SQL:
Triggers, Views, Indexes

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 and 004 only

Announcements (Thu, May 25th)

Form a team on Learn
Report.pdf and link to GitHub repo
Not graded, but very important!

due by next Tue , 11:50pm
Submit via Crowdmark

(Basic SQL) WITH clause

* The WITH clause provides a way of defining a
whose definition is
in which the with clause occurs

WITH max_pop(popVal) AS (SELECT WITH max_pop AS (SELECT max(pop) AS
max(pop) FROM user) popVal FROM user)

SELECT uid, name FROM user, max_pop SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal WHERE user.pop = max_pop.popVal

* Supported by many but not all DBMSs
* Can be written using subqueries

sQL

* Basic SQL (queries, modifications, and constraints)

* Intermediate SQL
* Triggers
* Views
* Indexes

* Advanced SQL
* Programming
* Recursive queries

Still remember “referential integrity’”?

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member

User Member NQRINsMN{O2WNV]RE
REFERENCES User(uid)

142 Bart S 142 dps ON DELETE CASCADE,
123 Milhouse . -— 123 gov ;

856ptlQ;n 1: REjeCt (< 857 abc Option 2: Cascade

%456 =Rttt 857 gov)
o (ripple changes to all
789 Nelson .
referring rows)

Can we generalize it?

Referential constraints Data Monitoring

Delete/update a Some user’s
User row popularity is updated
Whether its uid is l Whether the user is a
referenced by some member of “Pop group”

Member row and pop drops below 0.5

If yes: reject/ delete
cascade/null

If yes: kick that user out
of Pop group!

Triggers

* A is an event-condition-action (ECA) rule

* When occurs, test ; if condition is
satisfied, execute

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser

FOR EACH ROW

Conditi
WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 1 — possible events

 Possible events include:

table; table; [OF column]
table

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

Conditi
WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 2 — timing

* Timing—action can be executed:
or the triggering event
the triggering event on views (more later)

CREATE TRIGGER NoFountainOfYouth/

BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n

FOR EACH ROW /

WHEN (n.age < o.age)

SET n.age = 0.age; /

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified

CREATE TRIGGER PickyPopGroup

Event
AFTER UPDATE OF pop ON User " [Event |

REFERERCINGNEW ROW AS newUser
FOR EACH ROW

, Condition
\WHENANhewUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified
that performs modification

CREATE TRIGGER PickyPopGroup2

AFTER UPDATE OF pop ON User o~
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member

WHERE gid = ‘popgroup’

AND uid IN (SELECT uid /
FROM newUsers
WHERE pop < 0.5);

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified

that performs modification

CREATE TRIGGER PickyPopGroup?2

AFTER UPDATE OF pop ON User | Transition table:
REFERENCING NEW TABLE AS newUsers contains all the
FOR EACH STATEMENT affected rows

DELETE FROM Member Can only be used
WHERE gid = ‘popgroup’ with AFTER
AND uid IN (SELECT uid triggers
FROM newUsers

WHERE pop < 0.5);

Transition variables/tables

OLD ROW: the modified row before the triggering event

NEW ROW: the modified row after the triggering event

OLD TABLE: a read-only table containing all old rows
modified by the triggering event

NEW TABLE: a table containing all modified rows after the
triggering event

Event [Row __|statement il Event |Row | tatement_

Delete oldr;oldt old t Update | old/newr -
Insert new r; new t new t Insert new r
Update old/newr; old/newt old/newt Delete |oldr

AFTER Trigger BEFORE Trigger

13

Statement- vs. row-level triggers

 Simple row-level triggers are easier to implement

* Statement-level triggers: require significant amount of
state to be maintained in OLD TABLE and NEW TABLE

* However, in some cases a row-level trigger may be
less efficient

* E.g., 4B rows and a trigger may affect 15% of the rows.
Recording an action for 4 Billion rows, one at a time, is not
feasible due to resource constraints.

* Certain triggers are only possible at statement level
. E.g., 2

Certain triggers are only possible at
statement level

CREATE TRIGGER I\/IaintainAngoV

AFTER UPDATE OF pop ON User

Transiti
REFERENCING NEW TABLE AS newUsers ~

OLD TBALE AS oldUsers

FOR EACH STATEMENT /

WHEN (0.5 > (SELECT AVG(pop) from User)
BEGIN / Action

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)

INSERT INTO User (SELECT * FROM oldUsers)

END

System issues

* Recursive firing of triggers
* Action of one trigger causes another trigger to fire
* Can get into an infinite loop

* Interaction with constraints (tricky to get right!)

