
Intro to the Relational
Model

CS348 Spring 2023
Instructor: Sujaya Maiyya

Sections: 002 and 004 only

Edgar F. Codd (1923-2003)

• Inventor of the relational model
and algebra while at IBM
• Turing Award, 1981
• Pilot in the Royal Air Force in WW2

2

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

Outline

• Part 1: Relational data model

• Part 2: Relational algebra

3

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

… …

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

Relational data model
4

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User Group

Member

relations (or tables)

Modeling data as relations or tables, each storing logically related
information together

Attributes
5

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

attributes (or columns)

Domain
6

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

domain (or type)

String Int Float

Tuples
7

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

tuples (or rows)

Ordering of rows doesn’t matter
(even though output can be ordered)

Duplicates (all attr. have same val) are not allowed

Set representation of tuples
8

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc A Book Club

gov Student Government

edu Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

User: {〈142, Bart, 10, 0.9〉,
〈857, Milhouse, 10, 0.2〉, …}

Group: {〈abc, A Book Club〉,
〈gov, Student Government〉, …}

Member: {〈142, dps〉, 〈123, gov〉, …}

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a unique name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

• Two tuples are duplicates if they agree on all attributes

FSimplicity is a virtue!

9

Single, indivisible
piece of information

Schema vs. instance
• Schema (metadata)
• Specifies the logical structure of data
• Is defined at setup time, rarely changes

• Instance
• Represents the data content
• Changes rapidly, but always conforms to the schema
• Typically has additional rules

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

User: {〈142, Bart, 10, 0.9〉, 〈857, Milhouse, 10, 0.2〉, …}
Group: {〈abc, A Book Club〉, 〈gov, Student Government〉, …}
Member: {〈142, dps〉, 〈123, gov〉, …}

Integrity constraints

• A set of rules that database instances should follow
• Example:
• age cannot be negative
• uid should be unique in the User relation
• uid in Member must refer to a row in User

11

User: {〈142, Bart, 10, 0.9〉, 〈857, Milhouse, 10, 0.2〉, …}
Group: {〈abc, A Book Club〉, 〈gov, Student Government〉, …}
Member: {〈142, dps〉, 〈857, gov〉, …}

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Integrity constraints

• An instance is only valid if it satisfies all the integrity
constraints.

• Reasons to use constraints:
• Address consistency challenges

(last class: duplicate entry for Bob)
• Ensure data entry/modification respects to database

design
• Protect data from bugs in applications

12

Types of integrity constraints

• Tuple-level
• Domain restrictions, attribute comparisons, etc.

• E.g. age cannot be negative
• E.g. for flights table, arrival time > take off time

• Relation-level
• Key constraints (focus in this lecture)

• E.g. uid should be unique in the User relation
• Functional dependencies (Textbook, Ch. 7)

• Database-level
• Referential integrity – foreign key (focus in this lecture)

• uid in Member must refer to a row in User with the same uid

13

Key (Candidate Key)

Def: A set of attributes 𝐾 for a relation 𝑅 if
• Condition 1: In no instance of 𝑅 will two different

tuples agree on all attributes of 𝐾
• That is, 𝐾 can serve as a “tuple identifier”

• Condition 2: No proper subset of 𝐾 satisfies the
above condition
• That is, 𝐾 is minimal

• Example: User (uid, name, age, pop)
• uid is a key of User
• age is not a key (not an identifier)
• {uid, name} is not a key (not minimal)

14

Satisfies only
Condition 1

, but a superkey

Key (Candidate key)

• Is name a key of User?
• Yes? Seems reasonable for this instance
• No! User names are not unique in general

• Key declarations are part of the schema

15

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

More examples of keys

• Member (uid, gid)

• Only uid?
• No, because of repeated entries

• Only gid?
• No, again due to repeated entries

• Use both!
• {uid, gid}
FA key can contain multiple attributes

16

uid gid

142 dps

123 gov

857 abc

456 gov

857 dps

456 gov

… …

Member

More examples of keys

• Address (street_address, city, state, zip)
• Key 1: {street_address, city, state}
• Key 2: {street_address, zip}
FA relation can have multiple keys!

