Introduction

Introduction to Database Management
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 and 004 only

Outline For Today

1. Overview of DBMSs

2. Course & Administrative Information

Outline For Today

1. Overview of DBMSs:
1. Challenges with data management
2. How DBMSs help overcome these challenges
* Physical data independence, high level query language,

constraints and transactions

What is a Database Management System (DBMS)?

‘ Applications ‘

Queries/modifications \L T Answers/responses

=

¢ File system interface

5 05)

¢ Storage system interface

E Disk(s) j

Main Set of DBMS Features

» High-level Data Model and Query Language

» Efficient access and processing of data

» Scalability:

» Handling of Large Data, i.e., Out-of-memory Data
» 10-100Ks of concurrent data access/sec

» Safe access and processing of data:
» Maintenance of the integrity of the data upon updates

» Multi-User access to data (Concurrency)

» Fault tolerant storage of data

Why App Developers Need a DBMS?

» Application: Order & Inventory Management in E-commerce

» E.g.: Amazon or Alibaba

Customers & Product Managers &
End Devices Shipments & Arrivals Analytics Apps

n 8 o ﬂw

App Software/
Servers

Service Requirement

Storage Software
Server & Device » Thousands of requests/sec

Let’s simplify the design: assume a single server will accept requests from app software to
keep track of and serve your records: orders, new products, etc. °

Bad Idea: Write Storage Software in Java/C++

» Possible Approach: Directly use the file system of the OS.

» E.g: one or more files for orders, customers, products etc.

— T
\ /
Orders.txt —

~— Customers.txt Produ%

» Problem: Physical Record Design?
» For each customer store name, birthdate
» How many bytes for each fact?
» E.g.: Encoding of string names? Fixed or variable length?

» Many sub-problems: E.g.: How to quickly find a record?

PR1: Example Physical Record Designs (1)

» Variable-length design

name-len (bytes)

name payload

birthdate (fixed 4 bytes)

11

Alice

Smith | 2001/09/08

19 | Alexander Desdemona

2002/05/20

6

AliJo

1992/02/25

26

Montgomery Cambridgeshire

1992/02/25

» Fixed-length design

Customers.txt

/\

Overflow ptr

Iy/

‘hame (16 byte)\

| birthdate (4 bytes)

N\

null | 11

,/
Aﬂﬂﬁe Smith

2001/09/08

S

ona

idgeshire

1

0

Alexander Desdem

2002/05/20

i

null |19

AliJo

1992/02/25

L

1

26

\

Montgomery Cambr

1992/02/25”

S Customers.tg —

Customer-overflow.txt

PR1: Example Physical Record Designs (2)

» Chained Design: Maybe to keep in sorted alphabetical order

name-leng (bytes) | name payload | birthdate (fixes 4 bytes) | prev ptr | next ptr

ro | 11 | Alice. | 2001/09/08 |ro |r3 | |rt |19 | Alexander. | 2002/05/20 null/;z
/
r2 |6 |AliJo |1992/02/25 |[r1 |ro | |r3 |26 | Montgom. 1992/0}&5/ ro |ry

\/

Customers.txt

Takeaway 1: Many designs options & difficult for app developers!

Takeaway 2: Bytes not the right data abstraction to program apps.

PR2: Efficient Query/Analytics Algorithms

» Managers Ask: Who are top paying customers?
» Task: Compute total sales by customer (assume fixed len records)

» Problem: App developer needs to implement an algorithm.

Possible Algorithm 1:
O1 | Cust1 BookA $20

file = open(“Orders.txt”)
HashTable ht; O2 | Cust2 | WatchA | $120
for each line in file:
// some code to parse custID and price O3 | Cust1 DiapersB | $30
if (ht.contains(custID))
ht.put (custID, ht.get (custID) + price) O4 | Cust3 MasksA | $15

else: ht.put(custID, price);
file.close () ;

Orders.txt

Should one parallelize this? How?
Do this again if query is repeated?

PR2: Efficient Query/Analytics Algorithms

» Thatis only for 1 question. There will be many questions:
» List of Orders that bought a product that cost > $500
» Last Order from Cust4?
» Who are closest co-purchasers of Cust4?
» Many many more (thousands) important business questions:
» For each question numerous possible algorithms and

implementations.

Takeaway 1: Many algs & implementations. Difficult to choose.

Takeaway 2: Writing an algorithm for each task won’t scale!

