
Introduction
Introduction to Database Management

CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 and 004 only

Outline For Today
1. Overview of DBMSs

2. Course & Administrative Information

2

Outline For Today
1. Overview of DBMSs:

1. Challenges with data management

2. How DBMSs help overcome these challenges

• Physical data independence, high level query language,

constraints and transactions

2. Course Diagram & Administrative Information

3

What is a Database Management System (DBMS)?

4

DBMS

Applications

OS

Queries/modifications Answers/responses

File system interface

Storage system interface

Disk(s)

Main Set of DBMS Features

5

Ø High-level Data Model and Query Language

Ø Efficient access and processing of data

Ø Scalability:

Ø Handling of Large Data, i.e., Out-of-memory Data

Ø 10-100Ks of concurrent data access/sec

Ø Safe access and processing of data:

Ø Maintenance of the integrity of the data upon updates

Ø Multi-User access to data (Concurrency)

Ø Fault tolerant storage of data

Why App Developers Need a DBMS?

6

Ø Application: Order & Inventory Management in E-commerce

Ø E.g.: Amazon or Alibaba
Customers &
End Devices

Product
Shipments & Arrivals

Managers &
Analytics Apps

App Software/
Servers

Storage Software
Server & Device

Let’s simplify the design: assume a single server will accept requests from app software to
keep track of and serve your records: orders, new products, etc.

Service Requirement

Ø Thousands of requests/sec

Bad Idea: Write Storage Software in Java/C++

Orders.txt

Ø Possible Approach: Directly use the file system of the OS.

Ø E.g: one or more files for orders, customers, products etc.

Customers.txt Products.txt

Ø Problem: Physical Record Design?

Ø For each customer store name, birthdate

Ø How many bytes for each fact?

Ø E.g.: Encoding of string names? Fixed or variable length?

Ø Many sub-problems: E.g.: How to quickly find a record?

PR1: Example Physical Record Designs (1)

name-len (bytes) name payload birthdate (fixed 4 bytes)

Ø Variable-length design

11 Alice Smith 2001/09/08

6 Ali Jo 1992/02/25

19 Alexander Desdemona 2002/05/20

26 Montgomery Cambridgeshire 1992/02/25

… … … … … … … … …

Customers.txt

Ø Fixed-length design

null 11 Alice Smith ---------- 2001/09/08

Overflow ptr len name (16 byte) birthdate (4 bytes)

Customers.txt Customer-overflow.txt

0 19 Alexander Desdem 2002/05/20

null 19 Ali Jo ------------------ 1992/02/25

1 26 Montgomery Cambr 1992/02/25

ona idgeshire ….

… … ….

PR1: Example Physical Record Designs (2)

name-leng (bytes) name payload birthdate (fixes 4 bytes) prev ptr next ptr

Ø Chained Design: Maybe to keep in sorted alphabetical order

r0 11 Alice. 2001/09/08 r0 r3

r2 6 Ali Jo 1992/02/25 r1 r0 r3 26 Montgom. 1992/02/25 r0 r7

Customers.txt

Takeaway 1: Many designs options & difficult for app developers!

Takeaway 2: Bytes not the right data abstraction to program apps.

r1 19 Alexander. 2002/05/20 null r2

r4 … … … … … r5 … … … … …
`

PR2: Efficient Query/Analytics Algorithms

Ø Managers Ask: Who are top paying customers?

Ø Task: Compute total sales by customer (assume fixed len records)

Ø Problem: App developer needs to implement an algorithm.

Orders.txt

O1 Cust1 BookA $20

O2 Cust2 WatchA $120

O3 Cust1 DiapersB $30

O4 Cust3 MasksA $15

… … … …

… … … …

Possible Algorithm 1:
file = open(“Orders.txt”)
HashTable ht;
for each line in file:
// some code to parse custID and price
if (ht.contains(custID))
ht.put(custID, ht.get(custID) + price)
else: ht.put(custID, price);
file.close();

Should one parallelize this? How?
Do this again if query is repeated?

PR2: Efficient Query/Analytics Algorithms

Ø That is only for 1 question. There will be many questions:

Ø List of Orders that bought a product that cost > $500

Ø Last Order from Cust4?

Ø Who are closest co-purchasers of Cust4?

Ø Many many more (thousands) important business questions:

Ø For each question numerous possible algorithms and

implementations.

Takeaway 1: Many algs & implementations. Difficult to choose.