* When to check if a triggering event violates constraints?
* After a BEFORE trigger
* Before an AFTER trigger
* (based on db2, other DBMS may differ)

 Best to avoid when alternatives exist

SQL features covered so far

* Views

Views

* A is like a “virtual” table
* Defined by a query, which describes

* Stored as a query by DBMS instead of query contents
* Can be used in queries just like a regular table

CREATE VIEW PopGroup AS SELECT AVG(pop)
SELECT * FROM User tables FROM (SELECT * FROM User

WHERE uid IN (SELECT ui WHERE uid IN

FROM Member (SELECT uid FROM Member
WHERE gid = ‘popgroup’); WHERE gid = ‘popgroup'))

AS popGroup;
SELECT AVG(pop) FROM PopGroup;
SELECT MIN(pop) FROM PopGroup; DROP VIEW popGroup;

SELECT ... FROM PopGroup;

Why use views?

*To from users
* To from users
data independence

* To provide a

Modifying views
* Does it even make sense, since views are virtual?

* [t does make sense if we want users to really see
views as tables

e Goal: such that the
modification would

A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;

An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

 No matter what we do on User, the inserted row
will not be in PopularUser

A case with too many possibilities

CREATE VIEW AveragePop(pop)}AS™
SELECT AVG(pop) FROM User; "

UPDATE AveragePop SET pop = 0.5;

* Set everybody’s pop to 0.5?

* Adjust everybody’s pop by the same amount?
* Just lower one user’s pop?

SQL92 updateable views

* More or less just single-table selection queries
* Nojoin
* No aggregation or group by
* No subqueries
* Attributes not listed in SELECT must be nullable

* Arguably somewhat restrictive

* Still might get it wrong in some cases
* See the slide titled “An impossible case”

* Adding to the end of the view
definition will make DBMS reject such modifications

INSTEAD OF triggers for views

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User:;

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop

REFERENCING OLD ROW AS o,
NEW ROW AS n

FOR EACH ROW
UPDATE User

SET pop = pop + (n.pop-0.pop);

* What does this trigger do?

UPDATE AveragePop SET pop = 0.5;

INSTEAD OF triggers for views

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User:;

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop

REFERENCING OLD ROW AS o,

NEW ROW AS n User
FOR EACH ROW o4 |
UPDATE User / /

SET pop = pop + (n.pop-0.pop); 0.4 +0.1
0.4 +0.1
* What does this trigger do? 0.5 +0.1

UPDATE AveragePop SET pop = 0.5; 0.3 +0.1

Materialized views

* Some systems allow view relations to be stored in db

* If the actual relations used in the view definition change,
the view is kept up-to-date

* Such views are called materialized views

* Used to enhance performance: avoid recomputing
view each time

* View maintenance: updating the materialized view
upon base table changes
* Immediately or lazily, up to the DBMS

27

SQL features covered so far

* I[ndexes

Motivating examples of using indexes

SELECT * FROM User WHERE name = 'Bart’;

* Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

- index on User.name

SELECT * FROM User, Member

WHERE User.uid = Member.uid AND Member.gid = ‘popgroup’;

* Can we find relevant Member rows “directly’?
—> index on Member.gid

* For each relevant Member row, can we “directly” look
up User rows with matching uid

- index on User.uid

Indexes

* An is an auxiliary persistent data structure that
helps with efficient searches

* Search tree (e.g., B*-tree), lookup table (e.g., hash table), etc.
®More on indexes later in this course!

* With UNIQUE, the DBMS will also enforce that
{columnname;, ..., columnname,} is a key of tablename

* Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

Indexes

* Anindex on R. A can speed up accesses of the form

* R.A = value
* R.A > wvalue (sometimes; depending on the index type)

* Anindexon (R.A4,...,R. A,) can speed up
* R.A; = value; A---ANR.A,, = value,
* (R.Aq,...,R.A;) > (valuey, ..., value,,) (again depends)

Questions (lecture 12):

®Ordering of index columns is important—is an index on
(R.A,R.B) equivalent to oneon (R.B,R.A)?

® How about an index on R. A plus another on R. B?
“ More indexes = better performance?

SQL features covered so far

Basic & Intermediate SQL
* Query

* Modification

* Constraints

* Triggers

* Views

* Indexes

“ Next: Programming & recursion