PR3: Scalability

» Large-scale Data: Data > Memory

>

>
>
>

E.g. Orders.txt grows to terabytes & does not fit in memory.
Often the case for data-intensive applications
Need disk to scale

Hard to write such algorithms. Challenge:
> Read in batches? Where to store intermediate results?

» Scale to: 10K~100Ks of requests/sec

>

Hard to write code that efficiently supports such workloads.

Takeaway: Hard to implement & has nothing to do w/ the app logic!

App developers should focus on the app!

PR4: Integrity/Consistency of The Data (1)

» Many ways data can be corrupted:
» Often: Wrong application logic or bugs in application

» E.g: Checkout App’s “Checkout As Guest” PA
> Writes the Order record D D

» And the Customer record l
» Assume Bob shops again 08 | Bob | TVA |$90 [
> (Bob, 1999/05/07) is duplicated ©7 | Bob | BookC $17/ Bob |1999/05/07

Likely an inconsistency. — — —

A Orderstxt ¢ stomers.txt Productstxy
We’d want to enforce the invariant: ~—— :

No duplicate cust records!

PR4: Integrity/Consistency of The Data (2)

» E.g: Checkout App’s “Checkout As Guest”

» Writes the Order record
» But not the Customer record @
ut n u
D
> (Bob, 1999/05/07) is not in Customers.txt. |

Likely an inconsistency. - 5

: : 07 | Bob | BookC
We’d want to enforce the invariant: 71%0 OOX $7
Every order’s cust record exists! /

~
N ~——

Take away: Incorrectly handling

S

Ml —

consistency requirements violates | orders.txt cystomers.txt
N —)

Wly\,

Products.txt

\

data integrity/consistency!

PR5: Concurrency: Multiple Conflicting Requests

» Alice & Bob concurrently order BookA: suppose 1 left in stock.

time

Product | NumlInStock

BookA 1

@
dh

r: (A1)
w: (A, 0)
r: (A, 0)

I!El No Book

Buy Product Subroutine (string prodName) :

(prod, numInStock)

= readProduct (prodName)
if (numInStock > 0):

writeProduct (prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A1)
w:(A,0)
r:(A,0)

N

@
dh dh

==~ =

r: (A1) r: (A1)
w:(A,0)
w:(A,0)

X

Concurrency Questions

» What is a correct/incorrect state upon concurrent updates?

» What protocols/algorithms can ensure a correct state?

» Theoretical formalism to explain these states: Serializability

r

.

» Locking-based protocols

~\

» Acquire locks to prevent bad state (Pessimistic protocols)
J

» Optimistic protocols

> Detect bad state and recover from it

Concurrency Avoidance Ex: Global DB Lock

» Alice and Bob order BookA

Bob Alice
@ N
dh dh
lock DB X Wait | lock DBV
r(A,1)
()]
£ w (A, 0)
release lock
lock DB

Product | NumiInStock
a BookA 1
BookB 7

Safe but inefficient. Why?

Concurrency Avoidance Ex: Global DB Lock

» Alice orders BookA, Bob orders BookB

Bob Alice
) =
dh dh
lock DB X Wait lock DB v/
r(A,1)
()]
£ w (A, 0)
release lock
lock DB
Yir (B, 7)

e ———
[—

Product | NumlInStock

Q BookA 1

BookB 7

e —

Bob had no conflicts; so was “unnecessarily” blocked.

Concurrency Avoidance Ex: Record-level Lock

» Alice, Bob as before want BookA, Carmen orders Book B

Bob Alice Carmen
A~
- £ &
dh ah
lock: (A) vV lock: (A) X Wait lock: (B) v/
r(A,1) r(B,7)
)
El| w(Ao0) w (B, 6)
e =

Product | NumInStock

BookA 1
BookB 7

BORo-D

Concurrency Avoidance Ex: Record-level Lock

» Alice, Bob as before want BookA, Carmen orders Book B

Bob Alice Carmen
A
- 8 &
dh ah
lock: (A) vV lock: (A) X Wait lock: (B) v/
r(A, 1) r(B,7)
()]
g W (A7 O) W (B, 6)
release lock A release lock B
lock: (A) V
R S
Product | NumInStock
E BookA 0
ﬂ BookB 6
—————— el

Safe and achieves parallelism. What can go wrong?

Where There is Locking, There is Deadlocks!

» Alice, Bob both order both BookA and BookB together

Bob

@
dh
lock: (A) Vv

time

lock: (B) X Wait

Alice

g

lock: (B) v

lock: (A) X Wait

Deadlock!
\ 4 — —
Product | NumInStock
E BookA 1
g BookB 7
" — e

How can we detect & avoid deadlocks?

