
Ziziphus:
Scalable Data Management Across Byzantine Edge Severs
Mohammad Javad Amiri

1
Daniel Shu

2
Sujaya Maiyya

2
Divyakant Agrawal

2
Amr El Abbadi

2

1
University of Pennsylvania,

2
University of California Santa Barbara

1
mjamiri@seas.upenn.edu,

2
{danielshu, sujaya_maiyya, agrawal, amr}@cs.ucsb.edu

Abstract
Edge computing while bringing computation and data closer to

users in order to improve response time, distributes edge servers

in a wide area network resulting in increased communication la-

tency between the servers. Synchronizing globally distributed edge

servers, especially in the presence of Byzantine servers, becomes

very costly due to the high communication complexity of Byzantine

fault-tolerant consensus protocols. While geo-replicated systems

try to confine the malicious behavior of nodes within local datacen-

ters, replicating the entire data across all datacenters requires global

synchronization for every single user transaction resulting in high

latency. In this paper, we propose Ziziphus, a geo-distributed system
for mobile users that partitions Byzantine edge servers into fault-
tolerant zones where each zone processes transactions initiated by

nearby clients locally and global synchronization among zones is

required only in special situations, e.g., migration of clients from

one zone to another. The two-level architecture of Ziziphus, on one

hand, confines the malicious behavior of nodes within zones re-

quiring a much cheaper protocol at the top level for global synchro-

nization and, on the other hand, processes most user transactions

within zones by edge servers closer to users resulting in enhanced

performance. Ziziphus further introduces zone clusters to enhance

scalability where instead of running global synchronization among

all zones, only zones of a single cluster are synchronized. The ex-

perimental results reveal the efficiency of Ziziphus in terms of both

performance and scalability (i.e., an increasing number of nodes

and zones) especially for workloads requiring a low percentage of

global synchronization.

1 Introduction
Edge computing shifts computation and data closer to users [50].

While this computational paradigm improves response time and

saves bandwidth, the edge servers may be distributed in the wide

area network far away from each other resulting in high communi-

cation latency among servers. Edge servers need to communicate

with each other in order to establish agreement on the order of user

transactions using fault-tolerant protocols.

While large-scale data management systems, such as Google’s Span-

ner [20], Amazon’s Dynamo [24], and Facebook’s Tao [15], rely on

crash fault-tolerant (CFT) protocols, e.g., Paxos [39], establishing

consensus among edge servers requires Byzantine fault-tolerant

(BFT) protocols, e.g., PBFT [17] due to the non-trustworthiness

of edge infrastructures. Byzantine fault-tolerant protocols have

also been used in recent large-scale data management systems–

permissioned blockchains [37][18][10].

Byzantine fault-tolerant protocols, however, suffer from their high

complexity, especially in wide-area networks. For instance, PBFT

[17], the most known BFT protocol, requires 3𝑓 + 1 servers (where

𝑓 is the number of simultaneous malicious servers), three com-

munication phases, and quadratic message complexity in terms

of the number of servers, which make it impractical to establish

consensus among edge servers distributed over wide area networks.

Various attempts have been made to reduce the complexity of BFT

protocols in large-scale geo-distributed systems over wide area net-

works. These include both hierarchical fully replicated and sharded

partially replicated solutions.

Steward [4] is designed for large-scale fully replicated systems over

multiple wide area sites, where each site consists of several servers

and data is fully replicated across all servers. Steward uses a hierar-

chical approach where the maliciousness of Byzantine servers is

confined within a site and a crash fault-tolerant protocol is used

to establish global consensus among sites. Thus, every single user

transaction needs to be globally synchronized to ensure that all

copies of data remain mutually consistent with each other. Block-

plane [46] uses a similar model and runs global synchronization for

every user transaction in order to tolerate the failure of sites, i.e.,

datcenters, in case of datacenter-scale outages. The full data replica-

tion technique has also been used by the permissioned blockchain

system, Resilientdb [31], where at every round, each site locally

establishes consensus on a single transaction and multicasts the

locally-replicated transaction to other sites. All sites then, execute

all transactions of that round in a predetermined order.

Sharded distributed systems, on the other hand, shard data and

replicate a shard of data on each site. A transaction that accesses

a single shard is processed by the nodes of the specific site, while

a global cross-shard transaction is executed on all shards. Since
nodes may be malicious, sites need to use BFT protocols to estab-

lish consensus on their local transactions. In sharded distributed

systems, in contrast to Geo-replicated systems, there is no need to

run global consensus for every single transaction. However, global

synchronization in such systems still uses a BFT protocol resulting

in high latency. Caper [5], a permissioned blockchain system, uses

this approach to process local and global transactions among a set

of enterprises (i.e., sites that maintain shards of data).

Ziziphus combines the best of both worlds and targets large-scale

geo-distributed systems serving mobile clients. In Ziziphus, edge

nodes are partitioned into Byzantine fault-tolerant zones consisting

of 3𝑓 + 1 nodes where 𝑓 is the maximum number of maliciously

faulty nodes in a zone. Each zone replicates the data of its nearby

clients on its nodes and processes local transactions initiated by

those clients independent of other zones. Thus, the global syn-

chronization requirements in Ziziphus are considerably reduced

in comparison to geo-replicated systems. Moreover, at the global

level, Ziziphus not only tolerate 𝑓 failures within each zone but

also tolerates ⌊𝑍−1
2

⌋ entire zone failures out of 𝑍 zones (which

might fail due to natural disasters). Ziziphus further is able to toler-

ate zone failures for local transactions using lazy synchronization
where local updates are propagated to other zones only when global

synchronization is needed.

A geo-distributed system might require to enforce network-wide

policies, e.g., a zone cannot host more than 10000 clients or a client

can migrate at most 10 times a year to reduce the load on the entire

network. Ziziphus maintains global system meta-data including

the number of clients of each zone, the history of client migrations,

etc. on all nodes of every zone. Global synchronization is needed

only when the global system meta-data needs to be updated. The

most common case of global synchronization occurs when a client

migrates from one zone to another. In this case, Ziziphus runs a

global consensus protocol among all zones where, in contrast to

sharded distributed systems, the protocol requires linear communi-

cation and needs only the majority of zones to participate. Ziziphus

presents a data synchronization protocol to support the global syn-

chronization of zones and a data migration protocol to migrate the

client data from the source to the destination zone.

As the system scales, the number of zones might increase to hun-

dreds or even thousands of zones over wide area networks. Running

global synchronization among all these zones for every single global

transaction results in low throughput and high latency. To address

this problem, Ziziphus defines zone clusterswhere each zone cluster

consists of a set of zones in a region. Zones within a zone cluster

maintain the same (regional) system meta-data (instead of global

meta-data) which is different from the systemmeta-data maintained

by other zone clusters. Ziziphus presents a cross-cluster data syn-
chronization protocol to deal with migration cases where source

and destinations zones are in two different zone clusters.

The contributions of this paper are three-fold:

• Ziziphus, a geo-distributed system that partitions Byzantine

edge servers into fault-tolerant zones where each zone pro-

cesses transactions initiated by nearby clients locally and global

synchronization among zones is required only in special situa-

tions, e.g., the migration of nodes from one zone to another;

• A data synchronization protocol to globally synchronize zones

and a data migration protocol to migrate the client data from a

source to a destination zone when migration occurs; and

• Zone clusters to enhance the scalability of Ziziphus where

instead of running global synchronization among all zones,

only the zones of a single cluster are synchronized. A cross-

cluster data synchronization protocol is presented to address

migration cases where source and destinations zones are in two

different zone clusters.

The rest of this paper is organized as follows. The Ziziphus model is

introduced in Section 2. Section 3 presents transaction processing in

Ziziphus. Scalability of Ziziphus is discussed in Section 4. Section 5

presents a performance evaluation of Ziziphus. Section 6 discusses

related work, and Section 7 concludes the paper.

2 System Model
Ziziphus is an asynchronous geo-distributed system designed to

process transactions initiated by mobile edge clients on their own

data. In Ziziphus, nodes are partitioned into fault-tolerant zones

where each zone processes transactions initiated by nearby clients.

Clients are expected to initiate transactions on their own local data

Figure 1: Ziziphus network consisting of five zones

while residing in a zone and migrating to another zone after some

period of time. In this section, we present the network infrastructure

of Ziziphus followed by its data and transaction model.

2.1 Network Infrastructure
The underlying infrastructure consists of a set of nodes in a large-

scale asynchronous distributed system. Nodes follow the Byzantine

failure model, i.e., faulty nodes may exhibit arbitrary, potentially

malicious behavior. Ziziphus clusters nodes into fault-tolerant zones
where each zone consists of 3𝑓 + 1 Byzantine nodes to guarantee

safety in the presence of 𝑓 malicious nodes [13]. Each zone has a

designated primary node that initiates local consensus among the

nodes of the zone and participates in the processing of global trans-

actions with other zones. Nodes within a zone are ideally located

geographically close to each other and have low communication

latency amongst themselves. Figure 1 presents a Ziziphus network

with five different zones 𝑧1 to 𝑧5 where each zone hosts four nodes,

i.e., 3𝑓 + 1 nodes where 𝑓 = 1.

Nodes are connected by point-to-point bi-directional communica-

tion channels. Network channels are pairwise authenticated, which

guarantees that a malicious node cannot forge a message from a

correct node. Furthermore, messages contain public-key signatures

and message digests [17]. A message digest is a numeric representa-

tion of the contents of a message produced by collision-resistant

hash functions. We denote a message𝑚 signed by node 𝑟 as ⟨𝑚⟩𝜎𝑟
and the digest of a message𝑚 by 𝐷 (𝑚). Message digests are used

to detect changes and alterations to any part of the message. All

nodes have access to the public keys of all other nodes and are able

to verify their signatures.

2.2 Data and Transactions
Each zone processes the transactions of its nearby clients and main-

tains their data. Client data in each zone is local and only replicated
on the nodes of the zone to provide fault tolerance. In addition to

local data, all zones maintain global system meta-data. The global
system meta-data contains the number of clients of each zone, his-

tory of client migration, etc. Global system meta-data is needed

to enforce network-wide policies, e.g., a zone cannot host more

than 10000 clients or a client can migrate at most 10 times a year

to reduce the load on the entire network. Global system meta-data

is globally replicated on every node of every zone.

In Figure 1, 𝑑𝑖 represents the local data of zone 𝑧𝑖 that is replicated

on all nodes of zone 𝑧𝑖 . For example, 𝑑1 is replicated on nodes 𝑛1,

2

𝑛2, 𝑛3 and 𝑛4. In contrast, global system meta-data 𝑑𝑔 is replicated

on every node of all 5 zones, i.e., 𝑛1 to 𝑛20.

