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Abstract—Geo-distributed databases are the state of the art
to manage data in the cloud. But maintaining hot records in
geo-distributed databases such as Google’s Spanner can be
expensive, as it synchronizes each update across a majority
of replicas. Frequent synchronization poses an obstacle to
achieve high throughput for contentious update-heavy work-
loads. While such synchronizations are inevitable for complex
data types, simple data types such as aggregate data can benefit
from reduced synchronizations. We propose an alternate data
management system, Samya, to store and maintain aggregate
data. It is presented as a system that stores cloud resource
usage data. Samya dis-aggregates tokens of available resources
and stores fractions of these tokens across geo-distributed sites.
Dis-aggregation allows sites in Samya to serve client requests
independently without the need to synchronize each update.
Samya also incorporates a learning mechanism to predict
the future resource demands at each site. If the predicted
demand cannot be satisfied locally at a site, sites execute a
synchronization protocol called Avantan to rebalance the avail-
able resource tokens in the system. Avantan is a novel fault-
tolerant consensus protocol where sites agree on the global
availability of resources that are then redistributed. After
the redistribution, the sites continue to independently serve
client requests. Our experiments, conducted on Google Cloud
Platform, highlight that dis-aggregating data and reducing the
number of synchronizations allows Samya to commit 16X to
18X more transactions than current state of the art cloud based
geo-distributed databases.

1. Introduction

Many small and mid-sized enterprises rely on large
cloud providers, such as Amazon AWS, Google GCP, and
Microsoft Azure, to provide the backend infrastructure.
While the cloud’s pay-per-use strategy along with the elas-
ticity to spawn new resources on demand has many benefits,
it comes with a cost: an unexpected traffic spike can drasti-
cally increase the consumed resources, leaving the customer
with a hefty bill.

To avoid such surcharges, cloud customers can set limits
on the amount of resources they consume through a variety
of resource tracking services [8]. Clients can set limits on
resources such as storage capacity, number of deployable
VMs, and network bandwidth. Resource tracking services

within a cloud provider actively maintain data on current
resource usage; this data helps enforce the limits and bill
the customer accurately for their usage. A resource can be
consumed only if its current usage is below the preset limit
of that resource — this translates to a read-write transaction
at the resource tracking services.

Consider an example where a large cloud provider,
ultraCloud, has a start-up eCommerce.com as a customer.
The start-up comprises of many teams such as clothing, elec-
tronics, etc, as shown in Figure 1, and the teams consume
resources as indicated in the leaf nodes. The resource limit
is set by an admin of eCommerce.com and is applicable
to all teams within the organization. This type of hierar-
chical structure is widely used by the cloud providers to
allocate resources, track the usage, and accurately bill the
customer [6], [1], [7].

el
. m

Figure 1: Hierarchical org structure of a cloud customer
eCommerce.com.

The cloud provider, ultraCloud, tracks the number of
resources eCommerce.com can consume. For example, each
vm creation a read-write transaction in ultraCloud’s re-
source tracking service to check if the overall vms con-
sumed exceeds eCommerce.com’s threshold. Only after this
transaction succeeds can the actual physical resource be
allocated. Any update to an intermediary or leaf unit (team)
must percolate to the root node, eCommerce.com, as the
cumulative resource usage by all the teams in the hierarchy
is tracked at the root level. Typical update rates for a
single node in the hierarchy may be in the hundreds of
transactions per second, but the aggregate load on the root
for a moderately sized enterprise hierarchy may easily be
in thousands of transactions, causing the root node’s data to
become a hotspot.

In a cloud setting, data — including a tracking service’s
data — are stored on multiple servers in a data center to
ensure high availability and fault-tolerance. Examples of




geo-distributed databases are Google’s Spanner [13] and
Amazon Aurora [38].

Consider the design choices of a Spanner-like database:
each data item is replicated across multiple sites, one of
which acts as a leader. For each update, the leader replicates
the change onto a set of replicas using consensus protocols
such as Paxos [26]. While this is a good choice for high
availability, it aggravates the hot-spot problem in two ways:
(1) Sequential execution: for hot-spots, where many trans-
actions access the same data, conflicting transactions are
processed by the leader sequentially; and (2) High Latency:
each update is propagated to geographically distant sites,
incurring high latency. Spanner commits a transaction with a
mean latency of 17ms and a tail latency of 75ms [13]; hence
for a single data item, Spanner can commit on average 58.8
transactions per second (tps) and a tail throughput of 13.3
tps. For a customer such as eCommerce.com (Figure 1),
perhaps 60 tps is enough for an individual node, but for the
aggregate root node with hundreds of teams in the hierarchy,
this throughput value becomes problematic.