Where There is Locking, There is Deadlocks!

» Alice, Bob both order both BookA and BookB together

Bob Alice
))
dh dh
lock: (A) Vv
lock: (B) v
.qé lock: (B) X Wait
" lock: (A) X Wait
Deadlock!
' <l =

Product | NumInStock

{5

a)

Take away: Handling concurrent requests is one of the biggest

challenges in data management!

PR6: Failure & Recovery

» What if your disk fails in the middle of an order?
» What if your server software fails due to a bug?
» What if there is a power outage in the machine storing files?

@

¥

Product | NumInStock

e;L BookA 1
BookB

Failure & Recovery

» What if your disk fails in the middle of an order?

» What if your server software fails due to a bug?

» What if there is a power outage in the machine storing files?
» Suppose Alice orders both BookA and BookB

g

=
w (A, 0)
w (B, 6)

Product NumInStock

BookA 1
BookB 7

Failure & Recovery

» What if your disk fails in the middle of an order?

» What if your server software fails due to a bug?

» What if there is a power outage in the machine storing files?
» Suppose Alice orders both BookA and BookB

g

Before (B, 6) is written failure!
Inconsistent data state!

W(A,0) Take away: How to recover from inconsistent state?

w (B, 6)
v

Product | NumiInStock Product | NuminStock

, BookA 0 X BookA 0
BookB 6

BookB 7

Summary of challenges

1.

)NV, B VY

Physical record design

Efficient query algorithms
Scalability

Data integrity/consistency
Concurrent requests

Failure & recovery

A database management system
(DBMS) helps us solve all the discussed
problems

The birth of DBMS - 15t gen

Checking
application

+

Data file
processing and
access routines

Saving
application

-

Data file
processing and
access routines

Installment loan
application

+

Data file
processing and
access routines

Mortgage loan
application

+

Data file
processing and
access routines

x F 3 F 3 x

h 4 h 4 h 4 h 4
Checking Saving Instaliment Mortgage
account account loan data loan data
data file data file file file

From Hans-J. Schek’s VLDB 2000 slides

28

The birth of DBMS - 2"d gen

Checking
application

Saving
application

Installment loan
application

Mortgage loan
application

~N\

Generalized Access
Methods

Checking
account
data file

/ N\

From Hans-J.

Saving
account
data file

Schek’s VLDB 2000 slides

Installment
loan data
file

Mortgage
loan data
file

29

The birth of DBMS - 3™ gen

Checking
application

Saving

Installment loan

application application

Mortgage loan
application

T~ /

Data base
management system

data base

Shared

From Hans-J. Schek’s VLDB 2000 slides

30

Application Development with a DBMS

» Consider the same inventory management application
» We will use a Relational DBMS (RDBMS) but can use other DBMSs

too (e.g., a graph database management system)

» Ex: PostgreSQL, Oracle, MySQL, SAP HANA, Snowflake...

1. Data Modeling With an RDBMS (1)

> Relational Model: Data is modeled as a set of tables

» Much higher-level abstraction than bits/bytes

Customers Orders Products
name birthday olD cust product | price product numInStock
Alice 2001/09/08 | | O1 | 2001/09/08 | BookA |20 BookA 1
Bob 2002/05/20 | | O2 | 2002/05/20 | TVB 100 TVB 78

Example SQL Command in an RDBMS:

CREATE TABLE Customers
name varchar(255),
birthdate DATE;

» The RDBMS takes care of physical record design: Fixed-length/var-length,
columnar, row, chained etc.

» The developer need not know the physical record design.

1. Data Modeling With an RDBMS (2)

» Physical Data Independence:
» Throughout the lifetime of the app, the RDBMS can change the
physical layout for performance or other reasons and the

applications is oblivious to this and continues working as-is.
> E.g:
» A new column can be added that changes the record design

» A compressed column can be uncompressed

Takeaway: A high-level data model delegates the responsibility of
physical record design and access to these records to the DBMS

2. High-level Query Language (1)
» Structured Query Language (SQL)
» SQL is so high-level that it’s called a declarative language: i.e., one

in which you can describe the output of the computation but not
how to perform the computation

» Recall managers’ question: Who are top paying customers?

SELECT cust, sum(price) as sumPay Orders
FROM Orders
ORDER BY sumPay DESC —

cust product | price

=)

» No procedural description of execute the query:
hash-based, sort-based, what sorting algorithm to use etc.

