SQL: Part |1

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 and 004 only

Announcements

* Assignment 1is released: Due

* Project description is released
* Milestone o: not graded but due on

, May 237 (Monday schedule)

Basic SQL features

* Query
* SELECT-FROM-WHERE statements
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
* Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)

Incomplete information

» Example: User (uid, name, age, pop)

* Value
* We do not know Nelson’s age

e Value

* Suppose pop is based on interactions with others on our
social networking site

* Nelson is new to our site; what is his pop?

Solution 1

from each domain (type)

* pop cannot be —1, so use —1 as a special value to
indicate a missing or invalid pop

SELECT AVG(pop) FROM User;

* Perhaps the value is not BECENBER S8 1079 | <y Ee
as special as you think! o Do
* the Y2K bug TR Lt
%l .

3
ﬂ * fo il
/ :)
)(CA" TNE STRATS Tomey VR

http://www.90s411.com/images/y2k-cartoon.jpg

Solution 2

* A valid-bit for every column
* User (uid,
name, name_is_valid,
age, age_is valid,
pop, pop is valid)

SELECT AVG(pop) FROM User WHERE pop is valid;

* Complicates schema and queries
* Need almost double the number of columns

Solution 3

* Decompose the table; missing row = missing value
* UserName (uid, name)
* UserAge (uid, age) > No entry for Nelson

* UserPop (uid, pop) > No entry for Nelson
* UserID (uid)

* Conceptually the cleanest solution

* Still complicates schema and queries
* How to get all information about users in a table?
* Natural join doesn’t work!

SQL’s solution

* A special value
* For every domain (i.e., any datatype)
* Special rules for dealing with NULL’s

» Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

Truth table?

Three-valued logic

T Y rANDy <z O0Ry NOT z
_ _ _ TRUE TRUE TRUE TRUE FALSE
TRUE = 1, FALSE = 0, = 0.5 TRUE UNKNOWN | UNKNOWN ~TRUE FALSE
. TRUE FALSE | FALSE TRUE FALSE
x AND y = mln(x 4) UNKNOWN ~ TRUE UNKNOWN ~ TRUE UNKNOWN
_ UNKNOWN UNKNOWN | UNKNOWN UNKNOWN ~UNKNOWN
x OR Yy =max (X , y) UNKNOWN FALSE | FALSE UNKNOWN UNKNOWN
FALSE TRUE FALSE TRUE TRUE
NOTx=1—x FALSE ~ UNKNOWN | FALSE ~ UNKNOWN TRUE
FALSE FALSE | FALSE FALSE TRUE

* Comparing a
another NULL)

and clauses only select rows for

output if the condition evaluates to
* NULL is not enough

functions

with another value (including
., the result is

Unfortunate consequences

e Qla=Q1b?

Q1a. SELECT AVG(pop) FROM Users;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

e Q2a =Q2b?

Q2a. SELECT * FROM Users;

Q2b SELECT * FROM User WHERE pop=pop;

* Be careful: NULL breaks many equivalences

Another problem

* Example: Who has NULL pop values?

k!
t wor
SELECT * FROM User WHERE pop = NULL; ©

(SELECT * FROM User)
EXCEPT

, but ug\\l

(SELECT * FROM USER WHERE pop=pop);

* SQL introduced special, built-in predicates
and

SELECT * FROM User WHERE pop IS NULL;

Need for a new join query

* Example: construct a master group membership list
with all groups and its members info

SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname

FROM CGroup g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

* What if a group is empty?
* |t may be reasonable for the master list to

as well

* For these groups, uid and uname columns would be
NULL

Outerjoin examples

abc
gov
dps

nuk

Group

Book Club

Student Government
Dead Putting Society

United Nuclear Workers

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

13

Group > Member abe
gov
gov

dps

A full outerjoin between R and S:
* Allrowsintheresult of R ™ §, plus

Book Club
Student Government
Student Government

Dead Putting Society

857
123
857
142

789

+ “Dangling” R rows (those that do not join
with any S rows) padded with NULL’s for

