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Abstract—CockroachDB is an open-source database, providing
transactional access to data in a distributed setting. CockroachDB
employs a multi-version timestamp ordering protocol to provide
serializability. This provides a simple mechanism to enforce
serializability, but the static timestamp allocation scheme can
lead to a high number of aborts under contention. We aim to
reduce the aborts for transactional workloads by integrating a
dynamic timestamp ordering based concurrency control scheme
in CockroachDB. Dynamic timestamp ordering scheme tries to
reduce the number of aborts by allocating timestamps dynami-
cally based on the conflicts of accessed data items. This gives a
transaction higher chance to fit on a logically serializable timeline,
especially in workloads with high contention.

I. INTRODUCTION

CockroachDB [2] is an open-source distributed SQL

database built on a transactional and strongly-consistent key-

value store. The transactional guarantees are provided over

data, which is synchronously replicated using a distributed

consensus protocol, Raft [18].

CockroachDB provides two transaction isolation levels: SI

(Snapshot Isolation) [9] and Serializable [10]. Snapshot Iso-

lation can detect write-write conflicts among transactions and

provides efficient performance, but does not guarantee serializ-

ability [15]. Applications needing stricter correctness guaran-

tees than snapshot isolation can use the Serializable isolation

level, which is provided using a Serializable Snapshot Isolation

(SSI) [23] based technique. To implement SSI, CockroachDB

employs a lock-free multi-version timestamp ordering scheme.

The timestamp ordering scheme in CockroachDB uses a fixed

timestamp allocation scheme, and assigns timestamps at the

start of each transaction. These timestamps are used as commit

timestamp for the transaction. This commit timestamp is used

to order the transactions in logical timestamp order, and hence

enforce serializability. SSI, unlike SI, detects and handles read-

write conflicts but the restrictive fixed timestamp ordering

leads to higher number of aborts under contention. Figure 1

illustrates that with increasing contention in the workload, the

number of aborts increases, leading to a drop in throughput

with timestamp ordering concurrency-control employed in

CockroachDB.

To reduce the number of aborts at high contention, a

possible strategy is to use dynamic timestamps for allocating

the commit timestamp to a transaction. In this technique, the

system tries to dynamically allocate a timestamp range to

each transaction, based on the conflicts of data items accessed

by the transaction. At commit, a timestamp is allocated to

the transaction from that range, to fit that transaction on a
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Fig. 1: Performance of Fixed Timestamp Ordering Scheme

under Contention. Contention ratio x:y specifies that x percent

of the transactions access y percent of the items.

logical serializable timeline. We integrate CockroachDB with

the dynamic timestamp allocation technique we designed in

our previous work MaaT (Multiaccess as a Transaction) [17].

MaaT changes the validation phase of the optimistic con-

currency control mechanism to allocate a commit timestamp

dynamically by keeping track of the items accessed and

conflicting transactions accessing the items using read and

write markers. By performing dynamic timestamp allocation

during validation and commit, MaaT is able to reduce aborts

under contention.

Adapting the dynamic timestamp allocation technique de-

signed in MaaT with the SSI implementation in CockroachDB

can eliminate unnecessary aborts. Our technique targets cases

where transactions are aborted due to being non-serializable

because of a fixed timestamp ordering, rather than being

aborted because of actual conflicting order of access of items

(in other words an ordering that would lead to cycle in a

conflict graph). Some of these cases are serializable when

timestamps are dynamically allocated to fit them on a logicial

timeline, based on the order of access of data items.

CockroachDB is modified to integrate the dynamic times-

tamp ordering based concurrency-control mechanism. As the

concurrency-control layer interacts with the lower layers of

the database for ensuring strong consistency of data, multiple

components had to be modified to integrate the technique.

Past techniques proposed to reduce aborts in lock-free

concurrency control techniques [26], [17], [25] have been

implemented and evaluated in standalone prototypes. Imple-

menting the dynamic timestamp ordering technique in a full-

featured database system like CockroachDB gives an insight

into the performance characteristics of the dynamic timestamp

ordering like optimizations, and how to integrate such opti-

mizations in existing systems.

A benchmark is also developed to extensively evalu-



ate the performance of dynamic timestamp ordering based

concurrency-control in CockroachDB. The benchmark eval-

uates the performance while varying contention, the degree

of concurrent access and the ratio of read-only and read-

write transactions. The source-code changes as well as the

benchmark are available on Github [4], [1].