Ziziphus supports two types of local and global transactions. Local
transactions are initiated by the clients of a zone on their local data

in the zone. Nodes of a zone process local transactions indepen-

dently of other zones and update the local data accordingly. The

global system meta-data might also need to be updated. In particu-

lar, clients of an edge network are mobile and might migrate from

a source zone to a destination zone. When a client migrates, the

client initiates a global transaction. A global transaction resulting

from a client migration consists of two atomic sub-transactions.

During the first sub-transaction, all zones establish agreement on

the global transaction, i.e., client migration, to verify that network-

wide policies are not violated and the global transaction is executed

on the global system meta-data.

The second sub-transaction is initiated by migrating the client

data from the source zone to the destination zone enabling the

destination zone to process client transactions. In the second sub-

transaction, only the source and the destination zones are involved.

It should be noted that when a client migrates from a source to a

destination zone and starts initiating transactions in the destina-

tion zone, its data in the source zone become out-of-date and the

destination zone now maintains its most up-to-date data. In fact,

while migrations result in maintaining the data of the same client

on multiple zones, only one zone has its most up-to-date data at

any moment.

When the global system meta-data needs to be updated without

any user migration, e.g., new clients are added to a zone, the global

transaction does not include the second sub-transaction, i.e., all

zones establish agreement on the global transaction to ensure that

network-wide policies are not violated and then the transaction is

executed on the global system meta-data. In this paper, we focus

on the client migration case as the more complex case.

3 Transaction Processing in Ziziphus
Processing transactions requires establishing consensus on a unique

ordering of incoming requests. To establish consensus, asynchro-

nous fault-tolerant protocols can be used. Fault-tolerant protocols

need to satisfy (1) safety: all correct nodes receive the same requests

in the same order, and (2) liveness: all correct client requests are
eventually ordered. Fischer et al. [27] show that in an asynchro-

nous system, where nodes can fail, consensus has no solution that

is both safe and live. Based on that impossibility result, in most

fault-tolerant protocols, safety is satisfied without any synchrony

assumption, however, a synchrony assumption is considered to

ensure liveness.

3.1 Local Transactions
Clients initiate local transactions on their data that is replicated

on nodes of the nearby zone. A local transaction is processed by

nodes of a zone without any communication with other zones.

This is in contrast to the multi-cluster globally distributed systems,

Steward [4] and Blockplane [46], where for every single transaction,

communication across all zones is needed. Since nodes may fail in a

Byzantine manner, all local transactions in Ziziphus are processed

using the known Byzantine fault-tolerant protocol PBFT [35]. In

PBFT, nodes move through a succession of configurations called

views [25][26]. In a view, one node is the primary and the others are

backups where the primary node initiates consensus among nodes.

PBFT consists of agreement and view change routines where the
agreement routine orders requests for execution by the nodes, and

the view change routine coordinates the election of a new primary

(within the zone) when the current primary is faulty.

During a normal case execution of PBFT, a client sends a local

request to the primary node of the nearby zone. Upon receiving a

valid request from an authorized client, the primary first ensures

that the client’s data within the zone is up-to-date. Nodes maintain

a 𝑙𝑜𝑐𝑘 bit for each client to keep track of its mobility, i.e., if the

𝑙𝑜𝑐𝑘 bit is TRUE the client data is up-to-date. The primary then

assigns a sequence number to the request and broadcasts a pre-
prepare message to all nodes within the zone. Once a node receives

a valid pre-preparemessage from the primary, it broadcasts a prepare
message to all nodes within the zone. Upon collecting 2𝑓 valid

matching prepare messages (including its own message) that also

match the pre-preparemessage received from the primary, each node

broadcasts a commit message. The pre-prepare and prepare phases
of the protocol guarantee that non-faulty nodes agree on a total

order for the requests within a view. Once a node receives 2𝑓 + 1

valid matching commit messages (including its own message), it

commits the request, executes the request (if it has executed all

requests with lower sequence number) and sends the execution

results back to the client. Finally, the client waits for 𝑓 + 1 valid

matching responses from different nodes to make sure at least one

non-faulty node has executed its request. PBFT also has a view

change routine that provides liveness by allowing the system to

make progress when the primary fails.

While Ziziphus processes local transactions using PBFT in its cur-

rent design, the local consensus protocol of Ziziphus is pluggable

and any BFT protocols can be used to process local transactions.

3.2 Global Transactions
Global transactions are needed when the global system meta-data,

which is replicated on all zones, needs to be updated. The most

common case occurs when a client migrates from a source zone

to a destination zone, hence, we describe global transactions for

this case. In the client migration use-case, as discussed earlier, the

global transaction has two atomic sub-transactions where the first

sub-transaction updates the global system meta-data of all zones,

and the second sub-transaction copies the actual client data from

the source to the destination zone. In this section, we present the

data synchronization protocol to update global system meta-data,

i.e., first sub-transaction, and the data migration protocol to copy

the client data from the source to the destination zone, i.e, second

sub-transaction.

3.2.1 Data Synchronization Protocol
In the data synchronization protocol, agreement from a majority

of zones is needed to establish consensus on the order of a global

transaction among all global transactions. While local transactions

are processed using PBFT that has a quadratic communication

complexity and requires at least two-thirds of non-faulty nodes to

participate in each communication phase, the two-level architecture

of Ziziphus confines the effect of all malicious behavior of Byzantine

nodes within zones. As a result, in the data synchronization protocol,
neither a quadratic communication complexity nor a minimum of

two-thirds non-faulty participants is required.

3

Figure 2: Processing global transactions consisting of data synchronization protocol and data migration protocol

The data synchronization protocol is a two-level protocol where at

the top level only the primary nodes of all zones communicate with

each other to globally agree on the order of the global transaction.

When a primary node communicates with the primary nodes of

other zones, its messages need to be endorsed by the nodes in its

zone. As a result, each primary node constructs a certificate proving
that a quorum of 2𝑓 + 1 different nodes within its zone agree on the

message it sends. A certificate for message consists of a collection

of 2𝑓 + 1 (identical) messages𝑚 signed by different nodes within

the same zone. Ziziphus can also use a threshold signature scheme

to represent 2𝑓 + 1 signatures (out of 3𝑓 + 1) using a single constant-
sized threshold signature [51][16].

As shown in Figure 2 the data synchronization protocol at the top

level, similar to Paxos, proceeds through propose, promise, accept, ac-
cepted, and commit phases where the goal of the propose and promise
phases is to elect the primary node (i.e., leader), the goal of the

accept and accepted phases is to decide on the request (i.e., value)

and the commit phase replicates the request on every node. At the

bottom level and within each zone, nodes communicate with each

other to endorse the message that will be sent by the primary node

at the top level.

When a client migrates from a source to a destination zone, it

sends a migration request message 𝑚 to the primary node of the

destination zone. This primary is referred to as the global primary.
The destination zone is referred to as the initiator zone, and all

other zones, the follower zones. Upon receiving a migration request
message, as shown in Figure 2, a local consensus protocol, PBFT, is

run in three phases (i.e., pre-prepare, prepare and commit) within the

initiator zone to assign a Ballot number, establish consensus on the

order of the global request and endorse the message.

All other bottom-level communications (green boxes) within either

the initiator or follower zones, however, as shown in Figure 2,

consist of only the pre-prepare and commit communication phases

and the prepare phase of PBFT is skipped. This is because the goal of

the prepare phase in PBFT is to ensure that non-faulty nodes agree

on the order (i.e., Ballot number) that is assigned by the primary

node, i.e., they all received the matching message from the primary.

In Ziziphus, however, since the Ballot number is already assigned

by the global primary and certified by 2𝑓 + 1 nodes of the initiator

zone, there is no need to run the prepare phase of PBFT and upon

receiving valid messages from the primary node of the zone, nodes

multicast commit messages to each other. The primary node of each

zone then collects 2𝑓 + 1 messages from different nodes in its zone

to construct a certificate that is used in the top-level communication

with the primary node of other zones.

Algorithm 1 presents the normal case operation of the data syn-

chronization protocol to process the first sub-transaction of a global

transaction. Although not explicitly mentioned, every sent and re-

ceived message is logged by the nodes. As indicated in lines 1-6 of

the algorithm, 𝑟 denotes the id of the node running the algorithm,

𝑧𝑖 is the initiator zone, 𝑣 (𝑧) specifies the view number of the node

in zone 𝑧 where views are numbered consecutively, and 𝜋 (𝑧) is the
primary node of zone 𝑧. We use 𝑄𝑧 to denote a quorum of 2𝑓 + 1

different nodes in zone 𝑧 and 𝑄𝑀 to denote a majority of primary

nodes of different zones. 𝑄𝑧 is used for local consensus within a

zone and 𝑄𝑀 is used for global consensus where agreement from

the majority of zones is needed.

Propose phase. As shown in lines 7-9, upon receiving a valid

signed migration request𝑚 = ⟨MIG-REQUEST, 𝑜𝑝, 𝑡𝑠𝑐 , 𝑐⟩𝜎𝑐 from an au-

thorized client 𝑐 (with timestamp 𝑡𝑐) to execute a transaction 𝑜𝑝 on

global system meta-data, the primary node 𝜋 (𝑧𝑖) of the initiator
zone 𝑧𝑖 (the global primary) assigns a global Ballot number ⟨𝑛, 𝑧𝑖 ⟩
to the request where 𝑛 is the highest global sequence number that

𝜋 (𝑧𝑖) is aware of it and 𝑧𝑖 is the zone id. Timestamp 𝑡𝑠𝑐 is used to

ensure exactly-once semantics for the execution of requests and

prevent replay attacks. The timestamps for requests of each client

are totally ordered. A client sends a request with timestamp 𝑖 + 1

only after it receives a reply for a request with timestamp 𝑖 . 𝑜𝑝 is a

simple operation that updates global system meta-data based on

the pre-defined policies once executed, e.g., updates the number of

clients in the source and the destination zones.