2. High-level Query Language (2)
» RDBMS automatically generates an algorithm for the query:

» We call those algorithms query plans

Postgres Query Plan

#1 HashAggregate
cust

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

#2 Seq Scan

orders

Takeaway: A high-level QL delegates the responsibility of finding an
efficient algorithm for queries to the DBMS.
Other efficiency benefits: The DBMS will handle large data and
automatically parallelize these algorithms.

3. Scalability

» Two types:
» Scale up

—~0
—0. ®
—o . NUENREIETN || ——0 - EpEEI. > ——© o RN >
— o
—Q- o

» Scale out — .
.
/”” \\\\\s
- s N S~o
/” 7 \,\ s\\
— Q- — @ ——©O-
.. . ..

Takeaway: RDBMSs typically support scale out and perform scaling
automatically.
App developer need not focus on scalability.

—_0
_o.
— Qo

4. Integrity Constraints

» Recall the bug in Checkout App’s ‘“Checkout As Guest’”
» Writes the Customer record

» Assume Bob shops again
» (Bob, 1999/05/07) is duplicated!

» In RDBMSs: add uniqueness constraints (Primary Key Constraints)

CREATE TABLE Customers (name varchar(255), birthdate DATE,);

templatel=# INSERT INTO Customers Values ('Bob', '1999/05/07');
INSERT @ 1
templatel=# INSERT INTO Customers Values ('Bob', '1999/05/07');

duplicate key value violates unique constraint "customers_pkey"
Key (name)=(Bob) already exists.

Takeaway: DBMSs will enforce the constraint and maintain the data’s
integrity at all times on behalf of the app!

» Can enforce other integrity constraints (e.g., foreign key)

5. Concurrency When Using an RDBMS (1)

» Recall Alice & Bob concurrently ordering BookA:

Product | NumInStock

BookA 1

3)
& o

r: (A1)
o | Wi (A, 0)
,g r: (A, 0)

I!El No Book

Buy Product Subroutine (string prodName) :
(prod, numInStock) = readProduct (prodName)

if (numInStock > 0):

writeProduct ((prod, numInStock - 1)
else throw(“Cannot buy product!”);

))
& o

r: (A1)
w:(A,0)
r:(A,0)

No Book I!El

@
dh dh

—
r: (A1) r: (A1)
w:(A,0)
w:(A,0)

X

5. Concurrency When Using an RDBMS (2)

(Simplified) SQL: > Will ensure a correct end state
BEGIN TRANSACTION

UPDATE Products » Will avoid any deadlocks

SET numInStock = numInStock - 1

WHERE name = “BookA > Will error for Alice or Bob

INSERT INTO Orders
VALUES (“Alice”, “BookA”, $20) Take away: DBMS ensures safe

COMMIT concurrency.

9 @ @ @) @
/. dh dh -\ dh dh
X X EE X X
r: (A1) e (A9) r: (A1) r: (A1)
o [IW: (A, O) W:(A O) W:(A)O)
E r: (A, 0) r+(A,0) ’ w:(A,0)

6. Backup and Recovery

» Recall failure scenario: Alice orders both BookA and BookB
» Suppose a power failure occurs and the DBMS fails in the middle
of committing the transaction

g

w (A, 0)

w (B, 6)

DBMSs use checkpointing and logging to undo
partial changes and
revert back to a consistent state

Take away: DBMSs handle failure recovery

e

Product

NumInStock

, BookA

BookB

Product | NumInStock
A>< BookA 1 \/,

BookB 7

Summary

DBMS is an indispensable core system software to develop any

application that stores, queries, or processes data.

41

A Glimpse of Current DBMS Market

/% Google

SQL Server
‘ mongoDB.

>ﬂe041 oAt e '® Cockroach oe

Virtuoso o,
Universal Server & Integration

databricks N\ Materialize

amazon
REDSHIFT

] ks
$i% snowflake - . amazon
Stardog DynamoDB

Hundreds of companies producing DBMSs: Many RDBMS/SQL, but
also graph, RDF, Document DB, Key-value stores etc..
Not even including companies to tune, ingest, visualize etc..

43

4 Turing Award Winners!

Introduced DB Systems

High-level/Declarative Programming:
Relational Data Model & Algebra

Transactions:
concurrent data-manipulation

Relational DBMS
(e.g. Ingres, Postgres) and
modern DBMSs
(e.g. C-store, H-store, SciDB)

Outline For Today

1. Overview of DBMSs:
1. Challenges with data management
2. How DBMSs help overcome these challenges
* Physical data independence, high level query language,
constraints and transactions

2. Course & Administrative Information

44

Course components

(Lectures 1-10)

* Relational algebra, SQL, app programming, database
design

(Lectures 11-15)

 Storage, indexing, query processing and optimization,
transactions

* Advanced topics

* Concurrency & recover, parallel data
processing/MapReduce, distributed/parallel dbms, data
warehousing and data mining, privacy etc.