Our observation is that while geo-distributed databases
are a good choice for supporting complex forms of data,
they are not ideal for simple aggregate data types where
the operations are mostly limited to additions or subtrac-
tions, such as maintaining resource usage data. Spanner-
like solutions provide high scalability but fail to provide the
high throughput necessary for hot-spot data. Based on this
observation, our research objective is to design an alternate
system that manages simple data types and provides high
throughput for update heavy workloads in a cloud setting.

This question has been addressed for traditional non-
cloud databases in many works such as [31], [10], [25], [19].
Escrow transactions [31] introduced the notion of concurrent
transactions updating different ‘chunks’ of the an aggregate
data, albeit in a non-distributed database. Barbara et al. [10],
Kumar et al. [25], and Golubchik et al. [19] introduced
the idea of partitioning aggregate data onto multiple sites
allowing each site to independently update its portion of the
data value (e.g., multiple sites independently selling airline
tickets). The problem is made non-trivial by introducing
a constraint while updating the distributed data (e.g., not
selling more airline tickets than the available seats). The
solution proposed in this paper is motivated by these works,
adapted for the radically different settings of large scale geo-
distributed cloud infrastructures.

If partitions of available resources are to be stored on
different sites, the next logical question to ask is: how to
distribute the available resources among these sites? The
advancements in machine learning and deep learning tech-
niques as well as the abundance of cloud resource demand
data collected by cloud providers can aid in answering this
question. In fact if resource demand can be predicted and
resources can be allocated to sites accordingly, most client
requests can be served locally, without incurring expensive
cross-datacenter communications.

In this paper, we propose an alternate design for geo-
distributed data management systems to manage aggregate

data. Specifically, we present Samya' — a system that stores
and tracks resource usage data across geo-distributed sites.
Samya avoids the high latency and low throughput of
Spanner-like databases by allowing a site to serve a client
request locally, without the need for expensive synchroniza-
tion.

Overview: To serve client requests locally while still
maintaining the global resource limit, sites in Samya start
with an initial allocation of available resources. We model
the resource data as fokens (tokens of a specific resource
are indistinguishable). A site can serve requests locally as
long as it has locally available tokens; once it exhausts its
local tokens or if it predicts an increase in resource demand
that cannot be satisfied locally, the sites synchronize to
redistribute any unused tokens in the system. We propose a
novel protocol —Avantan® — to redistribute spare tokens.

Avantan is a fault-tolerant consensus protocol, in which,
unlike Paxos, the value to agree upon is unknown at the start
of the protocol. The sites communicate with each other to
share their local token values and attempt to reach agreement
on the shared values. If successful, the sites use the shared
values to redistribute any spare tokens. Thus, sites in Samya
are constantly rebalancing the tokens among themselves
based on the demand predictions, to maximize the number
of client requests served with minimal latency.

Along with providing low latency, the dis-aggregation
strategy of Samya increases its availability compared to
Spanner-like databases. For a specific resource, Spanner
becomes unavailable if a majority of the sites that store
the resource information fail, whereas Samya is available
as long as at least one site is available.

Other Applications of Samya: Although Samya is mo-
tivated and presented as a service that stores and tracks
resource usage, it can be used as a data managing system
to maintain any aggregate data in the cloud. Examples of
applications consisting of aggregate data are: rate limiting
services to manage quotas and policies; inventory manage-
ment such as online shopping, car rentals, etc.; airline ticket
booking; advertisement campaigns tracking; billing services;
etc,. For ease of exposition, in this paper we focus on one
application: maintaining resource usage data.

The paper is structured as: Section 2 discusses existing
works related to Samya, Section 3 discusses the system
and data model employed in Samya. Section 4 explains
transaction executions and introduces Avantan, Section 5
presents the experimental evaluation of Samya and Section 6
concludes the paper.