The rest of the paper is organized as follows. Related

work is discussed in Section II. In Section III, we describe

CockroachDB’s architecture. Section IV describes the dynamic

timestamping technique employed by MaaT. An abstract

overview of the integration of dynamic timestamp allocation

in CockroachDB is presented in Section V. The details of the

integration and the implementation are provided in Section VI.

Evaluation results are presented in Section VII. Section VIII

concludes the paper.

II. BACKGROUND

Snapshot Isolation (SI) has been implemented in major

database systems, like Oracle and PostgreSQL. Fekete et

al. [15] illustrated that SI does not provide serializability and

then subsequently Fekete et al. [14] studied the transaction

patterns occurring in SI violations. Various techniques have

been proposed to make Snapshot Isolation serializable. Some

of the techniques [14], [16] perform static analysis of ap-

plication code and detect SI violation patterns. The potential

violations are translated into write-write conflicts, which are

then detected by snapshot isolation. However, these techniques

are limited in scope and cannot be applied to systems dy-

namically generating transactions. Cahill et al. [12] develop

a SSI (Serializable Snapshot Isolation) methodology to detect

SI violations at run-time and implement the technique over

existing snapshot isolation providing database, BerkleyDB.

CockroachDB’s technique for providing serializable snapshot

isolation is inspired by a multi-version timestamp order-

ing [19] variant proposed by Yabandeh et al. [23].

Various mechanisms have been proposed to reduce aborts

in pessimistic as well as optimistic concurrency control (CC)

algorithms. For locking algorithms, variants of 2PL such as

Order-shared [6] locking, Altruistic Locking [20] and Trans-

action chopping [21] techniques have been proposed to reduce

aborts and achieve higher throughput. Recent works [24] have

also explored performing static analysis of application code to

order locking requests, such that lock contention is minimized.

Among the lock-free concurrency control schemes, many

pessimistic, as well as optimistic techniques employ times-

tamps to enforce serializable order. The timestamp allocation

may be done at the beginning or at the end of the transaction.

If a transactional operation violates the timestamp order, the

transaction is aborted. Dynamic timestamp allocation [11]

schemes have been developed to allocate transactions dynam-

ically, rather than using a fixed timestamp allocation scheme.

MaaT [17] employs dynamic timestamps in a distributed

setting. MaaT dynamically allocates logical timestamps during

validation phase and utilizes soft read and write locks to avoid

locking of items during two-phase commit (2PC) between the

prepare and commit phase. Our proposed technique builds

on MaaT. Tic-toc [25] uses the idea of dynamic timestamp

allocation in a single-server setting. BCC [26] defines essential

patterns which occur in non-serializable patterns in Optimistic

concurrency control (OCC) algorithms. Rather than aborting a

transaction on detecting an anti-dependency, as in OCC, BCC

tracks dependencies to abort transactions only when these

non-serializable patterns are detected. Although a BCC like

technique would reduce the number of aborts, it adds extra

overhead to track dependencies.

Deterministic transaction scheduling [22] has also been pro-

posed to eliminate transaction aborts and improve performance

under high contention. However, such techniques need a priori

knowledge of read-write sets and do not work in an ad-hoc

transaction access setting, like in CockroachDB.

CockroachDB’s [2] SSI technique employs timestamp allo-

cation, is lock-free and can support distributed transactions.

Hence, dynamic timestamping proposed in MaaT is a good fit

for CockroachDB, since it is timestamp based and lock-free.

The SI implementation in CockroachDB also provides a mech-

anism to push commit timestamps for distributed transactions.

However, this technique cannot be applied to SSI [3].

III. COCKROACHDB OVERVIEW

CockroachDB [2] is an open-source distributed cloud

database built on top of a transactional and consistent key-

value store. Its primary design goals are scalability and strong

consistency. CockroachDB aims to tolerate disk, machine,

rack, and datacenter failures with minimal disruption and no

manual intervention, thus being survivable (hence the name).

CockroachDB achieves strong consistency by synchronous

replication of data. It replicates data over multiple nodes

and guarantees consistency between replicas using Raft [18]

consensus protocol. Cockroach provides transactional access

to data. It supports two isolation levels: Snapshot Isolation (SI)

and Serializable Snapshot Isolation (SSI). While both provide

lock-free reads and writes, SI allows write-skew [9], and does

not guarantee a serializable history. SSI eliminates write-skew

but introduces a performance hit in cases of high contention.

