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Outline For Today

1. Application Constraints and Decompositions 

2. Functional Dependencies 

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form
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This 
lecture



A Parts/Suppliers database example
• Each type of part has a name and an identifying number and 

may be supplied by zero or more suppliers. 
• Each supplier has an identifying number, a name, and a 

contact location for ordering parts.
• Each supplier may offer the part at a different price.
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Single table?
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Decomposed tables?

• An instance
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Schema decomposition

• Let 𝑅 be a relation schema (= set of attributes). 
• The collection {𝑅!, … , 𝑅"} of relations is a 

decomposition of 𝑅 if 𝑅 = 𝑅! ∪⋯∪ 𝑅"

• What is a good decomposition? 
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Is this a good decomposition?
• Example 1
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Student Assignment Group Mark

Ann A1 G1 80

Ann A2 G3 60

Bob A1 G2 60

Student Group Mark

Ann G1 80

Ann G3 60

Bob G2 60

Assignment Mark

A1 80

A2 60

A1 60

Marks SGM AM

Student Assignment Group Mark

Ann A1 G1 80

Ann A2 G3 60

Ann A1 G3 60

Bob A2 G2 60

Bob A1 G2 60

But computing the natural join of SGM and 
AM, we get extra data (spurious tuples).

We would therefore lose information if we 
were to replace Marks by SGM and AM

Natural Join



“Good” Schema Decomposition

• Lossless-join decompositions
• We should be able to construct the instance of the 

original table from the instances of the tables in the 
decomposition
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A decomposition {𝑅!, 𝑅"} of 𝑅 is lossless iff the common 
attributes of 𝑅! and 𝑅" form a superkey for either schema, 

𝑅!∩ 𝑅# → 𝑅! or 𝑅! ∩ 𝑅# → 𝑅#
*If 𝑋	is a superkey of R , then 𝑋 → 𝑅 (all the attributes)  [last lecture]



Is this a lossless join decomposition? 
• Example 1

• 𝑅 = 𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝐺𝑟𝑜𝑢𝑝,𝑀𝑎𝑟𝑘

• 𝑅! = 𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐺𝑟𝑜𝑢𝑝,𝑀𝑎𝑟𝑘 , 𝑅" = {𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡,𝑀𝑎𝑟𝑘}
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ℱ includes:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡	 → 	𝐺𝑟𝑜𝑢𝑝,𝑀𝑎𝑟𝑘

Student Assignment Group Mark

Ann A1 G1 80

Ann A2 G3 60

Bob A1 G2 60

Student Group Mark

Ann G1 80

Ann G3 60

Bob G2 60

Assignment Mark

A1 80

A2 60

A1 60

R1 R2

𝑅! ∩ 𝑅" = 𝑀𝑎𝑟𝑘 is not a 
superkey of either 𝑅! or 𝑅"

à This decomposition is lossy



Which one is a better decomposition?

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions

• Both are lossless. (Why?)

• However, testing FDs is easier on one of them. (Which?)
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

𝑅! ∩ 𝑅" 	→ 𝑅! or 𝑅"



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions

12

ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD3 (in R2)
• FD2 (join R1 and R2?) 

à Yes.  FD1 and FD3 are not 
sufficient to guarantee FD2

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold

interrelational



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions

13

ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD3 (in R2)
• FD2 (join R1 and R2?) 

à Yes.  FD1 and FD3 are not 
sufficient to guarantee FD2

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold

(i) Equivalent to ℱ
(ii) Not interrelational interrelational



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions

• Next, how to obtain such decompositions?
• BCNF à guaranteed to be a lossless join decomposition!
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Given a schema 𝑅 and a set of FDs ℱ, 
decomposition of 𝑅 is dependency preserving 

if there is an equivalent set of FDs	ℱ′, 
none of which is interrelational in the decomposition. 



Boyce-Codd Normal Form (BCNF)

• A relation 𝑅 is in BCNF iff whenever 𝑋 → 𝑌 ∈ ℱ> 
and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅)

• That is, all non-trivial FDs follow from “key → other attributes”

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• The schema is not in BCNF because, for example, Sno
determines Sname,City, is non-trivial but is not a 
superkey of 𝑅
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒



BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD 𝑋 → 𝑌 in ℱ@ of	𝑅 where 𝑋 is not 

a super key of 𝑅
• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Decompose 𝑅 into 𝑅! and 𝑅#, where
• 𝑅! has attributes 𝑋 ∪ 𝑌; 
• 𝑅" has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes 

of 𝑅 that are in neither 𝑋 nor 𝑌

• Repeat (till all are in BCNF)
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

𝑅 = Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City



BCNF decomposition example
• 𝑅 = Sno,Sname,City,Pno,Pname,Price
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City BCNF: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦
𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

BCNF violation: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒

R2b Sno,Pno,Price R2a Pno,Pname
BCNF: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒BCNF: 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

{SNo}+={Sno, Sname, City}
à a superkey of R1



BCNF helps remove redundancy
Sno Sname City Pno Pname Price

S1 Magna K-W P1 A $25

S1 Magna K-W P2 B $34

S1 Magna K-W P3 A $20

S2 Box London … … …
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BCNF violation: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

Sno Sname City

S1 Magna K-W

S2 Box London

.. … …

Sno Pno Pname Price

S1 P1 A $25

S1 P2 B $34

S1 P3 A $20

S2 … … …



Another example
19

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

ℱ includes:
       uid → uname, twittered
       twitterid → uid
       uid, gid → fromDate



Another example
20

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid → uname, twitterid
twitterid → uid

uid, gid → fromDate

{uid}+={uid, uname, twitterid}

{uid}+={uid, uname, twitterid}
{twitterid} +={uid, uname, twitterid}

{uid,gid}+={uid,gid
,fromeDate}

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate



Alt. solution 
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UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: twitterid → uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid → uname
twitterid, gid → fromDate

UserJoinsGroup (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

UserName (twitterid, uname)
BCNF

twitterid → uid
No FDs in ℱ violate BCNF here!  