Takeaway 2: Writing an algorithm for each task won’t scale!

PR3: Scalability

Ø Large-scale Data: Data > Memory

Ø E.g. Orders.txt grows to terabytes & does not fit in memory.

Ø Often the case for data-intensive applications

Ø Need disk to scale

Ø Hard to write such algorithms. Challenge:
Ø Read in batches? Where to store intermediate results?

Ø Scale to: 10K~100Ks of requests/sec

Ø Hard to write code that efficiently supports such workloads.

Takeaway: Hard to implement & has nothing to do w/ the app logic!

App developers should focus on the app!

PR4: Integrity/Consistency of The Data (1)

Ø Many ways data can be corrupted:
Ø Often: Wrong application logic or bugs in application

Ø E.g: Checkout App’s “Checkout As Guest”

Ø Writes the Order record

Ø And the Customer record

Ø Assume Bob shops again

Ø (Bob, 1999/05/07) is duplicated!

Orders.txt
Customers.txt Products.txt

O7 Bob BookC $17

Likely an inconsistency.

We’d want to enforce the invariant:

No duplicate cust records!

Bob 1999/05/07

O8 Bob TVA $90

PR4: Integrity/Consistency of The Data (2)

Ø E.g: Checkout App’s “Checkout As Guest”

Ø Writes the Order record

Ø But not the Customer record

Ø (Bob, 1999/05/07) is not in Customers.txt.

Orders.txt Customers.txt Products.txt

O7 Bob BookC $17

X
Likely an inconsistency.
We’d want to enforce the invariant:
Every order’s cust record exists!

Take away: Incorrectly handling

consistency requirements violates

data integrity/consistency!

PR5: Concurrency: Multiple Conflicting Requests

Ø Alice & Bob concurrently order BookA: suppose 1 left in stock.
Product NumInStock

… …

BookA 1
… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):

writeProduct(prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

Concurrency Questions

Ø What is a correct/incorrect state upon concurrent updates?

Ø Theoretical formalism to explain these states: Serializability

Ø What protocols/algorithms can ensure a correct state?

Ø Locking-based protocols

Ø Acquire locks to prevent bad state (Pessimistic protocols)

Ø Optimistic protocols

Ø Detect bad state and recover from it

Concurrency Avoidance Ex: Global DB Lock

tim
e

AliceBob

Safe but inefficient. Why?

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait
r (A, 1)

w (A, 0)
release lock

lock DB ✓

Ø Alice and Bob order BookA

Concurrency Avoidance Ex: Global DB Lock

tim
e

AliceBob
Ø Alice orders BookA, Bob orders BookB

Bob had no conflicts; so was “unnecessarily” blocked.

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait

r (A, 1)

w (A, 0)

release lock
lock DB ✓
r (B, 7)
…

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob as before want BookA, Carmen orders Book B

tim
e

…

lock: (A) ✓ lock: (A) X Wait

Carmen

lock: (B) ✓
r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 0

BookB 6

AliceBob

Ø Alice, Bob as before want BookA, Carmen orders Book B

tim
e

…

Safe and achieves parallelism. What can go wrong?

lock: (A) ✓ lock: (A) X Wait

Carmen

lock: (B) ✓
r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

release lock Brelease lock A

lock: (A) ✓

Where There is Locking, There is Deadlocks!

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob both order both BookA and BookB together

tim
e

How can we detect & avoid deadlocks?

lock: (A) ✓
lock: (B) ✓

lock: (B) X Wait

lock: (A) X Wait

Deadlock!

Where There is Locking, There is Deadlocks!

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob both order both BookA and BookB together

tim
e

How can we detect & avoid deadlocks?

lock: (A) ✓
lock: (B) ✓

lock: (B) X Wait

lock: (A) X Wait

Deadlock!

Take away: Handling concurrent requests is one of the biggest

challenges in data management!

PR6: Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?

Product NumInStock

… …

BookA 1

BookB 7

Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

w (A, 0)

Product NumInStock

… …

BookA 1

BookB 7

w (B, 6)

Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

Product NumInStock

… …

BookA 0

BookB 7

Product NumInStock

… …

BookA 0

BookB 6

✓

X

Before (B, 6) is written failure!
Inconsistent data state!