A. Architecture

CockroachDB implements a layered architecture as shown

in Figure 2. The highest level of abstraction is the SQL Layer,

which acts as an interface to the application clients. Every SQL

statement received at this layer, is converted to an equivalent

key-value operation.

The Transaction Coordinator receives the key-value oper-

ations from the SQL layer. It creates the context for the

transaction if it is the first operation of the transaction or else

forwards the request to the Distributed Sender in the context

of an existing transaction. The Transaction Coordinator also

sends a begin transaction request to create transaction record

if the operation is the first write operation of the transaction,

and also keeps track of the keys written by the transaction.

The Distributed Sender communicates with any number of

cockroach nodes. Each node contains one or more stores, one

per physical storage device in that node. Each store contains

potentially many ranges. Each range comprises a contiguous

group of keys. A range is equivalent to a partition or a shard.

Each range or shard can have multiple copies for providing

fault tolerance. Ranges are defined by start and end keys.

They are merged and split to maintain total byte size within
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Fig. 2: Architecture of CockroachDB. Shows a cluster of 3

nodes (Node 1 to Node 3), and 3 ranges (Range A to Range

C) with full replication. Changes are replicated using Raft.

a globally configurable min/max size interval. The data in

the multiple copies is synchronized using Raft [18], [8], at

the granularity of the range. The Distributed Sender forwards

the requests from the Transaction Coordinator to the lease

holder of the range (Lease Holder is an entity within Raft,

which holds a non-overlapping lease interval for a range)

having the key on which request is operating upon. The lease

holder performs the read and writes operations, while ensuring

that reads return the latest value, and writes are replicated to

the majority of the servers, before successfully committing a

transaction.

The logical entity called Replica at each range’s lease holder

is responsible for creating and maintaining transaction records,

updating the timestamp cache, performing read and write op-

erations by calling the the MVCC (Multi Version Concurrency

Control) Layer and also replicating the transaction record,

write intents and resolving those intents using Raft.

Data is stored in RocksDB [5]. RocksDB ensures efficient

storage and access of data. Data stored in RocksDB includes

the key-value data and all the versions associated to a key, as

well as all the consensus state associated with Raft.

B. Transaction Processing and Concurrency Control

CockroachDB uses a multi-version timestamp ordering

protocol to guarantee that its transaction commit history is

serializable. The default isolation level is called Serializable

Snapshot Isolation(SSI). The SSI mechanism employed in

CockroachDB is lock-free and ensures concurrent read-write

transactions will never result in anomalies.

Every transaction is assigned a timestamp (by the node

on which it starts) when it begins. This timestamp is used

to resolve conflicts with respect to timestamp ordering. Each

transaction has a transaction record, that stores the status of

the transaction. Every transaction starts with the initial status

PENDING. If a transaction is aborted due to data conflicts, the

status is changed to ABORTED, or else its status is changed

to COMMITTED on commit.

If a transaction is distributed, i.e., the data accessed by

the transaction is spread across multiple ranges, then the

transaction record is maintained only at one of the servers

having data accessed by the transaction. All the operations of

the transaction update the same transaction record according

to the status of the operation at the particular data server.

CockroachDB keys store multiple timestamped versions of

the values. Every new write of a committed transaction creates

a new version of the value with a timestamp of that transaction.

The write of an uncommitted transaction is added as an intent

version with the timestamp of the transaction.

Read operations on a key return the most recent version

with a smaller timestamp than the transaction. The timestamp

of the transaction performing the read operation is recorded

in a node-local timestamp cache. This cache returns the most

recent timestamp of a transaction which read the key.

All write operations consult the timestamp cache for the

read timestamps of keys they are writing. If the returned

timestamp is greater than the transaction’s timestamp, then this

indicates a timestamp order violation. Hence, the transaction

is aborted and restarted with a larger timestamp.

Operations in CockroachDB are only allowed to read or

write committed values; operations are never allowed to op-

erate on an uncommitted value. That is, if an uncommitted

transaction wants to read or write a value of a key and if it

sees a write intent for that key, one of those transactions is

aborted based on their priorities.

SSI, due to its restrictive policy to avoid read-write conflicts,

ends up aborting or restarting many transactions. With fixed

timestamp allocation for transactions, SSI trades performance

for correctness under high contention. Our interest is in

increasing performance by eliminating the unnecessary aborts

realized by SSI by dynamically assigning timestamps to

transactions based on the conflicts, such that they follow a

serializable timestamp order.