The primary then multicasts ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)
message to all nodes of its zone 𝑧𝑖 where 𝑣 (𝑧𝑖) is the view of node

𝜋 (𝑧𝑖) in zone 𝑧𝑖 , 𝑚 is the client’s migration request message and

𝑑 = 𝐷 (𝑚) is digest of𝑚. Upon receiving a pre-prepare message, as

indicated in lines 10-12, each node 𝑟 of the initiator zone 𝑧𝑖 checks

the migration request to be valid and sequence number 𝑛 to be the

highest global sequence number that the node knows and also be

4

Algorithm 1 Endorsement Protocol

1: 𝑟 := Id of the node running the algorithm

2: 𝑧𝑖 := the initiator zone id

3: 𝑣 (𝑧) := view number of node 𝑟 in zone 𝑧
4: 𝜋 (𝑧) := the primary node of zone 𝑧
5: 𝑄𝑧 := a quorum of 2𝑓 + 1 different nodes in zone 𝑧
6: 𝑄𝑀 := a (majority) quorum of primary node from different zones

■ Endorsement in the initiator zone (PROPOSE phase) ■
▷ 𝑟 = 𝜋 (𝑧𝑖) :

7: upon receiving valid𝑚 = ⟨MIG-REQUEST, 𝑜𝑝, 𝑡𝑠𝑐 , 𝑐 ⟩𝜎𝑐
8: assign Ballot number ⟨𝑛, 𝑧𝑖 ⟩ to𝑚
9: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)

to 𝑧𝑖

▷ 𝑟 ∈ 𝑧𝑖 :
10: upon receiving ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)
11: if message𝑚 and Ballot number ⟨𝑛, 𝑧𝑖 ⟩ are valid then

12: multicast ⟨PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑖
13: upon receiving ⟨PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑖
14: multicast ⟨LOCAL-PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑖
▷ 𝑟 = 𝜋 (𝑧𝑖) :

15: upon receiving ⟨LOCAL-PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑖
16: multicast ⟨PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)

to every node

■ Endorsement in a follower zone 𝑧𝑓 (PROMISE phase) ■
▷ 𝑟 = 𝜋 (𝑧𝑓) :

17: upon receiving 𝑝 = ⟨PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)
18: if 𝑛 is greater than any received sequence number and C is valid

19: if 𝑧𝑓 is the source zone then 𝑙𝑜𝑐𝑘 (𝑐) = FALSE

20: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑝,𝑑𝑝 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) to 𝑧𝑓

▷ 𝑟 ∈ 𝑧𝑓 :

21: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑝,𝑑𝑝 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓)
22: if 𝑧𝑓 is the source zone then 𝑙𝑜𝑐𝑘 (𝑐) = FALSE

23: multicast ⟨LOCAL-PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑓
▷ 𝑟 = 𝜋 (𝑧𝑓) :

24: upon receiving ⟨LOCAL-PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑓

25: multicast ⟨PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) to 𝑧𝑖

■ Endorsement in the initiator zone (ACCEPT phase) ■
▷ 𝑟 = 𝜋 (𝑧𝑖) :

26: upon receiving valid 𝑞=⟨PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) from𝑄𝑀

27: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑞1, 𝑞2,.., 𝑑𝑞1 , 𝑑𝑞2 ,.., 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
to 𝑧𝑖

▷ 𝑟 ∈ 𝑧𝑖 :
28: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑞1, 𝑞2,.., 𝑑𝑞1 , 𝑑𝑞2 ,.., 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
29: multicast ⟨LOCAL-ACCEPT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑖
▷ 𝑟 = 𝜋 (𝑧𝑖) :

30: upon receiving matching ⟨LOCAL-ACCEPT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑖
31: multicast ⟨ACCEPT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑 ⟩𝜎𝜋 (𝑧𝑖)

to every node

■ Endorsement in a follower zone 𝑧𝑓 (ACCEPTED phase) ■
▷ 𝑟 = 𝜋 (𝑧𝑓) :

32: upon receiving 𝑎=⟨ACCEPT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
33: if 𝑛 is greater than any received sequence number and C is valid

34: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎,𝑑𝑎 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) to 𝑧𝑓

▷ 𝑟 ∈ 𝑧𝑓 :

35: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎,𝑑𝑎 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓)
36: multicast ⟨LOCAL-ACCEPTED, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑓
▷ 𝑟 = 𝜋 (𝑧𝑓) :

37: upon receiving ⟨LOCAL-ACCEPTED, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑓

38: multicast ⟨ACCEPTED, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) to 𝑧𝑖

■ Endorsement in the initiator zone (COMMIT phase) ■
▷ 𝑟 = 𝜋 (𝑧𝑖) :

39: upon receiving valid 𝑎=⟨ACCEPTED, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑 ⟩𝜎𝜋 (𝑧𝑓) from𝑄𝑀

40: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎1, 𝑎2, .., 𝑑𝑎1 , 𝑑𝑎2 , .., 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
to 𝑧𝑖

▷ 𝑟 ∈ 𝑧𝑖 :
41: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎1, 𝑎2, .., 𝑑𝑎1 , 𝑑𝑎2 , .., 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
42: multicast ⟨LOCAL-COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑖
▷ 𝑟 = 𝜋 (𝑧𝑖) :

43: upon receiving matching ⟨LOCAL-COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑖
44: multicast ⟨COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑 ⟩𝜎𝜋 (𝑧𝑖)

to every node

■ Updating Global Meta-data (EXECUTION phase) ■
▷ ∀𝑟 :

45: upon receiving valid ⟨COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
46: execute client request 𝑜𝑝 on global meta-data

within a predefined small range to prevent a malicious primary

from exhausting the space of sequence numbers by choosing a

very large value [17]. Node 𝑟 then multicasts a prepare message

⟨PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 to all nodes of the initiator zone 𝑧𝑖 .

When a node 𝑟 logs matching prepare messages from a quorum of

2𝑓 different nodes that match the pre-preparemessage received from

the primary, as shown in lines 13-14, it multicasts a local-proposemes-

sage (equal to commit message in PBFT) to all nodes of the initiator

zone 𝑧𝑖 . This local-propose message is used by the primary in con-

structing the certificate to prove that a quorum of 2𝑓 +1 nodeswithin
zone 𝑧𝑖 agree with the propose message. Upon receiving a quorum

of 2𝑓 + 1 local-propose messages (lines 15-16), the primary aggre-

gates these messages to construct a certificate C. The primary then

multicasts a propose message ⟨PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)
to all nodes of every zone.

Promise phase. When the primary node of a follower zone 𝑧𝑓
receives a propose message, as shown in lines 17-20, it first checks

the request, the message and the certificate C to be valid and the

global sequence number 𝑛 to be greater than any global sequence

number that the node is aware of. Nodes, as mentioned before,

maintain a 𝑙𝑜𝑐𝑘 bit for each client to keep track of its mobility

where 𝑙𝑜𝑐𝑘 = TRUE means the client data is up-to-date. If 𝑧𝑓 is the

source zone, its primary node sets 𝑙𝑜𝑐𝑘 (𝑐) to be FALSE. At this point,

the source zone does not accept any local requests from client 𝑐

anymore.

The primary node of the follower zone 𝑧𝑓 then multicasts a pre-
prepare message ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑝, 𝑑𝑝 , 𝑑⟩𝜎𝜋 (𝑧𝑓) to

the nodes of its zone 𝑧𝑓 where 𝑝 is the received proposemessage, 𝑑𝑝
is its digest, and ⟨𝑙, 𝑧𝑙 ⟩ is the Ballot number of the latest migration
request that has been accepted (and either committed or not) by the

follower zone 𝑧𝑓 . Ballot number ⟨𝑙, 𝑧𝑙 ⟩ is used to determine the order

of executing global requests. Note that sending the Ballot Number

of the latest accepted migration request irrespective of whether it
was committed or not is different from Paxos where follower (i.e.,

acceptor) nodes send the latest (actual) value that is decided (i.e.,

accepted) but not yet committed (because the previous leader has

failed) to the new leader and the new leader has to propose and

commit that value before proposing its own value. The reason is

that in Ziziphus, when the primary of a zone fails, another node

from the same zone becomes the primary and will continue to

process the request, hence, there is no need for the primary node of

other zones to recover an accepted value. However, the order of the

global requests needs to be preserved, i.e., a request with a lower

sequence number must be executed earlier than a request with a

higher sequence number. It is also different from PBFT where a

single primary node assigns incremental sequence numbers to the

requests and nodes execute requests in the same order. Here, since

different nodes, i.e., the primary node of different zones, might

become the global primary and there might be some gap between

the sequence number of consecutive global requests, each request

includes the sequence number of its previous global request to

provide an ordering for the execution, e.g., if a zone has not received

the previous global request, the zone becomes aware of that request

by checking the ⟨𝑙, 𝑧𝑙 ⟩ parameter in the current request.

Upon receiving a pre-prepare message from the primary of zone 𝑧𝑓
(lines 21-23), each node 𝑟 in 𝑧𝑓 checks the request, the message,

the certificate C, and both Ballot numbers to be valid. Similarly,

if 𝑧𝑓 is the source zone, each node sets 𝑙𝑜𝑐𝑘 (𝑐) to be FALSE. The

node then multicasts ⟨LOCAL-PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 , ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟

5

to all nodes of zone 𝑧𝑓 . Upon receiving 2𝑓 + 1 valid matching

local-promise messages from different nodes (lines 24-25), the pri-

mary node of each follower zone 𝑧𝑓 aggregates these messages

to construct a certificate C𝑓 and then multicasts a promise mes-

sage ⟨PROMISE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑⟩𝜎𝜋 (𝑧𝑓) to the nodes of the

initiator zone 𝑧𝑖 .

Accept phase. The global primary 𝜋 (𝑧𝑖) waits for promise mes-

sages from one-half of zones to ensure that the majority of zones

(including itself) agree with the proposed request. This follows the

safety argument of Paxos [39] where to become the leader promise
messages from a majority of acceptors is needed. In Ziziphus, since

each message at the top-level needs to be endorsed with a quorum

of 2𝑓 + 1 signatures, nodes can not behave maliciously and the

failure model of nodes is reduced to crash failure model. As a result,

the safety condition of crash fault-tolerant protocols like Paxos

is sufficient to guarantee the safety of the data synchronization

protocol.

Upon receiving sufficient valid promise messages from different fol-

lower zones (lines 26-27), the global primary multicasts a pre-prepare
message ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑞1, 𝑞2,.., 𝑑𝑞1 , 𝑑𝑞2 ,.., 𝑑⟩𝜎𝜋 (𝑧𝑖)
to all nodes of its zone 𝑧𝑖 where 𝑙 is the greatest (previous) global

sequence number that either 𝜋 (𝑧𝑖) is aware of or is received in

promise messages and each 𝑞 𝑗 is the promise message received from

zone 𝑧 𝑗 and 𝑑𝑞 𝑗
is its digest. Nodes of 𝑧𝑖 validate the received pre-

prepare message and multicast a local-accept to the primary node

of 𝑧𝑖 (lines 28-29). Upon receiving a quorum of 2𝑓 + 1 local-accept
messages (lines 30-31), the global primary aggregates these mes-

sages, constructs a certificate C, and multicasts an accept message

⟨ACCEPT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑⟩𝜎𝜋 (𝑧𝑖)
to all nodes of every zone.