Take away: How to recover from inconsistent state?w (A, 0)

w (B, 6)

Summary of challenges

1. Physical record design

2. Efficient query algorithms

3. Scalability

4. Data integrity/consistency

5. Concurrent requests

6. Failure & recovery

A database management system
(DBMS) helps us solve all the discussed

problems

27

The birth of DBMS – 1st gen
28

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 2nd gen
29

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 3rd gen
30

From Hans-J. Schek’s VLDB 2000 slides

Application Development with a DBMS

Ø Consider the same inventory management application

Ø We will use a Relational DBMS (RDBMS) but can use other DBMSs

too (e.g., a graph database management system)

Ø Ex: PostgreSQL, Oracle, MySQL, SAP HANA, Snowflake…

1. Data Modeling With an RDBMS (1)

Customers

name birthday

Alice 2001/09/08

Bob 2002/05/20

… …

Orders

oID cust product price

O1 2001/09/08 BookA 20

O2 2002/05/20 TVB 100

… … … …

Products

product numInStock

BookA 1

TVB 78

… …

Ø Relational Model: Data is modeled as a set of tables

Ø Much higher-level abstraction than bits/bytes

Example SQL Command in an RDBMS:
CREATE TABLE Customers

name varchar(255),
birthdate DATE;

Ø The RDBMS takes care of physical record design: Fixed-length/var-length,
columnar, row, chained etc.

Ø The developer need not know the physical record design.

1. Data Modeling With an RDBMS (2)

Ø Physical Data Independence:

Ø Throughout the lifetime of the app, the RDBMS can change the

physical layout for performance or other reasons and the

applications is oblivious to this and continues working as-is.

Ø E.g:

Ø A new column can be added that changes the record design

Ø A compressed column can be uncompressed

Takeaway: A high-level data model delegates the responsibility of
physical record design and access to these records to the DBMS

2. High-level Query Language (1)

Ø Structured Query Language (SQL)

Ø SQL is so high-level that it’s called a declarative language: i.e., one
in which you can describe the output of the computation but not
how to perform the computation

Ø Recall managers’ question: Who are top paying customers?

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

Ø No procedural description of execute the query:
hash-based, sort-based, what sorting algorithm to use etc.

Orders

oID cust product price

2. High-level Query Language (2)

Ø RDBMS automatically generates an algorithm for the query:

Ø We call those algorithms query plans

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

Takeaway: A high-level QL delegates the responsibility of finding an
efficient algorithm for queries to the DBMS.

Other efficiency benefits: The DBMS will handle large data and
automatically parallelize these algorithms.

3. Scalability

Ø Two types:

Ø Scale up

Takeaway: RDBMSs typically support scale out and perform scaling
automatically.

App developer need not focus on scalability.

Ø Scale out

4. Integrity Constraints

Ø Recall the bug in Checkout App’s “Checkout As Guest”:
Ø Writes the Customer record

Ø Assume Bob shops again

Ø (Bob, 1999/05/07) is duplicated!

Ø In RDBMSs: add uniqueness constraints (Primary Key Constraints)

CREATE TABLE Customers (name varchar(255), birthdate DATE, PRIMARY KEY (name));

Ø Can enforce other integrity constraints (e.g., foreign key)

Takeaway: DBMSs will enforce the constraint and maintain the data’s
integrity at all times on behalf of the app!

5. Concurrency When Using an RDBMS (1)

Ø Recall Alice & Bob concurrently ordering BookA:
Product NumInStock

… …

BookA 1
… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):

writeProduct((prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

5. Concurrency When Using an RDBMS (2)
(Simplified) SQL:
BEGIN TRANSACTION
UPDATE Products
SET numInStock = numInStock - 1
WHERE name = “BookA”

INSERT INTO Orders
VALUES (“Alice”, “BookA”, $20)
COMMIT

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

Ø Will ensure a correct end state

Ø Will avoid any deadlocks

Ø Will error for Alice or Bob

Take away: DBMS ensures safe
concurrency.

X✓ ✓

6. Backup and Recovery

w (A, 0)

w (B, 6)

Product NumInStock

… …

BookA 0

BookB 7

X

Ø Recall failure scenario: Alice orders both BookA and BookB
Ø Suppose a power failure occurs and the DBMS fails in the middle

of committing the transaction

Product NumInStock

… …

BookA 1

BookB 7

✓

DBMSs use checkpointing and logging to undo
partial changes and

revert back to a consistent state

Take away: DBMSs handle failure recovery

Summary

41

DBMS is an indispensable core system software to develop any

application that stores, queries, or processes data.

A Glimpse of Current DBMS Market

Hundreds of companies producing DBMSs: Many RDBMS/SQL, but
also graph, RDF, Document DB, Key-value stores etc..

