
Samya: Geo-Distributed
Data System for High
Contention Data
Aggregates

Sujaya Maiyya, Ishtiyaque Ahmad,
Divyakant Agrawal, Amr El Abbadi
UC Santa Barbara

Today, we are in a world of
geo-distributed databases

Today, we are in a world of
geo-distributed databases

While a great
choice for fault-
tolerance and

high availability…

Latency can be
high, esp for

update heavy
workloads

Google Spanner
commits a txn
with avg 17ms

and tail 75ms[1]

[1] J. C. Corbett et al. Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 2013.

Today, we are in a world of
geo-distributed databases

While a great
choice for fault-
tolerance and

high availability…

Latency can be
high, esp for

update heavy
workloads

i.e., Spanner can
commit avg 60tps

and tail 13tps

[1] J. C. Corbett et al. Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 2013.

Electronics Clothing

Sales Product

Storage vms DBs ML svc

DBs vms

N/W bw

eCommerce.com

Consider an example: Resource
management within a cloud provider

ultraCloud

A max quota limit
is set for each

resource

Individual teams
acquire or release
resources via read-

write txns

Electronics Clothing

Sales Product

Storage vms DBs ML svc

DBs vms

N/W bw

eCommerce.com

Consider an example: Resource
management within a cloud provider

Root node
becomes a
hotspot

60tps becomes a
bottleneck for large

enterprises

ultraCloud

1. Sequential execution
2. Centralized, constant synchronization
3. Underutilized replicas

900

900

900

900

900

E.g. tokens of
vms available

Issues with Spanner-like db design

Issues with Spanner-like db design
1. Sequential execution
2. Centralized, constant synchronization
3. Underutilized replicas

1000

1000

1000

1000

1000

200

100
900

900

900

900

900

E.g. tokens of
vms available• Manage aggregate data

• Update heavy workload

But low performance due to centralized, sequential
execution

Issues with Spanner-like db design
1. Sequential execution
2. Centralized, constant synchronization
3. Underutilized replicas

1000

1000

1000

1000

1000

200

100
900

900

900

900

900

E.g. tokens of
vms available• Manage aggregate data

• Update heavy workload

But low performance due to centralized, sequential
execution

Our research question:
Design an alternate system to manage

simple data types and provides high throughput for
update heavy workloads?

Looking back in the literature, we stumble upon many seminal works that
answer our question..

O’Neil’s Escrow transactions [1] Kumar and Stonebreaker [2]

Barbara and Garica-Molina’s
Demarcation protocol [3] Gustavo and El Abbadi [4]

[1] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database Systems (TODS), 1986.
[2] A. Kumar and M. Stonebraker. Semantics based transaction management techniques for replicated data. ACM SIGMOD, 1988.
[3] D. Barbara and H. Garcia-Molina. The demarcation protocol: A technique for maintaining linear arithmetic constraints in distributed database systems. Springer, 1992.
[4] G. Alonso and A. El Abbadi. Partitioned data objects in distributed databases. Distributed and Parallel Databases, 1995.

Looking back in the literature, we stumble upon many seminal works that
answer our question..

O’Neil’s Escrow transactions [1] Kumar and Stonebreaker [2]

Barbara and Garica-Molina’s
Demarcation protocol [3] Gustavo and El Abbadi [4]

[1] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database Systems (TODS), 1986.
[2] A. Kumar and M. Stonebraker. Semantics based transaction management techniques for replicated data. ACM SIGMOD, 1988.
[3] D. Barbara and H. Garcia-Molina. The demarcation protocol: A technique for maintaining linear arithmetic constraints in distributed database systems. Springer, 1992.
[4] G. Alonso and A. El Abbadi. Partitioned data objects in distributed databases. Distributed and Parallel Databases, 1995.

Partition the aggregate data and allow transactions to
concurrently update different partitions

Looking back in the literature, we stumble upon many seminal works that
answer our question..

O’Neil’s Escrow transactions [1] Kumar and Stonebreaker [2]

Barbara and Garica-Molina’s
Demarcation protocol [3] Gustavo and El Abbadi [4]

[1] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database Systems (TODS), 1986.
[2] A. Kumar and M. Stonebraker. Semantics based transaction management techniques for replicated data. ACM SIGMOD, 1988.
[3] D. Barbara and H. Garcia-Molina. The demarcation protocol: A technique for maintaining linear arithmetic constraints in distributed database systems. Springer, 1992.
[4] G. Alonso and A. El Abbadi. Partitioned data objects in distributed databases. Distributed and Parallel Databases, 1995.

But proposed for radically different environments:
• sites are not geo-distributed
• networks are assumed reliable
• results are only simulations

Samya brings the basic idea
– dis-aggregate the aggregate data to increase

concurrency –
to the modern context of cloud and geo-distributed dbs

300

170

23

200530

Clients
communicate
with closest

sites..

by sending acquire
or release tokens

request

300

170

23

200530

Sites serve
requests locally

and update
tokens left

300

170

23

200530

But what if I
want more than

200 tokens??

300

170

23

200530

But what if I
want more than

200 tokens??

Each site stores
disaggregated data
E.g., tokens of vms

available locally

Clients
communicate
with closest

sites..

Sites serve
requests locally

and update
tokens left

by sending acquire
or release tokens

request

Avantan
a consensus protocol to agree on the global token

availability and to redistribute tokens

1. Avantan reaches agreement on available tokens – not on a
client provided value

2. Avantan does not require a majority for consensus

10

132

53

121

5

Acquire 32
tokens?

Acquire 17
tokens?

1. Avantan reaches agreement on available tokens – not on a
client provided value

2. Avantan does not require a majority for consensus

10

132

53

121

5

1. Avantan reaches agreement on available tokens – not on a
client provided value

2. Avantan does not require a majority for consensus

121
71

71

29 29

But redistributing after a client sends request can cause lot of delay..

Demand predictions using
machine learning and deep learning to the rescue!!

Use analytical past
resource demand

data to predict
future demands

When predicted
demand increases,
trigger proactive
redistributions

Execute Avantan and
borrow tokens from
sites with decreasing

demand

Evaluation setup

• Servers/Clients: GCP n1-standard VMs

• Baselines: Demarcation/Escrow, CockroachDB (Spanner-like db)

• Dataset: VM workload dataset by Microsoft Azure [1], inherently
predictable workload

• Prediction method: Neural Networks (LSTMs)

Performance analysis of Samya

Samya commits 16x to 18x more transactions than
CockroachDB

Although redistributions are expensive, redistributions increases
Samya’s throughput by 14%

Samya performs about 1.4x better with predictions

If app. workload has less than 35% writes, Spanner-like DB
performs better than Samya

Summary

• Samya: a data system for high-contention aggregate data

• Avantan is a novel consensus protocol used for token redistribution
that does not require a majority

• Dis-aggregation and executing Avantan allows Samya to commit
16x to 18x more transactions than a Spanner-like database

• Redistributions and demand predictions significantly increases
Samya’s performance