Accepted phase. Upon receiving a valid accept message, the pri-

mary node of a follower zone 𝑧𝑓 , as shown in lines 32-34, checks

the message and the certificate C to be valid and the global se-

quence number 𝑛 to be greater than any sequence number that the

node is aware of and ensures that it has not accepted any global

sequence number greater than 𝑙 . The primary node then multicasts

pre-preparemessage ⟨PRE-PREPARE, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎, 𝑑𝑎, 𝑑⟩𝜎𝜋 (𝑧𝑓)

to all nodes of its zone, 𝑧𝑓 , where 𝑎 is the received accept message

and𝑑𝑎 is its digest. Nodes of 𝑧𝑓 validate the received pre-preparemes-

sage and multicast a local-accepted to the primary node of 𝑧𝑓 (lines

35-36). The primary of 𝑧𝑓 waits for a quorum of 2𝑓 +1 local-accepted
messages from different nodes (lines 37-38), constructs a certifi-

cate C𝑓 , and multicasts ⟨ACCEPTED, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C𝑓 , 𝑑⟩𝜎𝜋 (𝑧𝑓)

to the nodes of the initiator zone 𝑧𝑖 .

Commit phase. The global primary waits for accepted messages

from the primary nodes of a majority of zones (lines 39-40) to multi-

cast a ⟨PRE-PREPARE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩,, ⟨𝑙, 𝑧𝑙 ⟩, 𝑎1, 𝑎2, .., 𝑑𝑎1 , 𝑑𝑎2 , .., 𝑑⟩𝜎𝜋 (𝑧𝑖)
message to all the nodes of zone 𝑧𝑖 where each 𝑎 𝑗 is the accepted
message received from zone 𝑧 𝑗 and 𝑑𝑎 𝑗

is its digest. Nodes of 𝑧𝑖 val-

idate the received pre-prepare message and multicast a local-commit
to the primary node of 𝑧𝑖 (lines 41-42). Upon receiving a quorum

of 2𝑓 + 1 local-commit messages (lines 43-44), the global primary

aggregates these messages, constructs a certificate C, and multi-

casts a commit message ⟨COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, ⟨𝑙, 𝑧𝑙 ⟩, C, 𝑑⟩𝜎𝜋 (𝑧𝑖)
to

all nodes of every zone.

Execution phase. Once a node in any zones receives a valid com-
mit message from the global primary, if the node has executed the

previous global transaction with Ballot number ⟨𝑙, 𝑧𝑙 ⟩, the node

executes the client request on the global system meta-data. This en-

sures that all nodes execute requests in the same order as required

to ensure safety. Depending on the predefined network-wide poli-

cies, executing the request might result in updating the number of

clients in the source and the destination zone and incrementing the

number of client’s migrations in some period.

Nodes of the initiator zone also send a reply message including the

execution results to the client informing the client that the first

sub-transaction has been committed. The client waits for 𝑓 +1 valid
matching responses from different nodes within the initiator zone

to ensure that at least one correct node executed its request. If the

client does not receive reply messages soon enough, it multicasts

the request to all nodes within the initiator zone. If the request has

already been processed, the nodes simply re-send the replymessage

to the client (nodes remember the last reply message they sent to

each client). Otherwise, if the node is not the primary, it relays

the request to the primary. If the primary does not multicast the

request to the nodes, it will eventually be suspected to be faulty by

nodes to cause a primary failure handling routine.

3.2.2 Data Synchronization Protocol with Stable Primary Node
In the proposed data synchronization protocol and in order to pro-

cess a global transaction, the primary node of the destination zone

becomes the global primary and initiates consensus on the order

of the transaction among all zones. In this way, for every global

transaction, a new node becomes the primary (leader) and, similar

to Paxos, the propose and promise phases of the data synchronization
protocol are needed for leader election.

Ziziphus can benefit from the stable leader technique used in multi-

Paxos to process global transactions more efficiently. Using the

stable leader technique, one of the zones initiates all global trans-

actions and clients irrespective of the source and the destination

zones, send their migration request messages to the stable initiator

zone. In this manner, there is no need for the propose and promise
(leader election) phases in the data synchronization protocol and

the primary of the initiator zone after establishing consensus on the

request in its zone, multicasts an accept message to all other zones.

If the primary fails, another node from the same zone becomes the

primary (Section 3.3) and processes global transactions.

3.2.3 Data Migration Protocol
The first sub-transaction of the global transaction establishes agree-

ment among all zones on the client migration and updates the global

system meta-data. In the second sub-transaction, the client data

is migrated from the source to the destination zone. The second

sub-transaction is initiated by the primary node of the source zone,

i.e., the zone that the client has migrated from. The primary node

needs to collect the local data records, i.e., history, of the client,

establish consensus on the client history within its zone to con-

struct a certificate including 2𝑓 + 1 signatures and multicast the

history to the destination zone. The destination zone validates the

message and appends the history to its database. At this point, the

destination zone can process the incoming requests of the client.

Algorithm 2 presents the normal case operation of the data mi-

gration protocol to process the second sub-transaction of a global

transaction. Although not explicitly mentioned, every sent and re-

ceived message is logged by the nodes. As indicated in lines 1-8

6

Algorithm 2 Data Migration Protocol

init():
1: 𝑟 := Id of the node running the algorithm

2: 𝑧𝑖 := the initiator zone id

3: 𝑧𝑠 := the source zone id

4: 𝑧𝑑 := the destination zone id

5: 𝑣 (𝑧) := view number of node 𝑟 in zone 𝑧
6: 𝜋 (𝑧) := the primary node of zone 𝑧
7: 𝑄𝑧 := a quorum of 2𝑓 + 1 different nodes in zone 𝑧

8: 𝑅 (𝑐) := records of client 𝑐

■ Record generation in the source zone 𝑧𝑠 ■
▷ 𝑟 = 𝜋 (𝑧𝑠) :

9: upon receiving valid𝑚 = ⟨COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑑 ⟩𝜎𝜋 (𝑧𝑖)
10: extract 𝑅 (𝑐) from database

11: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑅 (𝑐), 𝑑𝑐 , 𝑑 ⟩𝜎𝜋 (𝑧𝑠) to 𝑧𝑠

▷ 𝑟 ∈ 𝑧𝑠 :
12: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑅 (𝑐), 𝑑𝑐 , 𝑑 ⟩𝜎𝜋 (𝑧𝑠)
13: multicast ⟨PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑠
14: upon receiving matching ⟨PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑠
15: multicast ⟨LOCAL-HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟 to 𝑧𝑠
▷ 𝑟 = 𝜋 (𝑧𝑠) :

16: upon receiving matching ⟨LOCAL-HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑠
17: multicast ⟨HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑅 (𝑐), 𝑑𝑐 , 𝑑 ⟩𝜎𝜋 (𝑧𝑠) to 𝑧𝑑

■ Record appending in the destination zone 𝑧𝑑 ■
▷ 𝑟 = 𝜋 (𝑧𝑑) :

18: upon receiving valid ℎ=⟨HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑅 (𝑐), 𝑑𝑐 , 𝑑 ⟩𝜎𝜋 (𝑧𝑠)
19: multicast ⟨PRE-PREPARE, 𝑣 (𝑧𝑑), ⟨𝑛, 𝑧𝑖 ⟩, ℎ,𝑑ℎ ⟩𝜎𝜋 (𝑧𝑑) to 𝑧𝑑

▷ 𝑟 ∈ 𝑧𝑑 :

20: upon receiving valid ⟨PRE-PREPARE, 𝑣 (𝑧𝑑), ⟨𝑛, 𝑧𝑖 ⟩, ℎ,𝑑ℎ ⟩𝜎𝜋 (𝑧𝑑)
21: multicast ⟨LOCAL-COMMIT, 𝑣 (𝑧𝑑), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑,𝑑ℎ, 𝑟 ⟩𝜎𝑟 to 𝑧𝑑
22: upon receiving ⟨LOCAL-COMMIT, 𝑣 (𝑧𝑑), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑,𝑑ℎ, 𝑟 ⟩𝜎𝑟 from𝑄𝑧𝑑
23: 𝑙𝑜𝑐𝑘 (𝑐) = TRUE
24: append 𝑅 (𝑐) to the database

25: send ⟨REPLY, 𝑣 (𝑧𝑑), 𝑡𝑠𝑐 ⟩𝜎𝑟 to client 𝑐

of the algorithm, 𝑟 denotes the node id and 𝑧𝑖 , 𝑧𝑠 and 𝑧𝑑 are the

initiator, the source and the destination zones respectively. Note

that in the common case, the destination zone is the same as the

initiator zone (𝑧𝑑 = 𝑧𝑖). Using the stable leader technique, however,

the destination zone might be different from the initiator zone. 𝑣 (𝑧)
specifies the view number of node 𝑟 in zone 𝑧, 𝜋 (𝑧) is the primary

node of zone 𝑧, 𝑄𝑧 is a quorum of 2𝑓 + 1 different nodes in zone 𝑧

and 𝑅(𝑐) refers to the data records of client 𝑐 in the source zone.

Record Generation. When the primary node of zone 𝑧𝑠 has com-

mitted and executed a migration request received from a client 𝑐

that has migrated from 𝑧𝑠 to 𝑧𝑑 , as shown in lines 9-11, the pri-

mary node 𝜋 (𝑧𝑠) first generates the client history 𝑅(𝑐). The client
history includes all transaction records of client 𝑐 . The node then

initiates consensus on 𝑅(𝑐) by multicasting a pre-prepare message

⟨PRE-PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑅(𝑐), 𝑑𝑐 , 𝑑⟩𝜎𝜋 (𝑧𝑠) to the nodes of zone 𝑧𝑠
where𝑑𝑐 is the digest of 𝑅(𝑐) and𝑑 is the digest of the client request.

Upon receiving a valid pre-preparemessage including a client record

𝑅(𝑐) from the primary node (lines 12-13), each node 𝑟 of the zone

𝑧𝑠 multicasts a prepare message ⟨PREPARE, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟
to all nodes in zone 𝑧𝑠 . Each node waits for a quorum of 2𝑓 +
1 valid prepare messages and multicasts a local-history message

⟨LOCAL-HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑𝑐 , 𝑑, 𝑟 ⟩𝜎𝑟 to all nodes in zone 𝑧𝑠 (lines
14-15). The primary node 𝜋 (𝑧𝑠) collects 2𝑓 + 1 local-history mes-

sages from different nodes (lines 16-17), constructs a certificate C,
and multicasts ⟨HISTORY, 𝑣 (𝑧𝑠), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑅(𝑐), 𝑑𝑐 , 𝑑⟩𝜎𝜋 (𝑧𝑠) message

to the nodes of the destination zone 𝑧𝑑 .