IV. MAAT OVERVIEW

MaaT (Multi-access as a Transaction) [17] re-designs the

optimistic concurrency control (OCC) protocol in order to

make it practical for distributed, high-throughput transactional

processing systems. To achieve high-throughput with update

intensive workloads, MaaT assigns dynamic timestamps to the

transaction, instead of fixed timestamps, and re-designs the

verification phase of OCC so as to reduce the transaction abort

rate. In particular, a mere conflict between two transactions

should not be enough to restart them; instead, the system

should try to figure out whether this conflict really violates

serializability, and should tolerate conflicts whenever possible.

While performing read and write operations, each trans-

action maintains and updates valid timestamp ranges it can

commit in, based on the data items accessed and conflicting

operations on those data items. At commit time, if there is

a valid timestamp range for the transaction to commit, then

a commit timestamp will be chosen from that valid range.

Employing timestamp ranges allows the flexibility to shift the

commit timestamp to fit it in the logical serializable order.

Design

MaaT assigns a timestamp range with a lower and upper

bound for each transaction, instead of a fixed timestamp.

Initially, the lower bound is set to 0 and the upper bound is set

to ∞. The lower and upper bounds are adjusted dynamically

with respect to the data conflicts of the transaction. MaaT

employs soft locks, which do not block transactions, to act

as markers to inform transactions accessing a data item about

other transactions that have read or written that data item but

not committed yet.
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Each transaction can either be single-sited or distributed.

For a distributed transaction, one of the servers involved in the

transaction is declared the transaction coordinator. Timestamp

range is maintained at each of the servers accessed by the

transaction. Next, we describe how the timestamp range are

dynamically adjusted, and used to allocate commit timestamp

to a transactions. This is one of the core components of MaaT,

which leads to reduced aborts under contention.

If T and T ′ are two transactions, with lower bounds,

lowerbound(T) and lowerbound(T ′) and upper bounds,

upperbound(T ) and upperbound(T ′). Whenever T reads a

data item, which has a write soft lock by T ′, MaaT adjusts

the upperbound(T ) to be less than lowerbound(T ′), so that

T executes as if did not see the updates made by T ′.

Whenever T writes a data item, which has a read soft lock

by T ′, MaaT adjusts the lowerbound(T ) to be greater than

upperbound(T’), so that T ′ executes as if it did not see the

updates that will be made by T .

Whenever T writes a data item, which has a write soft lock

by T ′, MaaT adjusts the lowerbound(T ) to be greater than

upperbound(T’), so that T ′ executes as if it did not see the

updates that will be made by T .

In the validation phase, the timestamp range of T and/or

the timestamp ranges of other transactions are adjusted to

ensure that the timestamp ranges of conflicting transactions

do not overlap. The outcome of these validation operations is

to determine whether the constraints on the commit timestamp

of T can be satisfied or not; that is, whether T can commit or

not, by finding a timestamp to fit T in the logical serialization

order. Transaction T is aborted if there is an overlap of the

timestamp range with other concurrent transactions or if the

lower bound of T is greater than its upper bound; otherwise,

T is committed, and the client picks an arbitrary timestamp

from the intersection range to be the commit timestamp of T .

If T is a distributed transaction, each data server accessed by

T adjusts the timestamp range on the server based on the items

accessed there. All these ranges are sent to the coordinator of

the distributed transaction. If there is a valid intersecting range

in the timestamp ranges sent by all the servers, the transaction

is committed. Otherwise, the transaction aborts.

V. ABSTRACT OVERVIEW OF DYNAMIC TIMESTAMP

ORDERING ADAPTATION IN COCKROACH DB

Employing SSI in CockroachDB ensures correctness, but it

decreases the performance at high contention. Adapting SSI

approach in CockroachDB to work with dynamic timestamps

will avoid aborting transactions that can be serialized by

changing their timestamps with regards to their data conflicts.

Next, an example is analyzed to illustrate how dynamic times-

tamping can lead to reduced aborts as compared to the current

concurrency control technique employed in CockorachDB. We

then describe the data structures introduced in CockroachDB

to enable dynamic timestamping mechanism.

A. Reducing aborts with dynamic timestamping

When the isolation level in CockroachDB is set to SSI,

transactions are aborted in following cases:

1) Conflicts are analyzed at every write, to check whether

any later transactions have read or written the data item

currently being written by the transaction. If this is the

case, the transaction is aborted.

