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SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• Introduced in 1970s and standardized by ANSI since 1986
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SQL
• Data-definition language (DDL): define/modify 

schemas, delete relations

• Data-manipulation language (DML): query 
information, and insert/delete/modify tuples 

• Integrity constraints: specify constraints that the 
data stored in the database must satisfy

• Intermediate/Advanced topics: (next week)
• E.g., triggers, views, indexes, programming, recursive 

queries
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this 
week



DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;
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CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is equivalent to ...create...).

Drastic action: 
deletes ALL info 

about the table, not
just the contents



Basic queries for DML: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to) 
relational algebra query:

𝜋%!,%",…,%# 𝜎()#*+,+)# 𝑅!×𝑅"×⋯×𝑅$
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Examples

• List all rows in the User table 

• * is a short hand for “all columns”

• List name of users under 18 (selection, projection)

• When was Lisa born?

• SELECT list can contain expressions
• String literals (case sensitive) are enclosed in quotes
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User;

SELECT name FROM User where age <18;

SELECT 2023-age FROM User where name = ‘Lisa’;



Example: join

• List ID’s and names of groups with a user whose 
name contains “Simpson”
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SELECT Group.gid, Group.name
FROM User, Member, Group
WHERE User.uid = Member.uid

AND Member.gid = Group.gid
AND ….;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Example: join

• List ID’s and names of groups with a user whose 
name contains “Simpson”

• LIKE matches a string against a pattern
• % matches any sequence of zero or more characters

• Okay to omit table_name in table_name.column_name if 
column_name is unique
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SELECT Group.gid, Group.name
FROM User, Member, Group
WHERE User.uid = Member.uid

AND Member.gid = Group.gid
AND User.name LIKE ‘%Simpson%’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Example: rename

• ID’s of all pairs of users that belong to one group
• Relational algebra query:
𝜋!!.#$%,!".#$%
𝜌!!𝑀𝑒𝑚𝑏𝑒𝑟 ⋈!!.'$%(!".'$% ∧!!.#$%*!".#$% 𝜌!"𝑀𝑒𝑚𝑏𝑒𝑟

• SQL (not exactly due to duplicates):
SELECT m1.uid AS uid1, m2.uid AS uid2

FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

• AS keyword is completely optional

9

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

• Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and 
then SELECT
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

• Names of all groups that Lisa and Ralph are both in
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SELECT g.name
FROM User u1, …, Member m1, …
WHERE u1.name = 'Lisa' AND …

AND u1.uid = m1.uid AND …
AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

• Names of all groups that Lisa and Ralph are both in
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SELECT g.name
FROM User u1, User u2, Member m1, Member m2, …
WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’

AND u1.uid = m1.uid AND u2.uid=m2.uid
AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

• Names of all groups that Lisa and Ralph are both in
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SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g
WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’

AND u1.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Why SFW statements?

• Many queries can be written using only selection, 
projection, and cross product (or join)

• These queries can be written in a canonical form 
which is captured by SFW: 

𝜋- 𝜎. 𝑅!×⋯×𝑅$

• E.g.: 𝜋+.,,-.. 𝑅 ⋈/! 𝑆 ⋈/" 𝜋0.1𝜎/#𝑇 can	be	written	as
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= 𝜋+.,,-..,0.1𝜎/!∧/"∧/# 𝑅×𝑆×𝑇



Set versus bag
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uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

User

𝜋!"#𝑈𝑠𝑒𝑟

SELECT age 
FROM User;

age

10

8

…

age

10

8

8

8

…

Set
• No duplicates
• Relational model and algebra use set

semantics

Bag
• Duplicates allowed
• Rows in output = rows in input
• SQL uses bag semantics by default



A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?