Record Appending. Upon receiving a valid history message, the

primary node of the destination zone 𝑧𝑑 , as shown in lines 18-

19, checks the message and certificate C to be valid and multicasts

pre-preparemessage ⟨PRE-PREPARE, 𝑣 (𝑧𝑑), ⟨𝑛, 𝑧𝑖 ⟩, ℎ, 𝑑ℎ⟩𝜎𝜋 (𝑧𝑑) to nodes

of its zone where ℎ is the received history message and 𝑑ℎ is its

digest. Nodes of 𝑧𝑑 validate the received pre-prepare message and

multicast a local-commit to all nodes within zone 𝑧𝑑 (lines 20-21).

Upon receiving a quorum of 2𝑓 + 1 local-commit messages from

different nodes (lines 22-25), each node in 𝑧𝑑 sets 𝑙𝑜𝑐𝑘 (𝑐) to be

TRUE, appends the client record 𝑅(𝑐) to its database and sends a

reply to the client informing that the migration has been performed

successfully. Similar to the first sub-transaction, The client waits

for 𝑓 + 1 valid matching responses from different nodes within the

destination zone to ensure that at least one correct node executed

its request and if it does not receive reply messages, it multicasts

the request to all nodes within the destination zone.

3.3 Primary Failure Handling
The primary failure handling routine improves liveness by allowing

the system to make progress when a primary node fails. In local

transactions and upon failure of the primary node of a zone, the

view change routine of PBFT is triggered by timeouts to replace

the faulty primary.

For global transactions, however, detecting and handling failures

is more difficult. While the data synchronization protocol follows

crash-fault tolerant protocols, i.e., it requires linear communication

phases and majority quorums, the participants in the global con-

sensus are (Byzantine) primary nodes of different zones. Although

a primary node can not behave maliciously since any messages

need to be endorsed by 2𝑓 + 1 nodes of a zone, a malicious primary

node can choose not to send any endorsed messages or only send

messages to a subset of the nodes. Hence, in the worst-case scenario,

all nodes participating in the global consensus might be malicious

and not send any messages. The failure handling of Ziziphus needs

to handle all such situations.

To handle failures, if the follower zone 𝑧𝑓 has gone through the

accepted phase for a request and node 𝑟 of a follower zone does not

receive a commit message from the global primary, i.e., the primary

node of the initiator zone 𝑧𝑖 , and its timer expires, node 𝑟 multicasts

a ⟨RESPONSE-QUERY, 𝑣 (𝑧𝑓), ⟨𝑛, 𝑧𝑖 ⟩, 𝑑, 𝑟 ⟩𝜎𝑟 message to all nodes of the

initiator zone including the request digest 𝑑 . Similarly, nodes of the

initiator zone multicast responses-query messages to the nodes of

a follower zone if they do not receive accepted messages for their

migration request. In all such cases, if the message has already been

processed, the nodes simply re-send the corresponding response

and log the responses-query messages to detect denial-of-service

attacks initiated by malicious nodes. If the node (of a follower zone)

has accepted another migration request with a higher ballot number

in between, the node simply ignores the responses-query messages.

If a node receives responses-query message from 2𝑓 + 1 nodes of

another zone (without receiving any other migration request with a

higher ballot number in between), it suspects that the primary node

of its zone might be faulty triggering the execution of the failure

handling routine. Moreover, since all messages from a primary of

a zone (either initiator or follower) are multicast to every node

of the other zone(s), if the primary of the receiver zone does not

initiate consensus on the message among the nodes of its zone

(even after the message is relayed by nodes of its zone), it will

eventually be suspected to be faulty by the nodes of its zones. The

data migration protocol handles failure in the same way for history
messages. Finally, if a client does not receive a reply soon enough,

7

it multicasts the request to all nodes of the destination zone. If

the request has already been processed, the nodes simply send the

execution result back to the client. Otherwise, if the node is not the

primary, it relays the request to the primary. If the nodes do not

receive pre-prepare messages, the primary will be suspected to be

faulty resulting in triggering the primary failure handling routine.

3.4 Fault Tolerance and Availability
Ziziphus processes global transactions with agreement from only a

majority of zones. This means that at the global level, Ziziphus is

able to tolerate ⌊𝑍−1
2

⌋ failures out of𝑍 zones. Other than amalicious

primary, a zone might fail due to natural disasters like tornadoes

or earthquakes. Note that, using the stable leader technique, if the

stable initiator zone fails, Ziziphus can rely on some other zone to

initiate all global transactions.

Consider a simplified scenario where faulty nodes are uniformly

distributed in three different zones and each zone includes 3𝑓 +1. To
process a global transaction, Ziziphus requires agreement from the

majority of zones, i.e. two zones, and within each zone, the message

needs to be endorsed by 2𝑓 + 1 nodes. As a result, in this scenario,

Ziziphus can process a global transaction with 4𝑓 + 2 nodes out

of 9𝑓 + 3 nodes. Processing a transaction using PBFT among these

nodes in a flat manner assuming 𝐹 = 3𝑓 , however, requires 6𝑓 + 1

nodes out of 9𝑓 + 1 nodes.

This clearly demonstrates the advantage of first, clustering the

noses into zones in order to confine the maliciousness of Byzantine

nodes within their zones and second, being aware of where the

faulty nodes are and uniformly distribute nodes in such a way that

each zone includes exactly 3𝑓 + 1 nodes.

Ziziphus, however, can tolerate the failure of zones only for global

transactions because the results of local transactions are replicated

only on the nodes of a single zone and if a zone fails due to natu-

ral disasters, no other zone can process the local transactions of

the failed zone. This is in contrast to Steward [4] and Blockplane

[46] where the failure of zones is tolerated for all transactions by

replicating every single transaction on all zones.

Providing the same level of fault tolerance as Steward and Block-

plane, however, requires running global synchronization for every

single transaction resulting in high communication latency. To

address this problem, Ziziphus can use lazy synchronization tech-

niques to provide some degree of fault tolerance for local transac-

tions without running global synchronization for every transaction.

Byzantine fault-tolerant protocols, e.g., PBFT, use a checkpoint-

ing mechanism to produce the last stable state of data (i.e., a per-

sisted state). Checkpoints are usually generated periodically when

a transaction with a sequence number divisible by some constant

is executed. In an edge network where the percentage of migration

requests is not supposed to be high, zones can generate checkpoints

to capture the state of their executed local transactions whenever

they receive a migration request. The checkpoint is generated by

the primary node of the zone and multicast to all nodes (as part of

the pre-prepare messages). Each checkpoint needs to be signed by a

quorum of 2𝑓 + 1 nodes within the zone (as part of the local-accepted
messages) and the primary node of the zone includes that in the ac-
ceptedmessage sent to the global primary node. The global primary

then puts all received stable checkpoints in its commit message and

multicasts it to all zones.

Each zone then replicates the latest stable state of every zone con-

sisting of all executed local transactions on all its nodes. In this

way, if an entire zone fails, transactions that are executed before its

last stable checkpoint have been replicated on all other zones.

3.5 Correctness
Consensus protocols have to satisfy safety and liveness. We briefly

analyze the safety and liveness properties of Ziziphus.

Lemma 3.1. If node 𝑟 commits transaction𝑚 with sequence number

𝑛, no other non-faulty node commits request𝑚′
(𝑚 ≠𝑚′

) with the

same sequence number 𝑛.

Proof: PBFT guarantees safety [17]. We just need to show that

safety is guaranteed for global transactions, i.e., the data synchro-

nization and data migration protocols. To commit a transaction

(promise and) accepted messages from a majority of zones is needed.

As a result, if two different transactions𝑚 and𝑚′
have been com-

mitted with the same sequence number, at least the primary node

of one zone sends valid accepted messages for both transactions. To

send a valid accepted message the primary node needs to collect

a quorum 2𝑓 + 1 matching votes from different nodes of its zone

to construct certificates. As a result, to send accepted messages for

both𝑚 and𝑚′
, a quorum of 2𝑓 + 1 nodes, 𝑄𝑚 has agreed with the

order of𝑚 and a quorum of 2𝑓 + 1 nodes, 𝑄𝑚′ has agreed with the

order of𝑚′
. since 𝑄𝑚 and 𝑄𝑚′ intersect on at least one non-faulty

node, the non-faulty node must have agreed with both sequence

numbers which violates the definition of non-faulty nodes. Hence,

if𝑚 ≠𝑚′
then 𝑛 ≠ 𝑛′ (where 𝑛′ is the sequence number of𝑚′

) and

safety is guaranteed.

Furthermore, the validity of messages is guaranteed based on stan-

dard cryptographic assumptions about collision-resistant hashes,

encryption, and signatures which the adversary cannot subvert.

All messages are endorsed by 2𝑓 + 1 nodes and either the request

or its digest is included in each message to prevent alterations to

any part of the message. In this way, we ensure that if a request is

committed, the same request must have been proposed earlier.

Lemma 3.2. A request𝑚 issued by a correct client will eventually

be complete if the majority of zones can still communicate.

Due to the FLP result [27], Ziziphus guarantees liveness only during
periods of synchrony where a majority of zones can still communi-

cate. Ziziphus addresses liveness in primary failure and collision

situations. In case of primary failure within a zone, as discussed in

Section 3.3, the failure of the primary is detected and using the view

change routine the primary node is replaced. A collision situation

happens when the primary nodes of different zones try to initiate

global transactions (i.e., data synchronization protocol) in paral-

lel. In this case, when a primary node can not collect a majority

quorum, the timer of its request will be expired and the primary

node needs to re-propose the request. To reduce the probability of

consecutive collisions, Ziziphus, similar to Paxos, randomizes the

waiting time for the nodes that want to re-propose requests.

4 Ziziphus Scalability
Processing global transactions in Ziziphus requires establishing

consensus among all zones. However, as the system scales, the

number of zones might increase to hundreds or even thousands of

zones over wide area networks. Running consensus among all these

8

Figure 3: Ziziphus scalability using zone clusters

zones for every single global transaction results in low throughput

and high latency. To address this problem, Ziziphus defines zone
clusters where each zone cluster consists of a set of zones in a

region, e.g., country. Zones within a zone cluster maintain the same

(regional) system meta-data (instead of global meta-data), however,

different zone clusters maintain different system meta-data. This is

a reasonable assumption because most policies need to be enforced

at the regional level, e.g., country-wide, and if zones are spread all

around the world, zones in Europe and zones in North America, for

instance, do not necessarily follow the same set of policies. As a

result, there is no need to maintain global system meta-data by all

zones all around the world.