(as uid is missing in this relation)

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate

But we need to check all the 
FDs  in ℱ# !!



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depend on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving
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Example: consider R={A, B, C} ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: C → 𝐵

BCNF violation: C → 𝐵

{A, C} {C, B} 
𝐴𝐵 → 𝐶 is interrelational and cannot be tested directly



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depend on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving

• 3NF à both lossless join and dependency preserving
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Third normal form (3NF)

• A relation 𝑅 is in 3NF iff
whenever 𝑋 → 𝑌 ∈ ℱ> and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅) or 
• Each attribute in 𝐘 − 𝑿 is contained in a candidate key of 𝑹

• Example: consider R={A, B, C}
• Satisfies 3NF, but not BCNF

• 3NF is looser than BCNF à Allows more redundancy 
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ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: 𝐶 → 𝐵

{B}-{C} = {B} is part of the key {AB}



How to find a 3NF relation schemas?

• Lossless-join, dependency-preserving decomposition 
into 3NF relation schemas always exists. 

• Step 1: Finding the minimal cover of the FD set ℱ

Given a set of FDs ℱ, we say ℱ′ is equivalent to ℱ if their 
closures are the same: ℱ@ = ℱF@.
• Step 2: Decompose based on the minimal cover (i.e., ℱ′ is 

minimal).

25

ℱ ℱ#
ℱ′ ℱ′#

⇒ ⇒ schema



Minimal cover
• A set of FDs ℱ is minimal if
1. every right-hand side of a FD in ℱ is a single attribute

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

Fail condition 1



Minimal cover
• A set of FDs ℱ is minimal if
1. every right-hand side of a FD in ℱ is a single attribute 

2. there does not exist X à A, and Z a proper subset of X, such that the set 
ℱ − 𝑋 → 𝐴 ∪ 𝑍 → 𝐴 is equivalent to F,

English: no extraneous (redundant) attributes in the left-hand side of an FD in F 

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

No redundant 
attributes in 𝑋

Fail condition 2: replace by 
FD5’: Pno à Ptype

(ℱ − {FD5}+{FD5’}) is equiv. to ℱ

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#({Pno}, {FD1,FD2,FD3, FD4,FD5})
= {…, Ptype, …}

[visit Lecture 9 for how to compute closure]



Minimal cover
• A set of FDs ℱ is minimal if
1. Every right-hand side of a FD in ℱ is a single attribute 

2. There does not exist X à A and Z a proper subset of X, such that the set 
(ℱ − 𝑋 → 𝐴 ) ∪ 𝑍 → 𝐴 is equivalent to F,
English: no extraneous (redundant) attributes in the left-hand side of a FD in F 

3. There does not exist 𝑋→𝐴 in ℱ,such that ℱ − {𝑋 → 𝐴} equivalent to ℱ

Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

No redundant 
FD in ℱ

Fail condition 3: FD2+FD4 can give FD3
(ℱ − {FD3}) is equiv. to ℱ

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#({Sno, Pno}, {FD1,FD2,FD4,FD5})
= {…, Price, …}



Finding minimal cover

• A minimal cover for ℱ can be computed in 3 steps. 
1. Replace 𝑋 → 𝑌𝑍 with the pair 𝑋 → 𝑌 and 𝑋 → 𝑍
2. Remove 𝐴 from the left-hand side of 𝑋 → 𝐵 in ℱ if B ∈

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#(𝑋 − {𝐴}, ℱ)
3. Remove 𝑋 → 𝐴 from ℱ if 𝐴 ∈ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#(𝑋, ℱ − 𝑋 → 𝐴 )
• Note that each step must be repeated until it no longer succeeds in 

updating ℱ.

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price, 𝑃𝑇𝑦𝑝𝑒
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑡𝑦𝑝𝑒

𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒,
𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦

Remove FD3

𝑃𝑛𝑜	 → 𝑃𝑡𝑦𝑝𝑒



Computing 3NF decomposition 

Efficient algorithm for computing a 3NF 
decomposition of 𝑅 with FDs ℱ:
1. Initialize the decomposition with empty set
2. Find a minimal cover for ℱ, let it be ℱ∗

3. For every X → Y ∈ ℱ∗, add a relation {XY} to the 
decomposition 

4. If no relation contains a candidate key for 𝑅, then 
compute a candidate key 𝐾 for R, and add 
relation {K} to the decomposition. 
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Example for 3NF decomposition
• 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Minimal cover ℱ∗

• Add relation for candidate key
• Optimization for this example: combine relations R1a 

and R1b 
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

ℱ∗: FD1a: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒 
      FD1b: 𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦     
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

R1a(Sno, Sname)
R1b(Sno, City)

R2(Pno, Pname)
R4(Sno,Pname,Price)

R5(Sno,Pno)

Exercise

Exercise



Summary

• Functional dependencies: provide clues towards 
elimination of (some) redundancies in a schema.
• Closure of FDs (rules, e.g. Armstrong’s axioms)
• Compute attribute closure

• Schema decomposition
• Lossless join decompositions
• Dependency preserving decompositions
• Normal forms based on FDs

• BCNF à lossless join decompositions
• 3rd NF à lossless join and dependency-preserving 

decompositions with more redundancy
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