2) When reading an item, if there is a write intent created

with a lower timestamp, then the SSI approach in

CockroachDB will abort one of the transactions. The

transaction to abort will be decided based on the priority

of the transactions involved.

Dynamic timestamp allocation can help reduce some of the

aborts in the above cases. It allows more concurrent operations

to commit by dynamically trying to commit the transaction on

a logical timeline based on order of access of items. Consider

the following example.

Example 1: Lets consider the following two transactions.

T1 : r1(y) r1(x)

T2 : r2(x) w2(x)

Suppose the execution history comprising the two transac-

tions is as follows.

H1 : b2 r2(x) b1 r1(y) r1(x) c1 w2(x) c2
Transaction T2 begins before T1, and hence is assigned an

earlier timestamp than T1. At w2(x), the SSI approach in

Cockroach DB sees that x is read by T1, which is a transaction

with a later timestamp. To ensure timestamp ordering given

by the fixed timestamp allocation, transaction T2 is aborted

since it causes RW conflict with T1, and violates the logical

timestamp order according to the allocated timestamps.

In case of using the dynamic timestamping technique,

suppose lowerbound(T1) and lowerbound(T2) are the lower

bounds and upperbound(T1) and upperbound(T2) are the

upper bounds of the transactions T1 and T2 respectively.

On detecting the RW conflict at w2, the lowerbound(T2)
is made greater than upperbound(T1) so that history will

be equivalent to the serialization order T1 −→ T2. Rather

than aborting the transaction due to an initially allocated

timestamp order, the dynamic timestamp allocation can re-

order the logical transaction order, and lead to commitment of

both the transactions in this case.

B. Data Structure changes in CockroachDB

Transaction Record

CockroachDB maintains a transaction record for each trans-

action, which maintains the transaction ID and transaction

state. We add two fields to hold the lower and upper bounds of

the transaction. CommitBeforeQueue field is added to hold the

list of transactions before which the current transaction has to

commit. CommitAfterQueue holds the list of transactions after

which the current transaction can commit.

Timestamp cache

For each data item CockroachDB maintains the timestamp

of last read and last written transaction in its timestamp

cache. In the SSI approach, this can be updated even by

uncommitted transactions. We modify the mechanism updating

the timestamp cache in CockroachDB to ensure timestamps in

the read cache are updated only by committed transactions.

Soft Locks and Soft Lock Cache

Soft Locks are non blocking markers to inform other

transactions about ongoing transactions. Soft Locks comprise

transaction-metadata, which is used to locate the transaction

record of the transaction that placed the soft lock. A read soft
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lock is placed while reading and a write soft lock is placed

while writing the data items. The Soft Lock Cache holds the

read soft locks and write soft locks per key.

VI. INTEGRATING DYNAMIC TIMESTAMP ORDERING IN

COCKROACHDB

We now describe the integration of dynamic timestamping

mechanism in CockroachDB. First, the handling of different

operations of the transaction is described. Then, we describe

the changes implemented at different layers in CockroachDB.

A. Transaction Lifecyle

As described earlier, a transaction comprises of begin, read,

write and commit operations. On every read operation, a soft

read lock is placed on the key being read and soft write locks

that are already placed on the key are collected. The soft write

locks are then placed in the corresponding transaction record.

The CommitBeforeQueue is populated with the transactions

which correspond to the soft write locks on the data item,

indicating that the transaction reading the item should commit

before all the transactions, which have a soft write lock on the

item. As the read of the item does not reflect the update of

the transactions intending to write the item, its logical commit

order should be before such transactions. CommitBeforeQueue

is used during transaction validation to enforce the transaction

ordering implied by the queue.

On every write, instead of aborting transactions on detecting

a conflict based on fixed timestamps, a soft write lock is placed

on the key being written and, read and write soft locks that

are already placed on the key are collected and placed in the

transaction record. The CommitAfterQueue is populated with

the transactions which correspond to the soft read locks on the

data item, indicating that the current transaction intending to

write the data item, should commit after the transactions which

have a soft read lock on the item (implying the intention to

read the data item). As the read performed by the transactions,

which have the soft read lock, does not reflect the write

operation of the current transaction, the current transaction’s

logical commit order should be after the transactions with the

soft read lock. CommitAfterQueue is also populated with the

transactions which correspond to the soft write locks on the

data item, indicating that the current transaction intending to

write the data item, should commit after the transactions which

have a soft write lock on the item.

