
SQL:
Programming & Recursion

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only

Announcements

• Assignment 1 due by 11:59PM tonight!
• Submit via CrowdMark

2

SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursion

3

Motivation

• Pros and cons of SQL
• Very high-level, possible to optimize
• Not intended for general-purpose computation

• Can SQL and general-purpose programming
languages (PL) interact with each other?

YES!!

4

Dynamic SQL
Build SQL statements at

runtime using APIs provided by
DBMS

Embedded SQL
SQL statements embedded in
general-purpose PL; identified

at compile time

A mismatch b/w SQL and PLs

• SQL operates on a set of records at a time
• Typical low-level general-purpose

programming languages operate on one
record at a time

FSolution: cursor
• Open (a result table), Get next, Close
FFound in virtually every database language/API

• With slightly different syntaxes

5

Dynamic SQL: Working with SQL
through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to
the DBMS at runtime

• Responses/results are converted to objects in the
application program

6

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’))
cur = conn.cursor()
…..

Example API: Python psycopg2

7

Connect to the database

An object used to query
db & get results

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’)
cur = conn.cursor()
list all groups:
cur.execute('SELECT * FROM Group')
for gid, name in cur:

print(‘Group ’ + gid + ‘ has name ’ + name)
print users whose name contains “a”:
cur.execute('SELECT name, pop FROM User WHERE name LIKE %s', ('a%'))
for name, pop in cur:

print(‘{} has a popularity of {}'.format(gid, name))
cur.close()
conn.close()

Example API: Python psycopg2

8

Tuple of parameter values,
one for each %s

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

More psycopg2 examples

9

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True)
...
uid = input('Enter the user id to update: ').strip()
name = input('Enter the name to update: ').strip()
pop = float(input('Enter new pop: '))
try:

cur.execute(“
UPDATE User
SET pop = %s
WHERE uid = %s AND name = %s”, (pop, uid, name))

print('{} row(s) updated'.format(cur.rowcount))
except Exception as e:

print(e)

Perform parsing,
semantic analysis,
optimization,
compilation, and finally
execution

More psycopg2 examples

10

….
while true:
Input uid, name, pop…

cur.execute('‘’
UPDATE User
SET pop = %s
WHERE uid = %s AND name = %s'’’, (pop, uid, name))

….
Check result...

Perform parsing,
semantic analysis,
optimization,
compilation, and finally
execution

Execute many times
Can we reduce this overhead?

Prepared statements: example

11

cur.execute(''' # Prepare once (in SQL).
PREPARE update_pop AS # Name the prepared plan,
UPDATE User
SET pop = $1 # and note the $1, $2, … notation for
WHERE uid = $2 AND name = $3''') # parameter placeholders.

while true:
Input uid, name, pop

cur.execute(‘
EXECUTE update_pop(%s, %s, %s)',\ # Execute many times.

(pop, uid, name))….
Check result...

Prepare only once

Prepared statements: example (JDBC)

12

PreparedStatement pStmt = conn.prepareStatement(
"insert into user values(?,?,?,?)");

pStmt.setInt(1, 678);
pStmt.setString(2, ”Bart");
pStmt.setFloat(3, 0.6);
pStmt.setInt(4, 10);
pStmt.executeUpdate();

Specific API provided by the driver

“Exploits of a mom”

• The school probably had something like:

where name is a string input by user
• Called an SQL injection attack

13

http://xkcd.com/327/

cur.execute("SELECT * FROM Students " + \
"WHERE (name = ‘" + name +" ’)")

SELECT * FROM Students
WHERE (name =‘Bart’)

Guarding against SQL injection

• Escape certain characters in a user input string, to
ensure that it remains a single string

• Luckily, most API’s provide ways to “sanitize” input
automatically when using prepared statements (%s)
• E.g., user input for name= " Robert’);Drop table students; ”

• SELECT * FROM Students WHERE (name =‘Robert\’;Drop table
students;’)

• Returns empty relation

• Some systems limit only one SQL query per API call
14

So far in programming

• Dynamic SQL

• Augmented SQL

• Embedded SQL

15

Augmenting SQL: functions &
procedures
• Procedures and functions allow business logic to be

stored in db and executed from SQL statements
• CREATE PROCEDURE proc_name(param_decls)

local_decls
proc_body;

• CREATE FUNCTION func_name(param_decls)
RETURNS return_type

local_decls
func_body;

• CALL proc_name(params);
• Inside procedure body:

SET variable = CALL func_name(params);
16

Creating function in SQL

17

Declaring variables and
defining the function

Writing an SQL query to
get desired results

Invoking the function:
returns dept. names &
budgets for all depts
with > 12 instructors

Creating a procedure in SQL
• Functions used to calculate something based on inputs;

procedure are precompiled statements to perform some
tasks in a specified order

18

Input param

Output param

Invoking the procedure
(either from another

procedure or embedded SQL)

Other SQL features
• Conditional constructs
• IF, IF ELSIF ELSE

• Loop constructs
• FOR, REPEAT UNTIL, LOOP

• Flow control
• GOTO

• Exceptions
• SIGNAL, RESIGNAL

…
Read DMBS manual for more details!

