Relational Database Design:

E/R-Relational Translation

CS348 Spring 2023
Sections: 002 & 004 only

E/R Model

* E/R Concepts
* E/R Schema Design
* Next: Translating E/R to relational schema

—
Rooms Buildings

Building (name, year)
Room (building name, room number,
Sedts capacity)
Seat (building_name, room_number,

seat_number, left or right)

Translating entity sets

* An entity set translates directly to a table
* Attributes — columns
* Key attributes — key columns

<>

romDate

Translating weak entity sets

* Remember the “borrowed” key attributes
e Watch out for attribute name conflicts

Building (name, year)

Room (building name,)room_number, capacity)
Seat (building name, room number; seat_number, left or right)

Translating relationship sets

* Arelationship set translates to a table
* Keys of connected entity sets — columns
* Attributes of the relationship set (if any) — columns

* Multiplicity of the relationship set determines the key of
the table

gid
I Users Groups I

 If we can deduce the general cardinality constraint (0,1) for a component
entity set E, then take the primary key attributes for E
* Otherwise, choose primary key attributes of each component entity

Translating relationship sets

* Arelationship set translates to a table
* Keys of connected entity sets — columns
* Attributes of the relationship set (if any) — columns
* Multiplicity of the relationship set determines the key of

the table
(© gid
l Users IsOwnerOf >—— Groups I
gid

 If we can deduce the general cardinality constraint (0,1) for a component
entity set E, then take the primary key attributes for E
* Otherwise, choose primary key attributes of each component entity

More examples

parent

Users [sParentO Parent (parent uid, child uid)

child

Translating double diamonds?

* No need to translate because the relationship is
implicit in the weak entity set’s translation

Rooms Buildings

Relationship

Seats is subsumed by entity

oy

o

Translating subclasses & ISA: approach

approach ()

* An entity is represented in the table for each subclass to
which it belongs

* Atable includes only the attributes directly attached to
the corresponding entity set, plus the inherited key

=

romDate

Users Groups

Group (gid, name)
€ User (uid, name)
Member (uid, gid, from_date)

(142, Bart)

Translating subclasses & ISA: approach >

approach

* An entity is only represented in one table (the most
specific entity set to which the entity belongs)

* Atableincludes the attributes attached to the
corresponding entity set, plus all inherited attributes

=

romDate

Users Groups

Group (gid, name)
(142, Bart) € User (uid, name)
Member (uid, gid, from_date)

Translating subclasses & ISA: approach 3

approach ()

* One relation for the root entity set, with all attributes found in
the network of subclasses
* (plus a “type” attribute when needed)

* Use a special NULL value in columns that are not relevant for a
particular entity

gid
I Users ? Groups I
(142, Bart) Group (.gﬂ’ name)
User (uid, name,)

Member (uid, gid, from_date)

Comparison of three approaches

* Entity-in-all-superclasses
e User (uid, name), PaidUser (uid, avatar)
* Pro:
* Con:

* Entity-in-most-specific-class
* User (uid, name), PaidUser (uid, name, avatar)
* Pro:
* Con:
 All-entities-in-one-table
* User (uid, [type, Jname, avatar)
* Pro:
* Con:

Translating composite and multi-valued
attributes

Employee Address 0

Cromee>

Employee(eld,...,Street, City, Province,..)

EmployeeHobbies(elD, hobby)
Foreign key:
Employee join EmployeeHobbies to get all info

A complete example

Remember Case study 2 exercise?

Design a database consistent with the following:
A station has a unique name and an address, and is either an
express station or a local station
A train has a unique number and an engineer, and is either an

express train or a local train

A local train can stop at any station

An express train only stops at express stations

A train can stop at a station for any number of times during a day
Train schedules are the same everyday

14

A complete example

Trains LocalTrainStops

/\ ¢
ISA

LocalTrains

<>

Stations

A

LocalStations

/

ExpressTrains

ExpressStations

ExpressTrainStops

A complete example

Trains

.

LocalTrainStops -<>—' Stations
engineer A A
ISA ISA

LocalTrains LocalStations

/

ExpressTrains

ExpressStations

Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (hame)
ExpressStation (name)

ExpressTrainStops

LocalTrainStop (local_train_number, time)
LocalTrainStopsAtStation (local_train_number, time, station name)

ExpressTrainStop (express_train_number, time)

ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

16

Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (hame)
LocalTrainStop (local _train_number, station name, time)
ExpressTrainStop (express train_number, express station name, time)

e Eliminate LocalTrain table

* Redundant: can be computed as
Tnumpber L Tain) — ExpressTrain

* Slightly harder to check that local train_number is
indeed a local train number

* Eliminate LocalStation table
* It can be computed as w4 (Station) — ExpressStation

17

An alternative design

Train (number, engineer, type)
Station (name, address, type)

TrainStop (train_number, station_name, time)

* Encode the type of train/station as a column rather
than creating subclasses

* What about the following constraints?
* Type must be either “local” or “express”
* Express trains only stop at express stations

®They can be expressed/declared explicitly as database
constraints in SQL

® Arguably a better design because it is simpler!