• Primary key: a designated candidate key in the
schema declaration
• Underline all its attributes, e.g., Address (street_address,
city, state, zip)

17

Use of keys

• More constraints on data, fewer mistakes

• Look up a row by its key value
• Many selection conditions are “key = value”

• “Pointers” to other rows (often across tables)

18

“Pointers” to other rows
• Foreign key: primary key of one relation appearing

as attribute of another relation

19

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User Group

Member

“Pointers” to other rows

• Referential integrity: A tuple with a non-null value
for a foreign key must match the primary key value
of a tuple in the referenced relation

20

gid name

abc A Book Club

gov Student Government

dps Dead Putting Society

uid gid

142 dps

123 gov

857 ON

857 gov

456 abc

456 gov

… …

Group

Member

Outline

• Part 1: Relational data model
• Data model
• Database schema
• Integrity constraints (keys)
• Languages

• Relational algebra (focus in this lecture)
• SQL (next lecture)
• Relational calculus (textbook, Ch. 27)

• Part 2: Relational algebra

21

Relational algebra
• A language for querying relational data based on “operators”
• Not used in commercial DBMSs (SQL)

22

RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference,

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Output or
intermediate result
tables are transient

Core operator 1: Selection 𝜎
• Example query: Users with popularity higher than 0.5

𝜎!"!#$.&𝑈𝑠𝑒𝑟

23

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

… … … …

𝜎!"!#$.&

Core operator 1: Selection

• Input: a table 𝑅
• Notation: 𝜎!𝑅
• 𝑝 is called a selection condition (or predicate)

• Purpose: filter rows according to some criteria
• Output: same columns as 𝑅, but only rows of 𝑅 that

satisfy 𝑝

24

More on selection

• Selection condition can include any column of 𝑅,
constants, comparison (=, ≤, etc.) and Boolean
connectives (∧: and, ∨: or,¬: not)
• Example: users with popularity at least 0.9 and age

under 10 or above 12
𝜎&'&().+ ∧ -./01) ∨ -./314 𝑈𝑠𝑒𝑟

• You must be able to evaluate the condition over
each single row of the input table!
• Example: the most popular user

𝜎&'& (/5/67 &'& 89 :;/6 𝑈𝑠𝑒𝑟

25

WRONG!

Core operator 2: Projection 𝜋
• Example: IDs and names of all users

𝜋'(),+,-. 𝑈𝑠𝑒𝑟

26

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

𝜋'(),+,-.

uid name

142 Bart

123 Milhouse

857 Lisa

456 Ralph

… …

Core operator 2: Projection

• Input: a table 𝑅
• Notation: 𝜋/𝑅
• 𝐿 is a list of columns in 𝑅

• Purpose: output chosen columns
• Output: “same” rows, but only the columns in 𝐿

27

More on projection

• Duplicate output rows are removed (by definition)
• Example: user ages

𝜋-./ 𝑈𝑠𝑒𝑟

28

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

𝜋,/.

age

10

10

8

8

…

age

10

8

…

Core operator 3: Cross product ×
𝑈𝑠𝑒𝑟×𝑀𝑒𝑚𝑏𝑒𝑟

29

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

uid gid

123 gov

857 abc

857 gov×

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

Core operator 3: Cross product

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅×𝑆
• Purpose: pairs rows from two tables
• Output: for each row 𝑟 in 𝑅 and each 𝑠 in 𝑆, output

a row 𝑟𝑠 (concatenation of 𝑟 and 𝑠)

30

A note on column ordering

• Ordering of columns is unimportant as far as
contents are concerned

• So cross product is commutative, i.e., for any 𝑅 and
𝑆, 𝑅×𝑆 = 𝑆×𝑅 (up to the ordering of columns)

31

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid gid uid name age pop

123 gov 123 Milhouse 10 0.2

857 abc 123 Milhouse 10 0.2

857 gov 123 Milhouse 10 0.2

123 gov 857 Lisa 8 0.7

857 abc 857 Lisa 8 0.7

857 gov 857 Lisa 8 0.7

… … … … … …

=

⋈ !"#$.&'()
*#+,#$.&'(

Derived operator 1: Join ⋈
• Info about users, plus IDs of their groups

𝑈𝑠𝑒𝑟 ⋈01.2.'()34.-5.2.'() 𝑀𝑒𝑚𝑏𝑒𝑟

32

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …×

⋈ !"#$.&'()
*#+,#$.&'(

Derived operator 1: Join ⋈
• Info about users, plus IDs of their groups

𝑈𝑠𝑒𝑟 ⋈01.2.'()34.-5.2.'() 𝑀𝑒𝑚𝑏𝑒𝑟

33

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …×𝜎 !"#$.&'()
*#+,#$.&'(

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

⋈ !"#$.&'()
*#+,#$.&'(

Derived operator 1: Join ⋈
• Info about users, plus IDs of their groups

𝑈𝑠𝑒𝑟 ⋈01.2.'()34.-5.2.'() 𝑀𝑒𝑚𝑏𝑒𝑟

34

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …×𝜎 !"#$.&'()
*#+,#$.&'(

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

Prefix a column reference
with table name and “.” to
disambiguate identically named
columns from different tables

