Codd Normal Form (BCNF)

e Arelation R isin iff whenever (X - Y) e F*
and , then either

or

* That s, all non-trivial FDs follow from “key — other attributes”

* Example: R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

* The schema is not in BCNF because, for example, Sno
determines Sname,City, is non-trivial but is not a
superkey of R

BCNF decomposition algorithm

 Find a

 That is, a non-trivial FD in F* of R where X is
a super key of R
« Example: R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

* Decompose R into R; and R,, where
* R, has attributes ;

* R, has attributes , Where Z contains all attributes

of R that are in neither X nor Y R = {Sno,Sname,City,Pno,Pname,Price}

» Repeat (till all are in BCNF) —

R2{Sno,Pno,Pname,Price} R1{Sno,Sname,City}

17

BCNF decomposition example

* R = {Sno,Sname,City,Pno,Pname,Price}

F includes:
FD1: Sno — Sname, City FD2: Pno — Pname FD3: Sno, Pno — Price

{Sno,Sname,City,Pno,Pname,Price}

BCNF violation: Sno — Sname, City

4/\;

R2{Snho,Pno,Pname,Price} R1{Sno,Sname,City} ~ BCNF: Sno — Sname, City
Pno - Pname Sno,Pno — Price {SNo}={Sno, Shame, City}
BCNF violation: Pno - Pname - a superkey of R1

R2b{Sno,Pno,Price} R2a{Pno,Pname}
BCNF: Sno, Pno — Price BCNF: Pno —» Pname

BCNF helps remove redundancy
Emmm-m

Magna
S1 Magna K-W P2 B $34
S1 Magna K-W P3 A $20
S2 Box London

BCNF violation: Sno — Sname, City

sno|Pro|prame |price [N o | sname
S1 P1 A

$25 S1 Magna KW
S1 P2 B 334 S2 Box London
S1 P3 A $20

S2

18

Another example

F includes:
uid = uname, twittered
twitterid — uid
uid, gid — fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

20

Another example

F includes:
uid = uname, twitterid
twitterid — uid
uid, gid — fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: uid = uname, twitterid

fuid}*={uid, uname, twitterid}

User (uid, uname, twitterid) Member (uid, gid, fromDate)

uid = uname, twitterid uid, gid - fromDate
twitterid — uid

SI@NISE {uid}={uid, uname, twitterid}

Uid7 id}r= Uid, id
{twitterid}+={uid, uname, twitterid} tuid,gid}={uid,g

,fromeDate}

21

F includes:

Alt. SOI Utio n uid = uname, twitterid

twitterid — uid
uid, gid — fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: twitterid — uid

/ No FDs in F violate BCNF here!

Userld (tWitterid, U’d) twitterid — uid as uid is missing in this relation
BCNF

UserJoinsGroup (twitterid, uname, gid, fromDate)

But we need to check all the twitterid - uname
FDs in F* !! twitterid, gid — fromDate

BCNF violation: twitterid = uname

T~

UserName (twitterid, uname) Member (twitterid, gid, fromDate)
BCNF BCNF

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

* BCNF = guaranteed to be alossless join

decomposition!
* Depend on the on the sequence of FDs for decomposition

Example: consider R={A, B, (} Fincludes: FD1:AB > FD2:C~B

N

{A G {C, B}
AB - (isinterrelational and cannot be tested directly

“Good” Schema Decomposition

* Lossless-join decompositions
* Dependency-preserving decompositions

* BCNF = guaranteed to be alossless join

decomposition!
* Depend on the on the sequence of FDs for decomposition

* 3NF = both lossless join and dependency preserving

24

Third normal form (3NF)

e Arelation R isin 3NF iff
whenever (X - Y) € F* and XY € R, then either

* (X - Y)istrivial (i.e.,, Y € X), or
e XisasuperkeyofR(i.e., X - R)or
* Each attribute in Y — X is contained in a candidate key of R

d Example: consider R={A, B, C} F includes: FD1: AB—>C FD2:C - B

 Satisfies 3NF, but not BCNF
{B}-{C} = {B}is part of the key {AB}

* 3NF is looser than BCNF - Allows more redundancy

How to find a 3NF relation schemas?

* Lossless-join, dependency-preserving decomposition
into 3NF relation schemas always exists.

* Step 1: Finding the minimal cover of the FD set F

F+ L
F = F = schema

Given a set of FDs F, we say F' is to F if their
closures are the same: F+ = F'*.