More about the Teaching Team

* Instructor:
* Email: smaiyya@uwaterloo.ca
 https://cs.uwaterloo.ca/~smaiyya/

* Instructional support coordinator:
* Email: sldavies@uwaterloo.ca

IAs and TAs

* Karl Knopf

Eli Henry Dykhne

* Krishna Kanth Arumugam

Chanaka Lakmal Lokupothagamage Don
Shubhankar Mohapatra

Ruoxi Zhang

Office hours will be posted on Learn/Piazza

https://cs.uwaterloo.ca/~smaiyya/
mailto:sldavies@uwaterloo.ca

Textbook

* Database System Concepts (Seventh Edition)
Abraham Silberschatz, Henry F. Forth and
S.Sudarshan, McGraw Hill.

47

Logistics

e Course Website:
* https://cs.uwaterloo.ca/~smaiyya/cs348
e Course schedule, lecture notes

* Learn:
* https://learn.uwaterloo.ca/
* Assignment questions/partial solutions, project info

* Piazza for student discussion, Q&A, TAs info:
* https://piazza.com/class/lhasib8a1jr59a
* Mostly for student discussions

* Work submission: Crowdmark/Learn
* Watch your emails for the links

48

https://cs.uwaterloo.ca/~smaiyya/cs348
https://learn.uwaterloo.ca/
https://piazza.com/class/lhasib8a1jr59a

Marking and Late Policies

* Marking and appeals:

* For everything, there will be that will
be indicated on the front page

* No appeals will be accepted past this date unless you
were sick the entire period until the appeal date

* Late assignments/project deliverables

* Late assighments will be accepted for past the
due date, but...

* For past the due date, a will be
applied (cumulatively) for assignments

* For past the due date, a will be

applied (cumulatively) for projects

50

Assessments

* 3 Assignments
1 Midterm Exam (Jun 26)
1 Final Exam (TBD)

Group Project (Optional): Choose 1 mark breakdown

But both exams are mandatory!

Mark Breakdown Project-based

3 Assignments 30% 30%

Midterm Exam 10% 30%
20% 40%
40%

Lectures

* Lecture slides released on Course Website before
Tue/Thur

* Lecture format:
* Important announcements (Don’t miss this!)
* Key points and examples
* Exercises with partial solutions

* Will be using lecture materials from
Prof. Xi He’s lectures

51

Project

* Team of 4-5 students (minimum 4, maximum 5)
* DB-supported applications

* Project timeline
* Milestone o0: form a team by Thu, May 25
* Milestone 1: proposal by Thu, Jun 22
* Milestone 2: mid-term report by Tue, Jul 11
* Final: report + demo by Thu, Jul 27

* More details will be released in week 2, but you can
start to
* Members from only 002 and 004 sections are allowed.
* Piazzais a good place to find teammates.

levels of procrastination

|.non-procrastinator 2. Sundoy mghf

3.super slacker 4.master procrastinator

does
work
corly

still procastinating
allinl gfter deadline

. Q

2 -month
projects,
essays,
lobs efc.

Project

* Project demos from previous years

Video Demo for NBA Season Statistics

lere’s the matches we have found:

Interest [Hobby [Language

Basketball Analytics! Goto Piyer itr Pr—
-

Alana Moen llene Lubowitz

il il qui vol
[

Vernon Tillman Candace Frami

#ops O Microsoft Office H.. W Student Center () © There was a prob.

K Koggle: YourHom.. @ MREH

Find Your Car

4vn$ ‘/

Model* Choose B
Logitech MOMO Microsolt SidoW, Matias Halfkeybo. Microsot Sidewn,
Video_Games Video_Games x Video_Games Video. Games
750.12 59999 55099 %999
Yeart Choose : s J Y/ 2
Addtocart Addto cart Addto cart Addto can
More nfo More nfo Moreinfo
Make® Choose N

FuelFrom Choose.

54

https://www.dropbox.com/sh/c419517d2d8gqub/AABcYL-Qo03bMV3w9SSv8OaXa?dl=0

What’s next?

* Lecture 2: Relational model and relational algebra