Along with the above described processing, on every read or

write operation, the lower bound of the transaction is adjusted

to be equal to the last committed write timestamp (or read

timestamp), which is retrieved from the timestamp cache.

When a commit request for the transaction is sent, a valida-

tion phase is executed. During the validation phase, the lower

and upper bounds of the transaction are adjusted such that the

transaction commits before all the entries in CommitBefore-

Queue and commits after all the entries in CommitAfterQueue.

The CommitBeforeQueue and CommitAfterQueue have been

populated with all the transactions, which have conflicting

operations with the given transactions. Hence, respecting the

commitment order enforced by the queues, guarantees that

the transaction orders all conflicting operations and preserves

serializability. The upper bound of the transaction is updated

to be the minimum of its current upper bound and the

lower bound of each transaction in the CommitBeforeQueue.

Similarly, the lower bound of the transaction is updated to be

the maximum of current lower bound and the upper bound of

each transaction in the CommitAfterQueue.

The timestamp range of the transaction is then checked to

see if the lower bound of the transaction is less than its upper

bound. If so, the transaction is committed by picking the lower

bound, as the commit timestamp; otherwise the transaction

is aborted. The transaction status in the transaction record is

updated accordingly as COMMITTED or ABORTED.

On both commit and abort of the transaction, soft read locks

and soft write locks held by that transaction are released. On

commit, the write soft locks will be resolved to actual write

operations in the DB. The read and write timestamps of the

items accessed by the committed transaction will be updated

in the timestamp cache.

If the transaction spans across multiple ranges, RPCs

are used to update the transaction record during read and

write operation and to validate the transaction at the remote

range (employing the validation strategy to update transaction

bounds described above) during validation phase. The soft

locks in the remote ranges are resolved asynchronously using

RPCs, while the soft locks local to the range are resolved

synchronously during the end transaction request.

The dynamic timestamp allocation based proposed design

makes use of the soft locks to detect the conflicting transac-

tions. It then tries to reorder the transactions by analyzing these

conflicts and allocating dynamic timestamps to the transactions

to fit them in a logical serializable timestamp order.

B. Implementation Details

Multiple components have been modified in CockroachDB

to integrate the dynamic timestamp ordering approach.

The Transaction Coordinator is modified to send the begin

transaction request to create transaction record on the first

operation of the transaction rather than on first write of the

transaction. Transaction coordinator now additionally tracks

the keys read by the transaction along with the keys written

by the transaction.

Transaction record is modified to hold the lower bound and

the upper bound of the transaction, with zero and infinity

being the initial values respectively. Two new queues, namely

CommitBeforeQueue and CommitAfterQueue, are introduced

in the transaction record. These queues are used at validation

to adjust the lower and upper bounds of the transaction based

on conflicts of the transaction.

At each replica, the timestamp cache is modified to hold

only the timestamps of the committed transactions. A replica

is also responsible for maintaining the soft lock cache for all

the keys in that replica.

APIs for performing writes at the MVCC layer (such as

MVCCPut, MVCCInitPut etc.) are modified to not place the

intent, and instead place soft write locks against the key

intended to write. Read operation APIs in MVCC (such as

MVCCGet, MVCCScan etc.) are modified to place soft read

lock on the key being read along with reading the value for the

key. New MVCC APIs are created to resolve write soft lock

5



on commit, and write the committed values to the key-value

store and to garbage collect soft locks on abort.

New RPCs are created to update the transaction record at the

remote range for distributed transactions. Additionally, these

RPCs are also used to perform validation on the transaction

record in the remote range. Additional RPCs are created to

execute commit or abort processing after the validation phase

and to resolve remote soft locks asynchronously on commit.

Another RPC is introduced to garbage collect remote soft locks

asynchronously on aborting a transaction.

The Store layer is modified to handle the asynchronous

resolving and garbage collecting of remote soft locks, like the

asynchronous resolving of write intents that was done before,

for the pessimistic timestamp allocation mechanism.

The source-code changes are available on Github [4].

VII. EVALUATION

CockroachDB is extensively evaluated to compare the per-

formance of the fixed timestamp allocation scheme, with the

dynamic timestamp ordering scheme, under varying levels of

concurrent access, contention and read-write ratios.

A. Experimental Setup

1) Benchmark Description

Yahoo Cloud Serving Benchmark (YCSB) [13] is a bench-

mark for evaluating different cloud datastores. A YCSB-

like benchmark is designed for performing the evaluation.