• The first query just returns all possible user ages in the 
table
• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics 
with DISTINCT keyword
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𝜋!"#𝑈𝑠𝑒𝑟
SELECT age 
FROM User;



Forcing set semantics

• ID’s of all pairs of users that belong to one group

àSay Lisa and Ralph are in both the book club and the 
student government, their id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output
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SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid;

AND m1.uid > m2.uid;



Semantics of SFW
• SELECT [DISTINCT] 𝐸!, 𝐸", …, 𝐸#

FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡! in 𝑅!:

For each 𝑡" in 𝑅": … …
For each 𝑡$ in 𝑅$:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡!, 𝑡", …, 𝑡$: 
Compute and output 𝐸!, 𝐸", …, 𝐸# as a row    

If DISTINCT is present
Eliminate duplicate rows in output

• 𝑡!, 𝑡", …, 𝑡$ are often called tuple variables
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SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)
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fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange



SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the 

number of times it appears in the table)
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fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

sum up the counts 
from two tables

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3



SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the 

number of times it appears in the table)
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fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

proper-subtract 
the two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:0



SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the 

number of times it appears in the table)
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fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

take the 
minimum of the 
two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:1



Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?
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Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);



Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?
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Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but 
never got poked by others

Users who poked others 
more than others poked them



SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations

FNext: how to nest SQL queries
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• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users who poked others more 
than others poked them

Table subqueries
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SELECT DISTINCT name 
FROM User,

(SELECT uid1 as uid FROM Poke)
EXCEPT ALL
(SELECT uid2 as uid FROM Poke) AS T

WHERE User.uid = T.uid;



• A query that returns a single row can be used as a 
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row
• Return no rows

Scalar subqueries
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SELECT *
FROM User,
WHERE age = (SELECT age 

FROM User 
WHERE name = ‘Bart’);



• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of 
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries
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SELECT *
FROM User,
WHERE age IN (SELECT age 

FROM User 
WHERE name = ‘Bart’);



• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty

• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery 
that references tuple variables in surrounding queries

EXISTS subqueries
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SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User 

WHERE name = ‘Bart’
AND age = u.age);



Another example

• Users who join at least two groups

• How to find which table a column belongs to?
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if 

necessary
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

Use 
table_name.column_name
notation and AS
(renaming) to avoid 
confusion



Quantified subqueries

• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result s.t. 𝑥 𝑜𝑝 𝑡
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SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);



More ways to get the most popular

• Which users are the most popular?
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Q2. SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q3. SELECT *
FROM User AS u
WHERE NOT [EXISTS or IN?]

(SELECT * FROM User
WHERE pop > u.pop);

Q4. SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

EXISTS or IN?



SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Subqueries allow queries to be written in more 

declarative ways (recall the “most popular” query)
• But in many cases, they don’t add expressive power

FNext: aggregation and grouping
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Aggregates

• Standard SQL aggregate functions: COUNT, SUM, 
AVG, MIN, MAX

• Example: number of users under 18, and their 
average popularity
• COUNT(*) counts the number of rows
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SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625



Aggregates with DISTINCT

• Example: How many users are in some group?
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SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to



Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for 
each age group

36

SELECT age, AVG(pop)
FROM User
GROUP BY age;



Example of computing GROUP BY
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uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group 
rows according to the values 
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group 

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;



Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the 

values of GROUP BY columns
4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first 

eliminate duplicates within the group

FNumber of groups = 
number of rows in the final output
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Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause = 
all rows go into one group
SELECT AVG(pop) FROM User;
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uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows 
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over 
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;



Restriction on SELECT

• If a query uses aggregation/group by, then every 
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression 

produces only one value for each group
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SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

WRONG!

WRONG!



HAVING

• Used to filter groups based on the group properties 
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the 

values of GROUP BY columns
4. Compute HAVING (another 𝜎 over the groups)
5. Compute SELECT (𝜋) for each group that passes 

HAVING
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HAVING examples

• List the average popularity for each age group with 
more than a hundred users

• Can be written using WHERE and table subqueries
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SELECT age, AVG(pop) 
FROM User 
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AS T
WHERE T.gsize>100;



HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries
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SELECT age, AVG(pop) 
FROM User 
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop) 
FROM User 
WHERE age >10
GROUP BY age;



SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Aggregation and grouping
• More expressive power than relational algebra

FNext: ordering output rows
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ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed 
and optional duplicate elimination has been carried 
out, sort the output according to ORDER BY
specification
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ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option
• Strictly speaking, only output columns can appear in 

ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;
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SELECT uid, name, age, pop
FROM User 
ORDER BY pop DESC, name;

Discouraged: 
hard to read! 



SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints
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Lecture 4