* Step 2: Decompose based on the minimal cover (i.e., F' is
minimal).

Minimal cover

* Aset of FDs F is minimal if
1. everyright-hand side of a FD in F is a single attribute

* Example: R = {Sno,Sname,City,Pno,Pname,Price, PType}

— Fail condition 1

F:FD1: Sno —» Sname, City
FD2: Pno — Pname
FD3: Sno, Pno — Price
FD4: Sno, Pname — Price

FD5: Pno, Pname — Ptype

26

27

Minimal cover

No redundant
* Aset of FDs F is minimal if SUEIBHECS IR

1. everyright-hand side of a FD in F is a single attribute

2. there does not exist X 2 A, and Z a proper subset of X, such that the set
(F —{X - A} U {Z — Alis equivalent to F,
English: no extraneous (redundant) attributes in the left-hand side of an FD in F

* Example: R = {Sno,Sname,City,Pno,Pname,Price, PType}

Fail condition 2: replace by
F:FD1: Sno —» Sname, City

FD2: Pno — Pname
FD3: Sno, Pno — Price
FD4: Sno, Pname - Price computeX*({Pno}, {FD1,FD2,FD3, FD4,FD5})
FD5: Pno, Pname — Ptype ={..., Ptype, ... }

[visit Lecture 9 for how to compute closure]

FD5’: Pno = Ptype
(F — {FD5}+{FD5’}) is equiv. to F

Minimal cover

* Aset of FDs F is minimal if
1. Everyright-hand side of a FD in F is a single attribute

2. There does not exist X = A and Z a proper subset of X, such th o ek
(F —{X - A}D) U {Z - A}is equivalent to F,
English: no extraneous (redundant) attributes in the left-hand side of#

3. There does not exist X—A in F,such that F — {X — A} equivalentto F

Example: R = {Sno,Sname,City,Pno,Pname,Price, PType}

Fail condition 3: FD2+FD4 can give FD3

F ig;i)"so—’_f’;z’:;{ec L (F — {FD3})is equiv. to F
FD3: Sno, Pno — Price .
FD4: Sno, Phame — Price computeX ™ ({Sno, Pno}, {FD1,FD2,FD4,FD5})

FD5: Pno, Pname — Ptype ={..., Price, ...}

28

29

Finding minimal cover

* A minimal cover for F can be computed in 3 steps.
1. Replace X — YZ with the pairX »Yand X —» Z

2. Remove A from the left-hand sideof X > BinFifB €
computeXt(X — {A}, F)

3. Remove X — Afrom Fif A € computeX*(X,F — {X - A})

* Note that each step must be repeated until it no longer succeeds in
updating F.

* Example: R = {Sno,Sname,City,Pno,Pname,Price, PType }

F:FD1: Sno —» Sname, City—— Sno — Sngme,
FD2: Pno — Pname Sno - Cit

FD3: Sno, Pno — Price Remove FD3
FD4: Sno, Pname — Price
FD5: Pno, Pname — Ptype -_—

Pno — Ptype

Computing 3NF decomposition

Efficient algorithm for computing a 3NF
decomposition of R with FDs F:

1. Initialize the decomposition with empty set
2. Find a minimal cover for F, let it be F~

3. Forevery (X = Y) € %, add arelation {XY} to the
decomposition

4. If norelation contains a candidate key for R, then
compute a candidate key K for R, and add
relation {K} to the decomposition.

31

Example for 3NF decomposition

* R = {Sno,Sname,City,Pno,Pname,Price}

F:FD1: Sno — Sname, City
FD2: Pno — Pname
FD3: Sno, Pno — Price
FD4: Sno, Pname — Price

e Minimal cover F*

R1a(Sno, Sname)
R1b(Sno, City)
R2(Pno, Pname)

F*:FD1a: Sno —» Sname
FD1b: Sno — City
FD2: Pno — Pname
FD4: Sno, Pname — Price

Exercise

R4(Sno,Pname,Price)

R5(Sno,Pno)

* Add relation for candidate key

* Optimization for this example: combine relations R1a
and R1b

Summary

* Functional dependencies: provide clues towards
elimination of (some) redundancies in a schema.
* Closure of FDs (rules, e.g. Armstrong’s axioms)
* Compute attribute closure

* Schema decomposition
* Lossless join decompositions
* Dependency preserving decompositions

e Normal forms based on FDs

* BCNF = lossless join decompositions

* 3" NF -> lossless join and dependency-preserving
decompositions with more redundancy