⋈ !"#$.&'()
*#+,#$.&'(

Derived operator 1: Join

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ⋈! 𝑆
• 𝑝 is called a join condition (or predicate)

• Purpose: relate rows from two tables according to
some criteria
• Output: for each row 𝑟 in 𝑅 and each row 𝑠 in 𝑆,

output a row 𝑟𝑠 if 𝑟 and 𝑠 satisfy 𝑝
• Shorthand for 𝜎! 𝑅×𝑆
• (A.k.a. “theta-join”)

35

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop gid

123 Milhouse 10 0.2 gov

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

… … … … …

Derived operator 2: Natural join
36

𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟
= 𝜋'(),+,-.,,6.,!"!,6() 𝑈𝑠𝑒𝑟 ⋈ 01.2.'()3

4.-5.2.'()
𝑀𝑒𝑚𝑏𝑒𝑟

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …

⋈⋈ !"#$.&'()
*#+,#$.&'(⋈

Derived operator 2: Natural join

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ⋈ 𝑆
• Purpose: relate rows from two tables, and
• Enforce equality between identically named columns
• Eliminate one copy of identically named columns

• Shorthand for 𝜋! 𝑅 ⋈" 𝑆 , where
• 𝑝 equates each pair of columns common to 𝑅 and 𝑆
• 𝐿 is the union of column names from 𝑅 and 𝑆 (with

duplicate columns removed)

37

Core operator 4: Union

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∪ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 and all rows in 𝑆 (with duplicate

rows removed)

38

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

∪ =
uid gid

123 gov

857 abc

901 edf

Core operator 5: Difference

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 − 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 that are not in 𝑆

39

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

Derived operator 3: Intersection

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∩ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows that are in both 𝑅 and 𝑆

• Shorthand for
• Also equivalent to 𝑆 − 𝑆 − 𝑅
• And to 𝑅 ⋈ 𝑆

40

𝑅 − 𝑅 − 𝑆
1. Find tuples in R

not in S
2. Remove those

tuples from R

Core operator 6: Renaming

• Input: a table (or an expression) 𝑅
• Notation: 𝜌7 𝑅, 𝜌 8!→8!" ,… 𝑅, or 𝜌7 8!→8!" ,… 𝑅
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as 𝑅, but called

differently

41

𝜌@1 A8B→A8B",.8B→.8B" 𝑀𝑒𝑚𝑏𝑒𝑟
uid gid

123 gov

857 abc

uid1 gid1

123 gov

857 abc

Member M1

9. Core operator: Renaming

• As with all other relational operators, it doesn’t
modify the database
• Think of the renamed table as a copy of the original

• Used to: Avoid confusion caused by identical
column names

42

9. Core operator: Renaming

• IDs of users who belong to at least two groups
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈? 𝑀𝑒𝑚𝑏𝑒𝑟

43

uid gid

100 gov

100 abc

200 gov⋈?

uid gid uid gid

100 gov 100 gov

100 gov 100 abc

100 gov 200 gov

100 abc 100 gov

100 abc 100 abc

100 abc 200 gov

200 gov 100 gov

200 gov 100 abc

200 gov 200 gov

uid gid

100 gov

100 abc

200 gov

Condition 1: same uid

Condition 2: different gids

Renaming example

• IDs of users who belong to at least two groups
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈? 𝑀𝑒𝑚𝑏𝑒𝑟

𝜋'() 𝑀𝑒𝑚𝑏𝑒𝑟 ⋈4.-5.2.'()34.-5.2.'() ∧
4.-5.2.6()=4.-5.2.6()

𝑀𝑒𝑚𝑏𝑒𝑟

𝜋'()!

𝜌 '()→'()!,6()→6()! 𝑀𝑒𝑚𝑏𝑒𝑟
⋈'()!3'()# ∧ 6()!=6()#

𝜌 '()→'()#,6()→6()# 𝑀𝑒𝑚𝑏𝑒𝑟

44

WRONG!

Expression tree notation
45

𝜌 #$%→#$%!,($%→($%! 𝜌 #$%→#$%",($%→($%"

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈#$%!)#$%" ∧ ($%!+($%"

𝜋#$%!

Take-home Exercises

• Exercise 1: IDs of groups who have at least 2 users?

• Exercise 2: IDs of users who belong to at least three
groups?

46

Summary of operators
Core Operators
1. Selection: 𝜎#𝑅
2. Projection: 𝜋$𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌% &"→&"# ,&$→&$# ,… 𝑅

Derived Operators
1. Join: 𝑅 ⋈# 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆

47

Note: Only use
these operators for

assignments &
exams

More example

• Names of users in Lisa’s groups

48

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• Names of users in Lisa’s groups

49

Users in
Lisa’s groups 𝑈𝑠𝑒𝑟

⋈

𝜋,-./Their names

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋#$%

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋($%Lisa’s groups

𝑈𝑠𝑒𝑟
𝜎,-./)"!$1-"

Who’s Lisa?