19

Augmenting SQL vs. API
• Pros of augmenting SQL:
• More processing features for DBMS
• More application logic can be pushed closer to data

• Cons of augmenting SQL:
• SQL is already too big
• Complicate optimization and make it impossible to

guarantee safety

• Augmented SQL is not commonly used

20

Embedded SQL (optional)

• “Embed” SQL in a general-purpose programming
language
• A language in which SQl queries are embedded is

referred to as a host language
• The SQl structures permitted in the host language

constitute embedded SQL
• To identify embedded SQL requests to the

preporcessor, we use the “exec SQL” statements.

21

EXEC SQL BEGIN DECLARE SECTION;
int thisUid; float thisPop;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE ABCMember CURSOR FOR

SELECT uid, pop FROM User
WHERE uid IN (SELECT uid FROM Member WHERE gid = 'abc')

EXEC SQL OPEN ABCMember;
EXEC SQL WHENEVER NOT FOUND DO break;
while (1) {

EXEC SQL FETCH ABCMember INTO :thisUid, :thisPop;
printf("uid %d: current pop is %f\n", thisUid, thisPop);

printf("Enter new popularity: ");
scanf("%f", &thisPop);
EXEC SQL UPDATE User SET pop = :thisPop

WHERE CURRENT OF ABCMember;
}
EXEC SQL CLOSE ABCMember;

Embedding SQL in a language

22

Declare variables to be “shared”
between the application and DBMS

Specify a handler for
NOT FOUND exception

Example in C

Embedded SQL v.s. API

• Pros of embedded SQL:
• Be processed by a preprocessor prior to compilation à

may catch SQL-related errors at preprocessing time
• API: SQL statements are interpreted at runtime

• Cons of embedded SQL:
• New host language code à complicate debugging
• Need a preprocessor s/w

23

So far

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming

• Recursion

24

A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is Z′s ancestor and 𝑍 is 𝑌’s ancestor

25

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Bart Lisa

MargeHomer

Abe

Orville

Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great

grandparents, etc.

• But you cannot find all his ancestors with a single query

• SQL3 introduced recursion
• WITH RECURSIVE clause
• Many systems support recursion but limited functionality

26

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent

AND p2.child = 'Bart';

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Ancestor query in SQL3

27

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

a1.anc (X) à a1.desc(Z)
a2.anc (Z) à a2.desc (Y)

Finding ancestors

28

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

Orville Bart

Orville Lisa

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

…..;

base case

recursive
step

Fixed point of a function

• If 𝑓: 𝐷 → 𝐷 is a function from a type 𝐷 to itself, a
fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 = 𝑥
• Example: what is the fixed point of f(x) = x/2?
• Ans: 0, as f(0)=0

• To compute a fixed point of 𝑓
• Start with a “seed”: 𝑥 ← 𝑥!
• Compute 𝑓 𝑥

• If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
• (Similar to base case in recursive prog.)

• Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

29

Fixed point of a query
• A query 𝑞 is just a function that maps an input table to

an output table, so a fixed point of 𝑞 is a table 𝑇 such
that 𝑞 𝑇 = 𝑇

• To compute fixed point of 𝑞
• Start with executing the base query: 𝑇 ← 𝑏𝑎𝑠𝑒 𝑞𝑢𝑒𝑟𝑦
• Evaluate 𝑞 over 𝑇

• If the result is identical to 𝑇, stop; 𝑇 is a fixed point
• Otherwise, let 𝑇 be the new result; repeat

• Fixed point: there is no further change in the result of the
recursive query evaluation
• Fixed point indicates when the evaluation of the

recursive query terminates
30

Restrictions on recursive queries

• A recursive query q must be monotonic
• If input changes, old output should still be valid

• If more tuples are added to the recursive relation, q
must return at least the same set of tuples as
before, and possibly return additional tuples

• The following is not allowed in q:
• Aggregation on the recursive relation
• NOT EXISTS in generating the recursive relation
• Set difference (EXCEPT) whose right-hand side uses the

recursive relation

31

Lecture 2

Summary

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming

• Recursion

• Next 2 lectures: DB design (E/R diagrams)

32