The benchmark provides support for transactions, rather than

only key-value operations, like in YCSB. Every transaction

generated by the benchmark can be a read-only or a read-write

transaction. Every transaction consists of 5 operations. The

benchmark has 3 configurable parameters that can be altered

to test different scenarios. They are described below.

• Concurrent transactions. This parameter is used to

define the number of transactions that occur concurrently,

with a default value of 50. If the concurrent transactions

is set to 50, the benchmark creates 50 threads and each

thread runs a transaction sequentially i.e., if a transaction

is performing 3 reads and 2 writes, each of the operations

is blocking and the thread executes these operations one

after the other.

• Contention ratio. In most real world applications, the

entire dataset is not uniformly accessed. There can be

some subset of data with a highly-skewed access pattern.

To mimic similar behavior in our experiments, we define

the contention ratio, which indicates skew on a subset

of data. The contention ratio 70:30 indicates 70% of the

data items will be accessed by 30% of the transactions,

while the remaining 30% of the data items will be

accessed by remaining 70% of the transactions. The

default contention ratio is a uniform distribution of 50:50,

which corresponds to the lowest contention of 50%.

• Read-only ratio. In order to see how the dynamic times-

tamp ordering works for various scenarios such as write

intensive transactions or read-dominant transactions, we

introduced the read-only ratio parameter. Read-only ratio

defines the ratio or the percent of transactions that per-

form only read operations. For the default value 50:50,

50% of the transactions have only read operations (5 per

transaction) and rest of the transactions will be read-

write transactions with 3 read operations and 2 write

operations. Before beginning a new transaction, we toss

a coin with the defined bias based on the read-only ratio

parameter value and decide whether the transaction is

going to be read-only or read-write.

Experimental Configuration: Every experiment was per-

formed on a cluster with 3 servers. Each machine in the

cluster runs a 8-core Intel Xeon E5620 processor clocked

at 3.8 GHz and has 16 GB of RAM. Each server had one

instance of CockroachDB node running on it and the data

was replicated three ways. The experiments were run with

100,000 key-value data items without data partition, hence

the experiments did not have distributed transactions. Each

data point in the benchmarking process corresponds to an

experiment performed with 100,000 transactions accessing

100,000 data items. 10000 warm-up reads are performed

before starting each experimental run, so as to have the system

in a steady state. Each data point reported in the results is an

average of 3 repetitions of such an experiment. The benchmark

is available on Github [1].

2) Experimental Methodology
As mentioned in V-B, for dynamic timestamp ordering,

the creation of a transaction record happens on the first

operation, be it a read or a write, rather than on the first write

operation, as is the case with fixed timestamp ordering. In fixed

timestamp ordering, if the transaction consisted of all read-

only operations, no transaction record is created. Furthermore,

the creation of the transaction record also encompasses the

replication of the transaction record (to the replicas holding the

range associated to the first key accessed by the transaction)

using Raft, both at the begin and when the commit decision is

made. Hence using this approach in a read-dominant system,

adds significant delays compared to the original implementa-

tion of CockroachDB. There are many approaches to avoid

the bookkeeping done by MaaT for read-only transactions.

One such solution was proposed by Agrawal et al. [7], which

can be implemented in CockroachDB along with MaaT. A

read-frontier based on this approach proposed by Agrawal et

al. [7] can be continuously maintained, which provides access

to the latest commit timestamp below which no transaction

can commit. The timestamp corresponding to the read frontier

can be used as the timestamp to read the items accessed in

the read-only transactions.

In order to apply optimized solutions for read-only trans-

actions, we first need to identify if the transaction will be

read-only. After a discussion with CockroachDB developers,

we learnt that there is no provision as of now in the database to

specify a transaction as read-only. Implementing this change

will require modification in multiple layers of the database

and is a complex task, and it is not in the scope of this

paper. In order to overcome this issue, in our experiments,

we assume that every read-only transaction is successful and

will not have the overhead of creating and maintaining a

transaction record. If the optimization was to be implemented,

read-only transactions would hit only one server, which would

respond to the client without creating and replicating transac-

tion record among the replicas of the queried data. So we do
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not account for the time taken to process and perform read-

only transactions. Because of the above mentioned assumption,

the throughput displayed in the following sections will be an

upper bound of the actual throughput for dynamic timestamp

ordering. But the number of aborts or retries is accurate

because if the read-only optimization is implemented, it does

not cause any read-only transaction to fail; all the aborts will

be due to read-write transactions which is captured in our

experiments.
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Fig. 3: Varying contention with 80% read-only transactions
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Fig. 4: Varying contention with 50% read-only transactions