2. Related Work

The hotspot problem for aggregated data fields is an im-
portant practical problem studied extensively by the database
community. Data partitioning is the most predominantly
adopted solution for the hotspot problem, generally present
in the two main forms: (i). Key partitioning where data

1. Samya is the Sanskrit word to equilibrium or equality.
2. Avantan in Sanskrit means allocation.



items are partitioned into different, non-overlapping sets
based on their keys and the sets are stored across multiple
sites; and (ii). Value partitioning where the same data item,
irrespective of its key, is partitioned into different values and
these values are stored across multiple sites. Since Samya
is designed for a single high contention hotspot data, such
as the root of an organization hierarchy, Samya adopts the
value partitioning approach to store fractions of an aggregate
value (i.e., available tokens) across different sites.

The idea of value partitioning has been studied ex-
tensively, starting with the seminal paper by O’Neil [31].
In [31], O’Neill introduced escrow transactions where dif-
ferent transactions operate on different fractions of the same
data, thus allowing concurrency; this was proposed for a
non-distributed database. In [25], Kumar and Stonebreaker
extended transactions acquiring escrows to sites acquiring
escrows. The sites serve transactions locally as long as they
have non-zero escrow quantity. In [21], Harder extended
the idea of escrows and introduced hierarchical escrows
to reduce coordination to dynamically update escrows of
multiple sites. In [24], Krishnakumar and Bernstein pro-
posed Generalised Site Escrow to dynamically allocate parts
of aggregate data (i.e., resources) to different sites using
quorum locking and gossip messages.

The demarcation protocol [10] introduced by Barbara
and Garica-Molina partitions an individual data value (which
has a global constraint) and stores different partitions on
separate machines; the protocol explains how to maintain
constraints on the data when the data is distributed. In [9],
Alonso and El Abbadi extend the demarcation protocol to
store the value partitions across more than two sites and
formalize the theory of partitioned data. In [19], Golulbchik
and Thomasian introduce a token allocation system assum-
ing that the incoming request pattern follows a Poisson
distribution and tokens are allocated to different sites based
on this distribution.

In essence, the above discussed works aim to partition a
data item based on its value, store the partitions on multiple
sites, and update them concurrently, while maintaining a
global constraint. These protocols are proposed for radi-
cally different environments where typically the sites are
not geo-distributed, the networks are assumed reliable, and
the results presented are typically via simulations. Samya
brings the basic idea — dis-aggregate the aggregate data
to increase concurrency — from these works into the more
modern context of cloud computing and geo-distributed data
management systems.

A related approach that supports local operations with-
out global synchronization is proposed by Shapiro et al.
[35] in the context of Conflict-free Replicated Data Types
(CRDTs). CRDTs supports conflict freedom by using even-
tually consistent replicas on different sites. Due to the
eventual consistency guarantees and the semantics of the
data types, replicas are updated locally and are synchronized
with other replicas eventually. CRDTs, or rather systems
that use CRDTs, differ from Samya in that the replicas
of CRDTs do not dis-aggregate the value of a data item
nor maintain a global and distributed constraint, which are

important aspects of Samya. All the replicas of a data item
in CRDT systems eventually become consistent with each
other, without a notion of re-balancing the values maintained
by each replica, as is performed in Samya. Another major
difference between CRDT systems and Samya is CRDTs
are typically commutative whereas data in Samya can be
non-commutative.

Many recent works have proposed key partitioning as
a way to scale and improve the throughput of database
systems, such as Schism [15], Horticulture [33], Clay [34],
E-Store [36], and Chiller [39]. All of these works differ
from Samya in two major ways: (i). they partition the data
records and optimally place hot records on different sites
(except Chiller [39] which places hot records on the same
site) to load balance and increase system performance; and
(i) they optimize for a set of hot records by opting for
key partitioning, whereas Samya optimizes for a single hot
record by choosing value partitioning.

With the rise of the cloud paradigm, many new database
designs opt for geo-distribution to provide high availabil-
ity [13], [16], [38], [2], [37]. The data in these systems
are key partitioned and replicated across geo-distributed
sites. Google Spanner [13], Amazon Aurora [38], and
CockroachDB [37] all use replication protocols such as
Paxos [26] or Raft [32] to consistently replicate each up-
date to a quorum (typically majority). While Amazon’s
Dynamo [16] chooses eventual consistency and is hence
less stringent in replicating each update, it may suffer from
inconsistent data. Recently, there has also been increasing
interest in efficiently executing transactions on data that is
both partitioned and replicated in a cloud geo-distributed
environment, in works such as MDCC [23], TAPIR [40],
Replicated Commit [27], G-PAC [28], and Janus [29].