Not even including companies to tune, ingest, visualize etc..

4 Turing Award Winners!

• Charles Bachman, 1973

• Edgar F. Codd, 1981

• Jim Gray, 1998

• Michael Stonebraker, 2014

43

Introduced DB Systems

High-level/Declarative Programming:
Relational Data Model & Algebra

Transactions:
concurrent data-manipulation

Relational DBMS
(e.g. Ingres, Postgres) and

modern DBMSs
(e.g. C-store, H-store, SciDB)

Outline For Today

44

1. Overview of DBMSs:

1. Challenges with data management

2. How DBMSs help overcome these challenges

• Physical data independence, high level query language,

constraints and transactions

2. Course & Administrative Information

Course components

• Relational databases (Lectures 1-10)
• Relational algebra, SQL, app programming, database

design

• Database internals (Lectures 11-15)
• Storage, indexing, query processing and optimization,

transactions

• Advanced topics
• Concurrency & recover, parallel data

processing/MapReduce, distributed/parallel dbms, data
warehousing and data mining, privacy etc.

45

More about the Teaching Team
• Instructor: Sujaya Maiyya

• Email: smaiyya@uwaterloo.ca
• https://cs.uwaterloo.ca/~smaiyya/

• Instructional support coordinator: Sylvie Davies
• Email: sldavies@uwaterloo.ca

• IAs and TAs
• Karl Knopf
• Eli Henry Dykhne
• Krishna Kanth Arumugam
• Chanaka Lakmal Lokupothagamage Don
• Shubhankar Mohapatra
• Ruoxi Zhang

• Office hours will be posted on Learn/Piazza

46

https://cs.uwaterloo.ca/~smaiyya/
mailto:sldavies@uwaterloo.ca

Textbook

• Database System Concepts (Seventh Edition)
Abraham Silberschatz, Henry F. Forth and
S.Sudarshan, McGraw Hill.

47

Logistics
• Course Website:

• https://cs.uwaterloo.ca/~smaiyya/cs348
• Course schedule, lecture notes

• Learn:
• https://learn.uwaterloo.ca/
• Assignment questions/partial solutions, project info

• Piazza for student discussion, Q&A, TAs info:
• https://piazza.com/class/lhasib8a1jr59a
• Mostly for student discussions

• Work submission: Crowdmark/Learn
• Watch your emails for the links

48

https://cs.uwaterloo.ca/~smaiyya/cs348
https://learn.uwaterloo.ca/
https://piazza.com/class/lhasib8a1jr59a

Marking and Late Policies

• Marking and appeals:
• For everything, there will be an appeal deadline that will

be indicated on the front page
• No appeals will be accepted past this date unless you

were sick the entire period until the appeal date

• Late assignments/project deliverables
• Late assignments will be accepted for 48 hours past the

due date, but...
• For each 24 hour past the due date, a 5% penalty will be

applied (cumulatively) for assignments
• For each 24 hour past the due date, a 25% penalty will be

applied (cumulatively) for projects

49

Assessments
• 3 Assignments
• 1 Midterm Exam (Jun 26)
• 1 Final Exam (TBD)
• Group Project (Optional): Choose 1 mark breakdown

• But both exams are mandatory!

50

Mark Breakdown Project-based Exam-based

3 Assignments 30% 30%

Midterm Exam 10% 30%

Final Exam 20% 40%

Project 40% -

Lectures

• Lecture slides released on Course Website before
Tue/Thur

• Lecture format:
• Important announcements (Don’t miss this!)
• Key points and examples
• Exercises with partial solutions

• Will be using lecture materials from
Prof. Xi He’s lectures

51

Project

• Team of 4-5 students (minimum 4, maximum 5)
• DB-supported applications
• Project timeline
• Milestone 0: form a team by Thu, May 25
• Milestone 1: proposal by Thu, Jun 22
• Milestone 2: mid-term report by Tue, Jul 11
• Final: report + demo by Thu, Jul 27

• More details will be released in week 2, but you can
start to brainstorm and find your teammates!
• Members from only 002 and 004 sections are allowed.
• Piazza is a good place to find teammates.

52

53

Project

• Project demos from previous years

54

https://www.dropbox.com/sh/c419517d2d8gqub/AABcYL-Qo03bMV3w9SSv8OaXa?dl=0

What’s next?

• Lecture 2: Relational model and relational algebra

55