18

Design principles

* Avoid redundancy

* Capture essential constraints, but don’t introduce
unnecessary restrictions

* Use your common sense

* Warning: mechanical translation procedures given in this
lecture are no substitute for your own judgment

http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

19

More examples

* Representing aggregation

* Tabular representation of aggregation of R =
tabular representation for relationship set R

* To represent relationship set involving aggregation of R, treat the
aggregation like an entity set whose primary key is the primary key

of the table for R
Student Course
Student (StudentNum)

StudentN
Course(CourseNum) @ 4@“ -~ CExpirationDate)

Account(UserID) l

Enrolledin(StudentNum,CouseNum) focount

CourseAccount(Userld, StudentNum, CourseNum, ExpirationDate)

One-to-one relationships = We can simply take

Userld or (StudentNum, CourseNum) as the key .,

More examples

* ER Diagram

@W)H Course @ouliNamé>
0.
S
~SectionOf = >
— \‘?\\x -~ —
C Term\w - IR
UL S@Q@pl\!@m »)
(1,% Section _(6,50)
<__TaughtBy N <_EnrolledIn > ,\ Mark)
Off-Site
= .
Section e GPA
Professor ‘ \ Student N /
/ Locauon e
C P ofName - BN
T / \StudentNam/e)

(Exercise)

Relational Schema

°J

21

More examples

* ER Diagram

CowseNum) | Comse | CouseName)
\C,?PlseN?f{l 1) Course \(\j;??lseN?T?

— fseame J
0.3]
//’:///////\\\\\\\
<¥\\Section0f{/‘/j>
— S
S N —
= D Cetontom
D~ | Section || (6,50,
<///T/;t;’°h;1§?\> —Enrolledin —(Mark)
~_° AN ~_ o
Oft-Site
Section A GPA)
Professor ‘ \ \iudi‘// /\\,,V g
T\ Too N | i
| u\\}%ofNan}?/ \Lofft,lon/ | <StudentName>
‘//"""."A”“"\\ | *A*\\ EE—

Relational Diagram

Course Student

CourseName StudentName

CourseNum StudentNum

GPA
Section EnrolledIn
Y
CourseNum | CourseNum
SectionNum | SectionNum
Term StudentNum {——
ProfNum Term
Mark
-~
Off-Site Section
Professor
COUI"SCN um ProfNum
SectionNum
Term ProfName
Location

22

More examples

* ER Diagram

@mﬁ)% Course @ouliNamé>
0.3]
,5;?\\\\
< SectionOf = =
/“ .
C Term\w v R
L S@Q@pl\!@m)
(l,y Section || (6, 50)
<i:;f;1;gl;]\3\}\l\:> A Er/l;m;c\ifﬁj:; (M;ul\>
\\\.,\‘ - — - \\////// —
Off-Site
| e o
Section e GPA
Professor ‘ \ Student N /
/ Loc at1on e
C P ofN ame - ™
T / \StudentNam/e)

Relational DDL Commands

CREATE TABLE CREATE TABLE
(CourseNum INTEGER PRIMARY KEY, (StudentNum INTEGER PRIMARY KEY,
CourseName CHAR(50)); StudentName CHAR(50),
GPA FLOAT);
CREATE TABLE
(ProfNum INTEGER PRIMARY KEY,
ProfName CHAR(50));
CREATE TABLE

(CourseNum INTEGER NOT NULL REFERENCES Course(CourseNum),
SectionNum INTEGER NOT NULL,

Term INTEGER NOT NULL,

PRIMARY KEY(CourseNum, SectionNum, Term),

ProfNum INTEGER NOT NULL REFERENCES Professor(ProfNum));

CREATE TABLE

(CourseNum INTEGER NOT NULL,

SectionNum INTEGER NOT NULL,

Term INTEGER NOT NULL,

FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES
Section(CouseNum,SectionNum,Term),

Location CHAR(50));

CREATE TABLE

(CourseNum INTEGER NOT NULL,

SectionNum INTEGER NOT NULL,

Term INTEGER NOT NULL,

StudentNum INTEGER NOT NULL REFERENCES Student(StudentNum),

FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES
Section(CouseNum,SectionNum,Term),

Primary Key(CouseNum,SectionNum,Term,StudentNum),

Mark INTEGER);

23

Database Design

* Entity-Relationship (E/R) model

* Translating E/R to relational schema