B. Evaluation Results

1) Varying Contention

First, we analyze the performance of the concurrency-

control schemes under varying levels of contention on the

data items. We performed two experiments with varying

contention from 50% to 99%. In one, we set the read-only

ratio and concurrency level with the default values of 80:20

and 50 respectively. Figure 3a plots the number of aborts

for every 1000 transactions with increasing contention for

both dynamic and static timestamp ordering. Even for 20%

write transactions, when the contention is at its highest, the

fixed timestamp ordering scheme has roughly 3 times more

aborts for every 1000 transactions than dynamic timestamping.

Figure 3b compares the throughput of both the techniques

and we observe that dynamic timestamp ordering has sig-

nificantly higher throughput. In the second experiment with

varied contention, the read-only ratio was lowered to 50:50,

while keeping the concurrency level to 50. Figures 4a and 4b

illustrate the results. As mentioned in the methodology, the

throughput for dynamic timestamp ordering is an upper bound,

especially for higher read-only ratios.

In both Figures 3a and 4a, although both the techniques

started with small abort numbers on low contention, dynamic

timestamp ordering results in significantly lower number of

aborts with the increase in contention. When contention

is high, say 99:01, 99% of the transactions are trying to

access 1% of data. Dynamic timestamp ordering ends up

accomodating more transactions for commitment due to its

flexibility in shifting the lowerbound and upperbound of

commit timestamps for all contending transactions. In case

of statically assigned timestamps, conflicts arise since large

number of transactions are competing to access same set of

data simultaneously and the timestamps are fixed, leading to

higher aborts.

2) Varying Concurrency
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Fig. 5: Varying concurrency with 99% contention

Next, the performance of the concurrency control protocols

is analyzed under varying concurrent number of transactions.

The experiment is performed with the high contention ratio of

99:01 and 80% read-only transactions. Figure 5 illustrates the

results. When the workload is highly concurrent (90 concurrent

threads), fixed timestamp ordering has more than 2x aborts

compared to the number encountered with dynamic timestamp

ordering. This difference is seen because when many transac-

tions are concurrently accessing small set of data, the dynamic

timetamping technique adjusts the commit timestamp bounds
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of concurrent transactions, allowing many of those transactions

to commit which would have failed otherwise.

3) Varying Read-only ratio
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Fig. 6: Varying read-only ratio with 90% contention

In the next experiment, the performance of the concurrency-

control protocols is analyzed under varying read-only transac-

tion ratio. With 90% contention and 50 concurrent threads,

increase in the read-write transactions (decrease in read-only

transactions) leads to an increase in the number of aborts

for both protocols. Figure 6a illustrates that in the case of

increased write transactions, there is high number of aborts

for the default pessimistic fixed timestamp ordering scheme

as compared to the dynamic timestamp ordering. Figure 6b

captures the throughput for decreasing read-only transactions

percentage from 90% to 10%. At 10% read-only transac-

tions, fixed timestamp ordering is performing slightly better

compared to dynamic timestamp ordering due to the reduced

bookkeeping in the former approach. But with higher ratio of

read operations, the aborts decrease and throughput increases

for both the techniques.

VIII. CONCLUDING REMARKS

A dynamic timestamp ordering based concurrency-control

scheme modeled on the MaaT protocol is integrated in the

transaction processing mechanism of CockroachDB. Rather

than allocating a fixed commit timestamp at the start of the

transaction, the commit timestamp is dynamically allocated,

in such a way that the commit timestamp can be made to fit

on a logical serializable timeline. Code changes were made

to integrate the protocol in the existing transaction processing

codebase in CockroachDB.

Initial results show that the integration of dynamic times-

tamp ordering in CockroachDB leads to a decrease in the

number of aborts. Integrating dynamic timestamp ordering

based concurrency-control in a fully-featured database like

CockroachDB needed extensive changes at multiple layers. We

have implemented and evaluated the changes, and have open-

sourced them on Github. We plan to extend and integrate the

proposed optimizations for read-only transactions and other

mechanisms of reducing the overhead of dynamic timestamp-

ing.

To the best of our knowledge, this is the first evaluation of

dynamic timestamp allocation technique in a commercial and

production cloud database such as CockroachDB.
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