Figure 3 demonstrates a network with 100 different zones 𝑧1 to 𝑧100
where zones are clustered into 22 different clusters 𝐶1 to 𝐶22. Each

cluster consists of several zones, e.g., 𝐶1 includes three zones 𝑧1,

𝑧2, and 𝑧3 while 𝐶3 consists of seven zones 𝑧7 to 𝑧13. In this Figure,

each cluster𝐶𝑖 maintains its own regional system meta-data which

is replicated on every node of all its zones and is different from

system meta-data of cluster 𝐶 𝑗 (𝑖 ≠ 𝑗).

When a client migrates from a source to a destination zone where

both source and destination zones are within the same zone cluster,

Ziziphus uses the data synchronization protocol, as presented in

Algorithm 1, to establish consensus among zones within a zone

cluster. Using the data migration protocol, as shown in Algorithm 2,

the client data is then moved from the source to the destination

zone. For example, in Figure 3, if a client migrates from zone 𝑧1 to

𝑧2, the data synchronization protocol is run within zone cluster 𝐶1

among only zones 𝑧1, 𝑧2, and 𝑧3 independent of other zone clusters

in the network.

If a client requests a migration to a zone in a different zone cluster,

e.g., from zone 𝑧1 in𝐶1 to zone 𝑧4 in𝐶2, Ziziphus, however, requires

agreement from zones of both zone clusters 𝐶1 and 𝐶2 to process

the request. To process such global transactions, inspired by the tra-

ditional coordinator-based sharding techniques used in distributed

databases, Ziziphus proposes a cross-cluster data synchronization

protocol where zones within two different zone clusters, i.e., the

source cluster and the destination cluster, establish agreement on

the order of the global transaction.

Figure 4 presents the cross-cluster data synchronization protocol

between two zone clusters 𝐶1 and 𝐶2 where 𝑧1 is the destination

(initiator) zone and 𝑧4 is the source zone. The destination zone (i.e.,

𝑧1) initiates the cross-cluster data synchronization protocol (i.e.,

plays the coordinator role) and also initiates consensus within the

Figure 4: cross-cluster data synchronization protocol

destination cluster (i.e., 𝐶1) and the source zone (i.e., 𝑧4) initiates

consensus within the source cluster (i.e., 𝐶2).

Upon receiving a migration request𝑚 = ⟨MIG-REQUEST, 𝑜𝑝, 𝑡𝑠𝑐 , 𝑐⟩𝜎𝑐
from client 𝑐 , the (global) primary 𝜋 (𝑧𝑖) of the initiator zone 𝑧𝑖 ,

similar to the data synchronization protocol, validates the request,

assigns a ballot number ⟨𝑛, 𝑧𝑖 ⟩ to the request, and initiates local

consensus on the order the request among nodes of its zone 𝑧𝑖 .

In cross-cluster data synchronization protocol and to communicate

across zone clusters, in contrast to cross-zone communications, Zizi-

phus does not rely only on the primary nodes. This is because zone

clusters process each transaction independently of each other and

communicate with each other only in the first and the last phases

(i.e., cross-propose and prepared messages). As a result, a malicious

global primary might not multicast the cross-propose message to

the source zone cluster resulting in high latency (since other zones

within the destination cluster cannot detect the malicious behavior

of the primary until the last step when they do not receive any

preparedmessages from the source cluster). To resolve this issue, we

rely on a group of 𝑓 + 1 nodes within the destination zone, called

proxy nodes, to communicate with the source zone. We require 𝑓 +1
nodes because at most 𝑓 nodes might be malicious. A node 𝑟 in the

zone 𝑧 is a proxy in view 𝑣𝑧 if (𝑣𝑧 mod 𝑟)∈[0, ..., 𝑓]. Note that the
primary, i.e., 𝑣𝑧 mod 𝑟 = 0, is always a proxy node.

Once local consensus on the order of request in zone 𝑧𝑖 is achieved,

proxy nodes aggregate 2𝑓 +1 local-proposemessages (received in the

last phase of local consensus) to construct a certificate C. The proxy
nodes then multicasts ⟨CROSS-PROPOSE, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, C, 𝑑,𝑚⟩𝜎𝜋 (𝑧𝑖)
message to all nodes of the source zone, i.e., the zone in the other

zone cluster where client has migrated from. The primary node

also multicasts a propose message (with the same structure) to all

nodes of every zone within its (destination) cluster.

Upon receiving a valid local-propose message (from any nodes), the

primary node of the source zone 𝑧 𝑗 in the source cluster, e.g., 𝑧4 in

Figure 4, establishes consensus on the order of the request in the

source cluster. In the cross-cluster data synchronization protocol,

in contrast to the data synchronization protocol where follower

zones only validate the order (Ballot number) proposed by the

initiator zone, the source zone also needs to assign a separate Ballot

number and establishes consensus on the order of the request. This

is because, in the data synchronization protocol, all zones execute

global transactions on the same global system meta-data whereas,

in the cross-cluster data synchronization protocol, each cluster

executes global transactions on its own regional system meta-data.

9

100 200 300 400 500

0

10

20

30

40

50

Number of Clients per zone

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

10% 30% 50% PBFT

(a) Throughput

100 200 300 400 500

50

100

150

200

Number of Clients per zone

L
a
t
e
n
c
y
[
m
s
]

10% 30% 50% PBFT

(b) Latency

Figure 5: Performance over three zones

As a result, each cluster requires a separate ordering, e.g., in Figure 4

both destination zone 𝑧1 and source zone 𝑧4 run PBFT.

Both source and destination clusters then follow the next steps, i.e.,

promise, accept, and accepted in the sameway as data synchronization

protocol. Once accepted phase is done, however, each proxy node

𝑟 of the source zone 𝑧 𝑗 in the source cluster, e.g., 𝑧4, constructs a

certificate C𝑠 , and multicasts a ⟨PREPARED, 𝑣 (𝑧 𝑗), ⟨𝑚, 𝑧 𝑗 ⟩, C𝑠 , 𝑑, 𝑟 ⟩𝜎𝑟
message to all nodes of the destination zone in the destination

cluster, e.g., 𝑧1 in Figure 4, to inform them that the message has

been prepared in the source cluster with Ballot number ⟨𝑚, 𝑧 𝑗 ⟩.
The primary node of the destination zone waits for (1) a quorum

of 2𝑓 + 1 local-commit messages from the nodes of its zone (in re-

sponse to acceptedmessages), and (2) a valid a preparedmessage from

the source zone. The primary node then constructs certificate C and

multicasts a ⟨COMMIT, 𝑣 (𝑧𝑖), ⟨𝑛, 𝑧𝑖 ⟩, 𝑣 (𝑧 𝑗), ⟨𝑚, 𝑧 𝑗 ⟩, C, C𝑠 , 𝑑⟩𝜎𝜋 (𝑧𝑖)
mes-

sage to all nodes of every zone in the source and the destination

cluster.

Upon receiving a valid commit message from the initiator primary,

each node executes the request on the regional system meta-data.

Finally, the client data is migrated from the source zone to the

destination zone using the data migration protocol (Algorithm 2).

Correctness. The safety and liveness (during the period of syn-

chrony) of each zone is guaranteed by PBFT [17]. The safety and

liveness of each zone cluster also follow the correctness arguments

discussed in Section 3.5. We now briefly discussed the correctness

of communication across zone clusters. In cross-propose, prepared,
and commit phases the message sent by the proxy nodes of the

destination zone, the proxy nodes of the source zone or the primary

of the destination zone includes a certificate consisting of 2𝑓 + 1

signatures proving the validity of the message. As a result, since

any two quorums of nodes within a zone intersect on at least one

non-faulty node, with the same argument as Section 3.5, safety is

guaranteed.

In cross-cluster data synchronization protocol and to handle failures,

nodes of the destination zone multicast responses-query messages

(with the same structure as discussed in Section 3.3) to the source

zone if they do not receive prepared messages. Similarly, if commit
messages are not received and the timer is expired, nodes of the

source zone multicast responses-query messages to the destination

zone. Moreover, in the cross-cluster data synchronization protocol,

any communications across clusters are performed by 𝑓 + 1 nodes

of each zone (proxy nodes) to prevent a malicious primary from

delaying the protocol by not sendingmessages. The failure handling

routine follows similar steps as Section 3.3. Ziziphus guarantees

100 200 300 400 500

0

10

20

30

40

Number of Clients per zone

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

10% 30% 50% PBFT

(a) Throughput

100 200 300 400 500

50

100

150

200

Number of Clients per zone

L
a
t
e
n
c
y
[
m
s
]

10% 30% 50% PBFT

(b) Latency

Figure 6: Performance over three zones (leader election)

liveness only during periods of synchrony where in each zone

cluster, a majority of zones can still communicate.

5 Experimental Evaluations

This section evaluates the performance of Ziziphus. We imple-

mented a prototype of Ziziphus using Golang and deployed a sim-

ple accounting application on top of it where the client data is

stored in a key-value store replicated on the nodes in each zone.

Each client initiates local transactions to transfer money from its

account to another client’s account within the same zone. Local

transactions are processed using PBFT [17]. If a client migrates to

another zone, it initiates a migration request resulting in running

the data synchronization protocol among all zones and the data

migration protocol between the source and the destination zones.

In each set of experiments, we consider three different workloads

with 10%, 30%, and 50% of global transactions. The workload with

10% global transaction (and 90% local transaction) is the typical set-

ting in partitioned databases [53]. We consider 50% as the maximum

percentage of global transactions because Ziziphus is designed to

support edge networks where accesses to data have an affinity

towards locality. We further compare Ziziphus with a flat imple-

mentation of PBFT where for every transaction, PBFT runs among

all nodes. The network size of Ziziphus and PBFT, however, is dif-

ferent, i.e., Ziziphus requires 𝑍 ∗ (3𝑓 + 1) nodes where 𝑍 is the

number of zones while PBFT requires 3 ∗𝑍 𝑓 + 1 nodes where 𝑍 ∗ 𝑓
is the total number of faulty nodes. The distribution of PBFT nodes

in zones will be explained in each experiment in detail. In all ex-

periments, we consider 𝑓 = 1, i.e., each zone includes four nodes.