S’s columns

+ “Dangling” S rows (those that do not join
with any R rows) padded with NULL’s for

R’s columns

Outerjoin examples

gov
dps

nuk

Group

Book Club

Student Government
Dead Putting Society

United Nuclear Workers

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

Group > Member 3¢

gov
gov
dps

nuk

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142
United Nuclear Workers NULL

« Aleftouterjoin (R »<5)includesrowsinR x4 S
plus dangling R rows padded with NULL’s

Group >t Member abc

gov
dps
oo

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142

* Aright outerjoin (R > S) includes rows in R
S plus dangling S rows padded with NULL’s

14

Outerjoin syntax

SELECT * FROM Group LEFT OUTER JOIN Member
ON Group.gid = Member.gid;

~ Group . . Member
Group.gid=Member.gid

SELECT * FROM Group RIGHT OUTER JOIN Member

~ D<C
ON Group.gid = Member.gid; Group Member

Group.gid=Member.gid

SELECT * FROM Group FULL OUTER JOIN Member ~ Group S Member
ON Group.gid = Member.gid; Group.gid=Member.gid

A similar construct exists for regular (“inner”) joins:

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

==For natural joins, add keyword NAT)'RAL; don’t use ON

SELECT * FROM Group NATURAL JOIN Member;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Table expressions, subqueries

* Aggregation and grouping

* Ordering

% Next: data modification statements, constraints

INSERT

* [nsert one row

* User 789 joins Dead Putting Society

INSERT INTO Member VALUES (789, 'dps');

INSERT INTO User (uid, name) VALUES (389, ‘Marge');

* Insert the result of a query

* Everybody joins Dead Putting Society!

INSERT INTO Member
(SELECT uid, 'dps' FROM User

WHERE uid NOT IN (SELECT uid
FROM Member
WHERE gid = 'dps'));

DELETE

e Delete from a table

DELETE FROM Member;

* Delete according to a condition
* Example: User 789 leaves Dead Putting Society

DELETE FROM Member WHERE uid=789 AND gid="dps’;

* Example: Users under age 18 must be removed from
United Nuclear Workers

DELETE FROM Member

WHERE uid IN (SELECT uid FROM User WHERE age < 18)
AND gid = 'nuk’;

UPDATE

* Example: User 142 changes name to “Barney”’

UPDATE User

SET name = 'Barney’
WHERE uid = 142;

* Example: We are all popular!

UPDATE User

SET pop = (SELECT AVG(pop) FROM User);

* But won’t update of every row causes average pop to
change?
®Subquery is always computed over the old table

Constraints

e Restricts what data is allowed in a database

* In addition to the simple structure and type restrictions
imposed by the table definitions

* Why use constraints?

* Protect data integrity (catch errors)
* Tell the DBMS about the data (so it can optimize better)

* Declared as and enforced by the
DBMS

Types of SQL constraints

* NOT NULL

* Key

» Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

CREATE TABLE User

(uid INT NOT NULL,

name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INT,

pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
gid CHAR(10) NOT NULL);

Key declaration examples

CREATE TABLE User

(uid INT NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL,

twitterid VARCHAR(15) NOT NULL UNIQUE,
age INT,

pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,

gld CHAR(].O) NOT NULL CREATE TABLE Member
PRIMARY KEY(uid, gid)); (uid INT NOT NULL PRIMARY KEY,

gid CHAR(10) NOT NULL PRIMARY KEY,

Referential integrity example

* If a uid appears in Member, it must appear in User
* Member.uid references User.uid

* If a gid appears in Member, it must appear in Group
* Member.gid references Group.gid

® That is, no “dangling pointers”

User Member Group
142 Bart 142 dps abc
123 Milhouse 123 gov gov
857 Lisa 857 abc dps