In general, these approaches differ from Samya in that
they employ key partitioning and aim to efficiently execute
distributed transactions across these partitions, which are
often also replicated. First, due to replicating each update
on to a quorum of geo-distributed sites, all of the above
systems are prone to hot-spot problems for update heavy and
contentious workloads. Second, the design mantra common
across these works is to build a general data management
system that can store varied and complex forms of data.
While the general approach has many benefits, it fails to
take advantage of application specific data forms (such as
aggregate data fields) to optimize performance. This causes
applications such as cloud resource tracking services to
inevitably design their own data managing systems. Samya
is designed to take advantage of aggregate data to provide
high performance for hot-spots without compromising avail-
ability.

3. Samya Architecture

3.1. System Model

Samya is a niche distributed data management system
that stores and maintains aggregate data specifically related
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Figure 2: Clients interact with the data stored across sites
through application managers (app mgr).

to resource usage information; the data is stored across
multiple geo-distributed sites. Figure 2 represents the system
model and the client interactions with the system. Samya
consists of sites and application managers.

Sites: To enhance the performance and for high avail-
ability, the aggregate data is dis-aggregated into different
partitions and the partitions are stored across multiple sites,
typically geo-distributed. Sites in Samya act as data shards
that store fractions of available resources and partial usage
information of a resource; and for simplicity, we assume that
all sites store information about all resources. Changing this
design choice to allow only some sites to store information
of specific resources is fairly straightforward, and further-
more, a run-time library can provide lookup and directory
services to identify the sites that store a specific resource.

Application Managers: These are stateless processes
that relay the messages between a client and the sites. App
managers mask the network topology and individual site
availability from external clients. Since the sites storing the
data and the clients accessing the data are geo-distributed,
multiple geo-distributed app manager processes exist to re-
duce the communication latencies between clients and sites.
Being stateless, app manager processes can easily scale on
demand depending on the request load.

Samya assumes an underlying asynchronous communi-
cation network where messages can be delayed, dropped, or
reordered. The sites and the application managers can fail
by crashing but do not exhibit malicious behavior. Unless
they crash, the sites and application managers execute the
designated protocol correctly. Samya further assumes that a
site, which stores the data, does not crash indefinitely, when
a crashed site recovers, it reconstructs its previous state
before the crash. If an application manager crashes, since
app managers are stateless, a new process can be spawned
easily and plugged into the system.

3.2. Data Model

Abstractly, we term each resource stored in Samya as an
entity. The clients (i.e., cloud customers) acquire or release
these entities and Samya tracks client actions to maintain up-
to-date resource usage and resource availability information
for each entity. A high privilege-user (e.g., admin of an
enterprise) within a client configures a preset maximum
M, — the maximum limit of available tokens for entity
e — and other clients (e.g., smaller organizational units in
the enterprise or end users of the enterprise) can acquire or
release specific quantities of the entity.

Samya maintains the following system level constraint:
at no point does the system allow the clients to collectively
acquire more than M, tokens for an entity e.

0 < total_acquired_tokens < M, (1)

TABLE 1: State variables of an entity e maintained by each
site in the system.

item ] description
id UUID to identify type of resource
TokensLefts Num. of tokens left at site S
TokensWanted g Num. of tokens site S wants

The state of an entity e, as maintained by each site .S in
the system, refers to specific details as presented in Table 1:
id is a unique identity to identify the type of entity (or
resource) e; TokensLeft indicates the number of tokens
of entity e available at site S; T'okensWanted indicates
the number of tokens of entity e that site S needs during a
redistribution.

Transactions: Clients perform 2 types of transactions:

e acquireTokens(e, n): A client asks for n tokens of
entity e, where n is a positive integer.

o releaseTokens(e, m): A client returns m tokens of
entity e back to the system, where m is a positive
integer. These tokens can later be acquired by other
clients. An individual client never returns more to-
kens than what it has acquired.

4. Samya

In this section we discuss how Samya efficiently man-
ages and tracks resource usage. Samya is a highly available
distributed data management system proposed as an alterna-
tive to manage resource data in geo-distributed databases. If
a client consumes any resource such as creating additional
VMs, then in traditional geo-replicated databases, all the
replicas are updated to reflect the resource usage. Samya,
on the other hand, chooses a single site to update the
resource usage data, thus avoiding the cross data-center
communications for each update. To cope with varying
resource demands at different sites, Samya relies on learning
based predictions and dynamic reallocation of resources.