While we have not compared Ziziphus with Steward, Steward can

be seen as Ziziphus with 100% global transactions, i.e., every single

transaction requires global synchronization across all zones.

We have not run any experiments to evaluate the cross-cluster data

synchronization protocol for two reasons. First, as shown in Fig-

ure 4, only cross-propose and preparedmessages require cross-cluster

communication. Hence, zones can process client transactions si-

multaneously and independently of each other and Ziziphus clearly

scales linearly with increasing the number of zone clusters. Second,

evaluating cross-cluster data synchronization protocol requires

hundreds of nodes to be run concurrently, e.g., to run the network

presented in Figure 3, 400 VM instances (other than client VMs)

would be needed requiring significant resources.

In each experiment, we vary the number of requests sent by all

the clients per second and measure the end-to-end throughput (𝑥

axis) and latency (𝑦 axis) of the system. We increase the number

10

100 200 300 400 500

0

20

40

60

80

Number of Clients per zone

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(a) 10% global transactions

100 200 300 400 500

0

6

12

18

24

Number of Clients per zone

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(b) 30% global transactions

100 200 300 400 500

0

5

10

15

20

Number of Clients per zone

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(c) 50% global transactions

Figure 7: Throughput with increasing the number of zones

of concurrent clients per zone from 10 to 500 clients. Each client

waits for a reply before sending a subsequent request.

The experiments were conducted on the Amazon EC2 platform

where zones are placed in geographically far apart regions (in each

experiment, we explain the settings in detail). All instances are size

c4.large (3.75GB memory) running Amazon Linux 2 AMI.

5.1 Ziziphus Performance Over Three Zones
In the first set of experiments, we measure the performance of

Ziziphus in a setting with three zones distributed over three AWS

regions, i.e., California (CA), Ohio (OH), and Quebec (QC) where
CA⇌ OH: 52 ms, CA⇌ QC: 80 ms, and OH⇌ QC: 46 ms.

In the Ziziphus deployment, each zone consists 4 nodes, i.e., 3𝑓 + 1

where 𝑓 = 1. BBFT, however, requires 10 nodes in total, i.e., 3∗3𝑓 +1.
As a result, PBFT runs on 4 nodes in CA and 3 nodes in each of

QC and OH datacenters. In general, Ziziphus requires 𝑍 ∗ (3𝑓 + 1)
where 𝑍 is the number of zones while to tolerate the same number

of failures, PBFT requires 𝑍 − 1 fewer number of nodes.

In this experiment, and for the data synchronization protocol, we

use the stable leader technique, as discussed in Section 3.2.2, where

a stable primary node initiates all instances of the data synchroniza-

tion protocol, i.e., there is no need to perform the leader election

(propose and promise) phases.
As shown in Figure 5, in the workload with 10% global transac-

tions and in the presence of 400 concurrent clients, Ziziphus is

able to process more than 57 k transactions per second with 30

ms latency before the end-to-end throughput is saturated. Increas-

ing the number of concurrent clients to 500, however, reduces the

throughput of Ziziphus and increases its performance. As can be

seen in all three workloads, i.e. 10%, 30%, and 50% global transac-

tions, Ziziphus demonstrates better performance than PBFT. This

is expected because first, Ziziphus processes local transactions in

parallel and second, the global transactions are processed using a

cheaper protocol than PBFT.

5.2 Performance with Leader Election Phase
We then repeat the first set of experiments with the same settings

but this time the leader election (propose and promise) phase is added
to the data synchronization protocol. Adding this phase increases

the latency of global transactions processing and reduces the overall

performance. As shown in Figure 5, in the workload with 10% global

transactions and in the presence of 300 concurrent clients (peak

performance), Ziziphus is able to process 42.5 k transactions per

second with 23 ms which demonstrates 22% lower throughput and

8% higher latency in comparison to the same experiment with a

stable leader.

100 200 300 400 500

0

100

200

300

Number of Clients per zone

L
a
t
e
n
c
y
[
m
s
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(a) 10% global transactions

100 200 300 400 500

0

100

200

300

Number of Clients per zone

L
a
t
e
n
c
y
[
m
s
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(b) 30% global transactions

100 200 300 400 500

0

150

300

450

Number of Clients per zone

L
a
t
e
n
c
y
[
m
s
]

Ziziphus-3 Ziziphus-5 Ziziphus-7

PBFT-3 PBFT-5

(c) 50% global transactions

Figure 8: Latency with increasing the number of zones

Increasing the percentage of global transactions to 50% results in

a larger gap between two experiments; one with a stable leader

and one with leader election. In the workload with 50% global

transactions and in the presence of 400 concurrent clients, Ziziphus

is able to process 8 k transactions per second with 168 ms which

demonstrates 57% lower throughput and 95% higher latency in

comparison to the same experiment with a stable leader. With 50%

global transactions, Ziziphus demonstrates its best performance

with 150 clients where it is able to process 9 k transactions per

second with 56 ms latency (only 14% higher latency in comparison

to the same experiment with a stable leader). Adding the leader

election phase does not affect PBFT.

5.3 Scalability with number of Zones
In the last set of experiments, we measure the scalability of Ziziphus

by increasing the number of zones to 5 and 7. The setting with 3

zones is the same as before where zones are placed in California

(CA), Ohio (OH), and Quebec (QC) datacenters. In the 5-zone set-

tings, zones are placed in California (CA), Sydney (SYD), and Paris

(PAR), London (LDN), Tokyo (TY) datacenters, and with 7-zone set-

tings, we distributed zones into CA, OH, QC, SYD, PAR, LDN, and TY.
The average Round-Trip Time (RTT) between every pair of Amazon

datacenters can be found at https://www.cloudping.co/grid.

With 10% global transactions (the typical setting in partitioned

databases [53]), as shown in Figure 7(a), increasing the number of

zones improves the overall throughput of Ziziphus. In this workload

and with 7 zones and 400 concurrent clients in each zone, Ziziphus

processes 97 k transactions per second with 63ms latency (as shown

in Figure 8). This clearly demonstrates the scalability of Ziziphus

in comparison to PBFT; with 5 zones and 400 concurrent clients

in each zone, Ziziphus processes 79.5 k transactions per second

with 43 ms latency while PBFT processes only 5.2 k transactions

per second (only 6.5% throughput of Ziziphus) with 342 ms latency

(795% latency of Ziziphus) in the same setting. Ziziphus achieves

this significant performance by processing local transactions of

different zones in parallel and by using a cheap protocol to achieve

global consensus among zones.

Increasing the percentage of global transactions to 30% and 50%

reduces the overall throughput of Ziziphus (as shown in Figure 7(b)

and (c)) and increases its latency (as shown in Figure 8(b) and (c))

in different settings with 3, 5, or 7 zones as expected.

Interestingly, while with 10% global transactions (Figure 7(a)), Zizi-

phus demonstrates its highest throughput in the setting with 7

zones, with 50% global transactions (Figure 7(c)), the setting with 5

zones shows the best throughput. This demonstrates a trade-off be-

tween the larger number of parallel instances of local consensus in

11

https://www.cloudping.co/grid

different zones (i.e., 7 zones) and the smaller number of participants

in the global transactions (i.e., 5 zones).

6 Related Work

State Machine Replication (SMR) is a technique for implementing a

fault-tolerant service by replicating servers [38]. Several approaches

[49][39][47] generalize SMR to support crash failures among which

Paxos [39] is the most well-known. Paxos guarantees safety in

an asynchronous network using 2𝑓 +1 processors despite the si-

multaneous crash failure of any 𝑓 processors. Many protocols are

proposed to either reduce the number of phases, e.g., Multi-Paxos

which assumes the leader is relatively stable, or Fast Paxos [40]

and Brasileiro et al. [14] which add 𝑓 more replicas, or reduce

the number of replicas, e.g., Cheap Paxos [41] which tolerates 𝑓

failures with 𝑓 +1 active and 𝑓 passive processors. Flexible Paxos

[33] (optimized for WAN in WPaxos [2]) shows that replication

quorums can be arbitrarily if they all still intersect with a leader

election quorum. DPaxos [45] is a variation of Paxos that is, similar

to Ziziphus, designed for edge networks. DPaxos partitions nodes

into different crash-only zones and utilizes Flexible Paxos [33] to

make replication quorums small. DPaxos further allows the leader

election quorum to start small and then grow to only intersect with

replication quorums that are being used by other leaders.

Byzantine fault tolerance refers to servers that behave arbitrarily

after the seminal work by Lamport, et al. [42]. Practical Byzantine

fault tolerance protocol (PBFT) [17] is one of the first and probably

the most instructive state machine replication protocol to deal with

Byzantine failures. Although practical, the cost of implementing

PBFT is quite high, requiring at least 3𝑓 + 1 replicas, 3 communica-

tion phases, and a quadratic number of messages in terms of the

number of replicas. Thus, numerous approaches have been pro-

posed to explore a spectrum of trade-offs between the number of

phases/messages (latency), number of processors, the activity level

of participants (replicas and clients), and types of failures.

FaB [44] and Bosco [52] reduce the communication phases by

adding more nodes. Speculative protocols, e.g., Zyzzyva [36], HQ

[22], and Q/U [1], also reduce the communication by executing

requests without running any agreement between nodes and opti-

mistically rely on clients to detect inconsistencies between nodes.

To reduce the number of nodes, some approaches rely on a trusted

component (a counter in A2M-PBFT-EA [19] MinBFT [56] and

EBAWA [55], a hypervisor [48], or a whole operating-system in-

stance [21]) that prevents a faulty node from sending conflicting

(i.e., asymmetric) messages to different nodes without being de-

tected. SBFT [29] and Hotstuff [57] attain linear communication

overhead by increasing the number of communication phases and

using advanced encryption techniques, e.g., signature aggregation

[12]. MultiBFT [30] uses multiple parallel primary nodes to paral-

lelize transaction processing. Flexible BFT [43] reduces the size of

PBFT quorums for alive-but corrupt failures. Finally, SeeMoRe [9]

as an asynchronous hybrid protocol takes advantage of being aware

of where the crash or malicious faults may occur and either reduces

the number of communication phases and message exchanges or

decreases the number of required nodes. Ziziphus is different from

all these protocols mainly in its two-level architecture where the

maliciousness of nodes is confined within the zones.

Partitioning the data into multiple shards that are maintained by

different subsets of nodes is a proven approach to enhance the

scalability of databases [20]. Data sharding techniques are com-

monly used in globally distributed databases such as H-store [34],

Calvin [54], Spanner [20], Scatter [28], Google’s Megastore [11],

Amazon’s Dynamo [24], Facebook’s Tao [15], and E-store [53]. In

such systems, however, nodes are assumed to be crash-only and a

coordinator-based approach is used to process cross-shard transac-

tions where a single node plays the coordinator role.

