
SQL: Part I
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 and 004 only

SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• Introduced in 1970s and standardized by ANSI since 1986

2

SQL
• Data-definition language (DDL): define/modify

schemas, delete relations

• Data-manipulation language (DML): query
information, and insert/delete/modify tuples

• Integrity constraints: specify constraints that the
data stored in the database must satisfy

• Intermediate/Advanced topics: (next week)
• E.g., triggers, views, indexes, programming, recursive

queries

3

this
week

DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

4

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is equivalent to ...create...).

Drastic action:
deletes ALL info

about the table, not
just the contents

Basic queries for DML: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋%!,%",…,%# 𝜎()#*+,+)# 𝑅!×𝑅"×⋯×𝑅$

5

Examples

• List all rows in the User table

• * is a short hand for “all columns”

• List name of users under 18 (selection, projection)

• When was Lisa born?

• SELECT list can contain expressions
• String literals (case sensitive) are enclosed in quotes

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User;

SELECT name FROM User where age <18;

SELECT 2023-age FROM User where name = ‘Lisa’;

Example: join

• List ID’s and names of groups with a user whose
name contains “Simpson”

7

SELECT Group.gid, Group.name
FROM User, Member, Group
WHERE User.uid = Member.uid

AND Member.gid = Group.gid
AND ….;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: join

• List ID’s and names of groups with a user whose
name contains “Simpson”

• LIKE matches a string against a pattern
• % matches any sequence of zero or more characters

• Okay to omit table_name in table_name.column_name if
column_name is unique

8

SELECT Group.gid, Group.name
FROM User, Member, Group
WHERE User.uid = Member.uid

AND Member.gid = Group.gid
AND User.name LIKE ‘%Simpson%’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: rename

• ID’s of all pairs of users that belong to one group
• Relational algebra query:
𝜋!!.#$%,!".#$%
𝜌!!𝑀𝑒𝑚𝑏𝑒𝑟 ⋈!!.'$%(!".'$% ∧!!.#$%*!".#$% 𝜌!"𝑀𝑒𝑚𝑏𝑒𝑟

• SQL (not exactly due to duplicates):
SELECT m1.uid AS uid1, m2.uid AS uid2

FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

• AS keyword is completely optional

9

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

11

SELECT g.name
FROM User u1, …, Member m1, …
WHERE u1.name = 'Lisa' AND …

AND u1.uid = m1.uid AND …
AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

12

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, …
WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’

AND u1.uid = m1.uid AND u2.uid=m2.uid
AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

13

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g
WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’

AND u1.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

• Many queries can be written using only selection,
projection, and cross product (or join)

• These queries can be written in a canonical form
which is captured by SFW:

𝜋- 𝜎. 𝑅!×⋯×𝑅$

• E.g.: 𝜋+.,,-.. 𝑅 ⋈/! 𝑆 ⋈/" 𝜋0.1𝜎/#𝑇 can	be	written	as

14

= 𝜋+.,,-..,0.1𝜎/!∧/"∧/# 𝑅×𝑆×𝑇

Set versus bag

15

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

User

𝜋!"#𝑈𝑠𝑒𝑟

SELECT age
FROM User;

age

10

8

…

age

10

8

8

8

…

Set
• No duplicates
• Relational model and algebra use set

semantics

Bag
• Duplicates allowed
• Rows in output = rows in input
• SQL uses bag semantics by default

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?

• The first query just returns all possible user ages in the
table
• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

16

𝜋!"#𝑈𝑠𝑒𝑟
SELECT age
FROM User;

Forcing set semantics

• ID’s of all pairs of users that belong to one group

àSay Lisa and Ralph are in both the book club and the
student government, their id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output

17

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid;

AND m1.uid > m2.uid;

Semantics of SFW
• SELECT [DISTINCT] 𝐸!, 𝐸", …, 𝐸#

FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡! in 𝑅!:

For each 𝑡" in 𝑅": … …
For each 𝑡$ in 𝑅$:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡!, 𝑡", …, 𝑡$:
Compute and output 𝐸!, 𝐸", …, 𝐸# as a row

If DISTINCT is present
Eliminate duplicate rows in output

• 𝑡!, 𝑡", …, 𝑡$ are often called tuple variables

18

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

19

fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

20

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

sum up the counts
from two tables

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

21

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

proper-subtract
the two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:0

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

22

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

take the
minimum of the
two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:1

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

23

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

24

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but
never got poked by others

Users who poked others
more than others poked them

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations

FNext: how to nest SQL queries

25

• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users who poked others more
than others poked them

Table subqueries

26

SELECT DISTINCT name
FROM User,

(SELECT uid1 as uid FROM Poke)
EXCEPT ALL
(SELECT uid2 as uid FROM Poke) AS T

WHERE User.uid = T.uid;

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row
• Return no rows

Scalar subqueries

27

SELECT *
FROM User,
WHERE age = (SELECT age

FROM User
WHERE name = ‘Bart’);

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries

28

SELECT *
FROM User,
WHERE age IN (SELECT age

FROM User
WHERE name = ‘Bart’);

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty

• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

EXISTS subqueries

29

SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User

WHERE name = ‘Bart’
AND age = u.age);

Another example

• Users who join at least two groups

• How to find which table a column belongs to?
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if

necessary
30

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

Use
table_name.column_name
notation and AS
(renaming) to avoid
confusion

Quantified subqueries

• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result s.t. 𝑥 𝑜𝑝 𝑡

31

SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

More ways to get the most popular

• Which users are the most popular?

32

Q2. SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q3. SELECT *
FROM User AS u
WHERE NOT [EXISTS or IN?]

(SELECT * FROM User
WHERE pop > u.pop);

Q4. SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

EXISTS or IN?

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)
• But in many cases, they don’t add expressive power

FNext: aggregation and grouping

33

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows

34

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625

Aggregates with DISTINCT

• Example: How many users are in some group?

35

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group

36

SELECT age, AVG(pop)
FROM User
GROUP BY age;

Example of computing GROUP BY

37

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the

values of GROUP BY columns
4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

FNumber of groups =
number of rows in the final output

38

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group
SELECT AVG(pop) FROM User;

39

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression

produces only one value for each group

40

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

WRONG!

WRONG!

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the

values of GROUP BY columns
4. Compute HAVING (another 𝜎 over the groups)
5. Compute SELECT (𝜋) for each group that passes

HAVING

41

HAVING examples

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

42

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AS T
WHERE T.gsize>100;

HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries

43

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop)
FROM User
WHERE age >10
GROUP BY age;

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Aggregation and grouping
• More expressive power than relational algebra

FNext: ordering output rows

44

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

45

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option
• Strictly speaking, only output columns can appear in

ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;

46

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

Discouraged:
hard to read!

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints

47

Lecture 4