456 Ralph : 857 gov
789 Nelson \ 456 abc
456 gov

Referential integrity in SQL

» Referenced column(s) must be
» Referencing column(s) form a
* Example

CREATE TABLE Member

(uid INT NOT NULL REFERENCES User(uid),
gid CHAR(10) NOT NULL,

PRIMARY KEY/(uid,gid),

FOREIGN KEY (gid) REFERENCES, Group(gid));

CREATE TABLE MemberBenefits

o
FOREIGN KEY (uid,gid) REFERENCES l\/\ember(uid,gid));

Enforcing referential integrity

Example: Member.uid references User.uid

* Insert or update a Member row so it refers to a non-
existent uid

* Reject
User Member
Bart dps
123 Milhouse 123 gov

857 Lisa 857 abc

456 Ralph : 857 gov
789 Nelson X 456 abc
456 gov

EEHETE Reject

Enforcing referential integrity

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member

User Member NQRINsMN{O2WNV]RE
REFERENCES User(uid)

142 Bart S 142 dps ON DELETE CASCADE,
123 Milhouse . -— 123 gov ;

856ptlQ;n 1: REjeCt (< 857 abc Option 2: Cascade

%456 =Rttt 857 gov)
o (ripple changes to all
789 Nelson .
referring rows)

Enforcing referential integrity

Example:

* Delete or update a User row whose uid is
referenced by some Member row

CREATE TABLE Member
(uid INT

REFERENCES User(uid)
User Member ON DELETE SET NULL,

)}

142 Bart 142 dps
123 Milhouse 123 gov

857 Lisa <<857 abc
A56—Raipih 857

gov
789 Nelson abc
gOV

Option 3: Set NULL
(set all references to NULL)

Deferred constraint checking

CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL

REFERENCES Prof(name));

* Example

CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL

REFERENCES Dept(name));

* The first INSERT will always violate a constraint!

IS necessary
 Check only at the end of a set of operations (transactions)
* Allowed in SQL as an option
* Use keyword

General assertion

e assertion conditionis checked for each
modification that could potentially violate it

* Example: Member.uid references User.uid

CREATE ASSERTION MemberUserReflntegrity
CHECK (NOT EXISTS

(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

Tuple- and attribute-based CHECK’s

* Associated with a single table

* Reject if condition evaluates to FALSE
 TRUE and UNKNOWN are fine

* Examples:

CREATE TABLE User(...
age INTEGER CHECK(age IS NULL OR age > 0),

n);

CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),

n);

Naming constraints

* It is possible to name constraints (similar to
assertions)

CREATE TABLE User(...

age INT, constraint minAge check(age IS NULL OR age > 0),

)

Schema modification

* How to add constraints once the schema is
defined??

* Add or Modify attributes/domains

 Add or Remove constraints

34

Add or Modify attributes/domains

* Alter table table_name Add column column_name

* Alter table table_name Rename column old_name to
hew_name

* Alter table table_name Drop column column_name

Domain change:

* Alter table table_name Alter column column _name
datatype

Error if column

already has
conflicting data!

Add or Remove constraints

table name
constraint_name constraint_condition

ALTER TABLE Member

ADD CONSTRAINT fk_user FOREIGN KEY/(uid)
REFERENCES User(uid)

table name
constraint_name

ALTER TABLE Member

DROP CONSTRAINT fk_user

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
* Aggregation and grouping
* Ordering

® Next lecture: triggers, views, indexes

Two ways to practice queries

e School servers have db2 installed

* Instructions in db2tutorial.pdf posted along with the
project description

* The JDBC example also provides instructions for the
same

* The textbook’s website has an SQLite db that runs
in the browser: https://www.db-
book.com/university-lab-dir/sgljs.html

37

https://www.db-book.com/university-lab-dir/sqljs.html
https://www.db-book.com/university-lab-dir/sqljs.html