Writing a query bottom-up:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of groups that Lisa doesn’t belong to

50

Writing a query top-down:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of groups that Lisa doesn’t belong to

51

IDs of Lisa’s groupsAll group IDs
−

𝜋($%

𝐺𝑟𝑜𝑢𝑝

𝑀𝑒𝑚𝑏𝑒𝑟

𝑈𝑠𝑒𝑟

⋈

𝜎,-./)"!$1-"

𝜋($%

Writing a query top-down:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A trickier example

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

52

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A trickier example

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

53

𝜋#$%

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌21/3! 𝜌21/3"

⋈21/3!."5"621/3"."5"

𝜋21/3!.#$%

A deeper question:
When (and why) is “−” needed?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Non-monotone operators

• If some old output rows may become invalid à the
operator is non-monotone

• Example: difference operator 𝑅 − 𝑆

54

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

857 abc

This old row
becomes invalid
because the new
row added to S

𝑆𝑅

Non-monotone operators

• If some old output rows may become invalid (causing some
row removal) à the operator is non-monotone
• Otherwise (old output rows always remain “correct”) à the

operator is monotone

55

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

189 abc

189 abc

This old row is
always valid no

matter what
rows are added

to R

𝑆𝑅

Classification of relational operators

• Selection: 𝜎!𝑅
• Projection: 𝜋/𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈! 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆

56

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t 𝑆

Monotone

Why is “−” needed for “highest”?

• Composition of monotone operators produces a
monotone query
• Old output rows remain “correct” when more rows are

added to the input

• Is the “highest” query monotone? (slide 50)
• No!
• Current highest pop is 0.9
• Add another row with pop 0.91
• Old answer is invalidated

FSo it must use difference!

57

Why do we need core operator 𝑋?

• Difference
• The only non-monotone operator

• Projection
• The only operator that removes columns

• Cross product
• The only operator that adds columns

• Union
• ?

• Selection
• ?

58

Extensions to relational algebra

• Duplicate handling (“bag algebra”)
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow

new column values to be computed

FAll these will come up when we talk about SQL
FBut for now we will stick to standard relational

algebra without these extensions

59

Relational Calculus

• Relational Algebra: procedural language
• An algebraic formalism in which queries are expressed

by applying a sequence of operations to relations.

• Relational Calculus: declarative language
• A logical formalism in which queries are expressed as

formulas of first-order logic.

• Codd’s Theorem: Relational Algebra and Relational
Calculus are essentially equivalent in terms of
expressive power.

60

Relational calculus

• Use first-order logic (FOL) formulae to specify
properties of the query answer

• Example: Who are the most popular?
• 𝑢. 𝑢𝑖𝑑 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧

¬ ∃𝑢E ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 < 𝑢E. 𝑝𝑜𝑝 }, or

• 𝑢. 𝑢𝑖𝑑 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧
∀𝑢E ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 ≥ 𝑢E. 𝑝𝑜𝑝 }

61

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Relational calculus
• Relational algebra = “safe” relational calculus
• Every query expressible as a safe relational calculus

query is also expressible as a relational algebra query
• And vice versa

• Example of an “unsafe” relational calculus query
• 𝑢. 𝑛𝑎𝑚𝑒 ¬ 𝑢 ∈ 𝑈𝑠𝑒𝑟 à users not in the database
• Cannot evaluate it just by looking at the database

• A query is safe if, for all database instances
conforming to the schema, the query result can be
computed using only constants appearing in the
database instance or in the query itself.

62

Turing machine

How does relational algebra compare with a Turing
machine?
• A conceptual device that can

execute any computer algorithm
• Approximates what general-

purpose programming languages
can do
• E.g., Python, Java, C++, …

63

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

Alan Turing (1912-1954)

Limits of relational algebra

• Relational algebra has no recursion
• Example: given relation Friend(uid1, uid2), who can Bart

reach in his social network with any number of hops?
• Writing this query in r.a. is impossible!

• So r.a. is not as powerful as general-purpose languages

• But why not?
• Optimization becomes undecidable
FSimplicity is empowering
• Besides, you can always implement it at the application

level, and recursion is added to SQL nevertheless!

64

Summary
• Part 1: Relational data model
• Data model
• Database schema
• Integrity constraints (keys)
• Languages (relational algebra, relational calculus, SQL)

• Part 2: Relational algebra – basic language
• Core operators & derived operators

(how to write a query)
• V.s. relational calculus
• V.s. general programming language

• What’s next?
• SQL – query language used in practice (4 lectures)

65