Clustering Byzantine nodes into local fault-tolerant clusters to im-

prove scalability has been addressed in permissioned blockchain sys-

tems, e.g., ResilientDB [31], Blockplane [46], AHL [23], Chainspace

[3], Saguaro [8], SharPer [7][6] and Cerberus [32].

In ResilientDB [31], the entire ledger is replicated on every node

of all clusters and, at every round, each cluster locally establishes

BFT consensus on a single transaction and multicasts the locally-

replicated transaction to other clusters. All clusters then, execute

all transactions of that round in a predetermined order. The global

synchronization required at every round results in high latency.

The full replication strategy has also been used in Blockplane [46]

where similar to Steward [4], each cluster locally establishes BFT

consensus on a single transaction and at the top level, a CFT con-

sensus protocol is used to globally synchronize all clusters.

Sharded-ledger approaches, on the other hand, shard the ledger and

partially replicate it on each cluster. Each cluster then establishes

BFT consensus on its local transactions and either a coordinator-

based approach, e.g., AHL [23] and Saguaro [8], or a flattened ap-

proach, e.g., SharPer [7] and Cerberus [32], is used to process

cross-shard transactions. Both coordinator-based and flattened ap-

proaches, however, follow Byzantine fault-tolerant protocols.

Ziziphus, in contrast to fully replicated ledgers, does not require

global synchronization for every transaction and, in contrast to

sharded-ledger approaches, processes global transactions using a

crash fault-tolerant protocol.

7 Conclusion
Processing client transactions by edge servers is challenging due to

the non-trustworthiness of edge infrastructures and their commu-

nication latency over wide area networks. In this paper, we present

Ziziphus, a geo-distributed system that partitions Byzantine edge

servers into fault-tolerant zones where each zone processes trans-

actions initiated by nearby clients locally. When a client migrates

from one zone to another, Ziziphus runs a two-level global syn-

chronization among zones where only the primary node of each

zone participates in the top-level protocol and agreement from a

majority of zones is sufficient to commit the global transaction,

i.e., migration. Ziziphus also defines zone clusters to improve the

scalability of the system when the number of zones increases. Using

zone clusters, instead of running global synchronization among

all zones, only zones of a single cluster are synchronized. Based

on our experiments, in workloads with a low percentage of global

transactions (typical settings), Ziziphus achieves significantly bet-

ter performance in comparison to PBFT (850% higher throughput

with only 0.15% latency). Similarly, the performance of Ziziphus

improves semi-linearly with increasing the number of zones in

workloads with a low percentage of global transactions; with 7

zones, Ziziphus processes more than 97000 transactions per second.

12

References
[1] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter,

and Jay J Wylie. 2005. Fault-scalable Byzantine fault-tolerant services. Operating
Systems Review (OSR) 39, 5 (2005), 59–74.

[2] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2019.

WPaxos: Wide area network flexible consensus. IEEE Transactions on Parallel
and Distributed Systems 31, 1 (2019), 211–223.

[3] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George

Danezis. 2018. Chainspace: A sharded smart contracts platform. In Network and
Distributed System Security Symposium (NDSS).

[4] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina

Nita-Rotaru, Josh Olsen, and David Zage. 2008. Steward: Scaling Byzantine fault-

tolerant replication to wide area networks. IEEE Transactions on Dependable and
Secure Computing 7, 1 (2008), 80–93.

[5] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:

a cross-application permissioned blockchain. Proc. of the VLDB Endowment 12,
11 (2019), 1385–1398.

[6] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. On

Sharding Permissioned Blockchains. In Int. Conf. on Blockchain. IEEE, 282–285.
[7] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:

Sharding Permissioned Blockchains Over Network Clusters. In SIGMOD Int. Conf.
on Management of Data. ACM, 76–88.

[8] Mohammad Javad Amiri, Ziliang Lai, Liana Patel, Boon Thau Loo, Eric Loo, and

Wenchao Zhou. 2021. Saguaro: Efficient Processing of Transactions in Wide

Area Networks using a Hierarchical Permissioned Blockchain. arXiv preprint
arXiv:2101.08819 (2021).

[9] Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, and Amr El Abbadi.

2020. Seemore: A fault-tolerant protocol for hybrid cloud environments. In 36th
Int. Conf. on Data Engineering (ICDE). IEEE, 1345–1356.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.

Hyperledger Fabric: a distributed operating system for permissioned blockchains.

In European Conf. on Computer Systems (EuroSys). ACM, 30.

[11] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

2011. Megastore: Providing scalable, highly available storage for interactive

services. In Conf. on Innovative Data Systems Research (CIDR).
[12] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the

Weil pairing. Journal of cryptology 17, 4 (2004), 297–319.

[13] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.
[14] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. 2001. Consensus in one

communication step. In Int. Conf. on Parallel Computing Technologies (PaCT).
Springer, 42–50.

[15] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.

TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical
Conf. (ATC). USENIX Association, 49–60.

[16] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-

stantinople: Practical asynchronous Byzantine agreement using cryptography.

Journal of Cryptology 18, 3 (2005), 219–246.

[17] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.

In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173–186.

[18] JP Morgan Chase. 2016. Quorum white paper.

[19] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested append-only memory: Making adversaries stick to their word. In Oper-
ating Systems Review (OSR), Vol. 41-6. ACM SIGOPS, 189–204.

[20] James CCorbett, JeffreyDean,Michael Epstein, Andrew Fikes, et al. 2013. Spanner:

Google’s globally distributed database. Transactions on Computer Systems (TOCS)
31, 3 (2013), 8.

[21] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2004. How to tolerate

half less one Byzantine nodes in practical distributed systems. In Int. Symposium
on Reliable Distributed Systems (SRDS). IEEE, 174–183.

[22] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira. 2006. HQ replication: A hybrid quorum protocol for Byzantine fault

tolerance. In Symposium on Operating systems design and implementation (OSDI).
USENIX Association, 177–190.

[23] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In

SIGMOD Int. Conf. on Management of Data. ACM.

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

In Operating Systems Review (OSR), Vol. 41. ACM SIGOPS, 205–220.

[25] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. 1985. An efficient, fault-tolerant

protocol for replicated data management. In SIGACT-SIGMOD symposium on
Principles of database systems. ACM, 215–229.

[26] Amr El Abbadi and Sam Toueg. 1985. Availability in partitioned replicated

databases. In SIGACT-SIGMOD symposium on Principles of database systems. ACM,

240–251.

[27] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[28] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-

derson. 2011. Scalable consistency in Scatter. In Symposium on Operating Systems
Principles (SOSP). ACM, 15–28.

[29] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. In Int. Conf.
on Dependable Systems and Networks (DSN). IEEE/IFIP, 568–580.

[30] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC: Resilient

Concurrent Consensus for High-Throughput Secure Transaction Processing. In

Int. Conf. on Data Engineering (ICDE). IEEE.
[31] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.

ResilientDB: Global Scale Resilient Blockchain Fabric. Proceedings of the VLDB
Endowment 13, 6 (2020), 868–883.

[32] Jelle Hellings, Daniel P Hughes, Joshua Primero, and Mohammad Sadoghi. 2020.

Cerberus: Minimalistic Multi-shard Byzantine-resilient Transaction Processing.

arXiv preprint arXiv:2008.04450 (2020).
[33] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2017. Flexible Paxos:

Quorum Intersection Revisited. In 20th International Conference on Principles of
Distributed Systems.

[34] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,

Yang Zhang, et al. 2008. H-store: a high-performance, distributed main memory

transaction processing system. Proc. of the VLDB Endowment 1, 2 (2008), 1496–
1499.

[35] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,

Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.

2012. CheapBFT: resource-efficient byzantine fault tolerance. In European Conf.
on Computer Systems (EuroSys). ACM, 295–308.

[36] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. Operating Systems
Review (OSR) 41, 6 (2007), 45–58.

[37] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall (2014).
[38] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[39] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[40] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79–103.

[41] Leslie Lamport and Mike Massa. 2004. Cheap paxos. In Int. Conf. on Dependable
Systems and Networks (DSN). IEEE, 307–314.

[42] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals

problem. Transactions on Programming Languages and Systems (TOPLAS) 4, 3
(1982), 382–401.

[43] Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible byzantine fault tol-

erance. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1041–1053.

[44] J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. Transactions on
Dependable and Secure Computing 3, 3 (2006), 202–215.

[45] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018. Dpaxos: Managing

data closer to users for low-latency and mobile applications. In Proceedings of the
2018 International Conference on Management of Data. ACM, 1221–1236.

[46] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzan-

tizing middleware. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 124–135.

[47] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable

consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,

305–319.

[48] Hans P Reiser and Rudiger Kapitza. 2007. Hypervisor-based efficient proactive

recovery. In Int. Symposium on Reliable Distributed Systems (SRDS). IEEE, 83–92.
[49] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299–319.
[50] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge

computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),

637–646.

[51] Victor Shoup. 2000. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 207–220.

[52] Yee Jiun Song and Robbert van Renesse. 2008. Bosco: One-step byzantine asyn-

chronous consensus. In Int. Symposium on Distributed Computing (DISC). Springer,
438–450.

[53] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,

Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-

grained elastic partitioning for distributed transaction processing systems. Proc.
of the VLDB Endowment 8, 3 (2014), 245–256.

[54] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned

13

database systems. In SIGMOD Int. Conf. on Management of Data. ACM, 1–12.

[55] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk

Lung. 2010. EBAWA: Efficient Byzantine agreement for wide-area networks. In

Int. Symposium on High Assurance Systems Engineering (HASE). IEEE, 10–19.
[56] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk

Lung, and Paulo Verissimo. 2013. Efficient byzantine fault-tolerance. Transactions

on Computers 62, 1 (2013), 16–30.
[57] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In Sym-
posium on Principles of Distributed Computing (PODC). ACM, 347–356.

14

	Abstract
	1 Introduction
	2 System Model
	2.1 Network Infrastructure
	2.2 Data and Transactions

	3 Transaction Processing in Ziziphus
	3.1 Local Transactions
	3.2 Global Transactions
	3.3 Primary Failure Handling
	3.4 Fault Tolerance and Availability
	3.5 Correctness

	4 Ziziphus Scalability
	5 Experimental Evaluations
	5.1 Ziziphus Performance Over Three Zones
	5.2 Performance with Leader Election Phase
	5.3 Scalability with number of Zones

	6 Related Work
	7 Conclusion
	References