4.1. Overview

In this section, we provide an overview of Samya’s
request serving approach. A site receives either an acquire-
Tokens(e, n) or releaseTokens(e, m) request from a client,
where e identifies the entity, and n, m are the number
of tokens to be acquired or released. The main goal of
each site in Samya is to serve as many requests locally
as possible while maintaining the global constraint that the
overall acquired tokens of an entity e stored across all sites
never exceeds the limit M. Since a releaseTokens request
returns tokens, it never violates the global constraint and
hence, can always be served locally at a site.



Site i

Prediction Req_.
Module Handling
Module
Protocol Redistribution
Module Module

Figure 3: Components of each site in Samya.

Meanwhile, a site may receive an acquire request with
a value greater than the number of tokens available locally
at that site. A site could choose to reject these requests
but Samya takes an alternate approach. If a site S cannot
serve an acquire request locally, it triggers a redistribution
by communicating with other sites. The sites share the state
of their tokens for entity e and redistribute any spare tokens,
after which site S may acquire enough tokens to serve
pending or future client requests. We term this as reactive
redistribution: a redistribution triggered in response to a
client request that could not be satisfied locally

While reactive redistributions avoid rejecting client re-
quests merely because tokens are exhausted locally, the
requests that cause redistributions incur large delays. The
cloud computing literature [20], [14], [30], [17], [22], [12]
has shown that resource demand typically can be predicted.
We take advantage of predictable workloads to trigger
proactive redistributions — redistributions where a site pre-
dicts if the demand is increasing and triggers a redistribution
to satisfy the predicted load. This approach further mini-
mizes the latency to serve client requests.

4.1.1. Components of a Site in Samya. Each site in Samya
consists of 4 components as shown in Figure 3.

o Request Handling Module: This module commu-
nicates with app managers and serves client requests
locally. This module also triggers redistributions.

o Prediction Module: This is a learning module gen-
erated by training on existing resource demand data
such that it predicts the future resource demand in
terms of number of tokens.

o Redistribution Module: If the Request Handling
module triggers a redistribution, this module calls
the Protocol module to check if other sites have
any spare tokens; based on the responses from other
sites, this module re-allocates the spare tokens.

e Protocol Module: This module executes a multi-
round fault-tolerant protocol that collects token in-
formation from other sites for redistribution.

Each of these modules is pluggable and can be easily
replaced with an upgraded version, if and when needed.

4.1.2. Life-cycle of a client request. A step-wise overview
of how sites in Samya serve client requests is presented in
Figure 4:

1). Client request: A client generates and sends either an
acquireTokens(e, n) or releaseTokens(e, m) request, where e
is the entity id, and n, m are number of tokens. This request
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Module

App
Manager
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Figure 4: Life-cycle of a client request.

reaches the closest app manager to the client (this can be
achieved using a load balancer).

2). App Manager: Typically, the app manager relays the
client request to the closest site. But if the closest site
has failed or is overloaded, an app manager may relay the
client request to another site. As a result, a single client’s
acquireTokens request may be sent to a site S whereas a
releaseTokens request may be sent to a different site 5.
This is acceptable because sites in Samya only store the
resource usage data; Samya is not responsible for the actual
physical resource allocation, which is the function of higher
level applications.

3). Site serving request: A site S that receives a client
request attempts to serve the request locally; if successful,
it updates its local token state based on the type of request:

TokensLefts = TokensLefts —n )
if the client acquired n tokens; or
TokensLefts = TokensLefts +m 3)

if the client released m tokens. The site then responds to
the client, which is relayed via an app manager.
4). Demand prediction: After serving a client request, the
site checks if it is close to exhausting its tokens for that
entity, i.e, TokensLeft is below a pre-configured threshold.
If so, the site predicts the demand for the near future (e.g.,
next 5 minutes).
5). Trigger redistribution: If the predicted value indicates
a decrease in demand, the site simply continues to serve
more requests. Whereas if the predicted value indicates an
increase in demand that cannot be satisfied locally, the site
triggers a redistribution.
6). Execute protocol: If the site triggers a redistribution,
it communicates with other sites to collectively execute a
fault-tolerant protocol to share with each other the state of
entity e, which includes the information shown in Table 1.
7). Reallocate tokens: Based on the shared information,
each site independently reallocates the overall spare tokens
using a deterministic reallocation procedure.
8). Update tokens state: Depending on the outcome of the
reallocation, the site that triggered the redistribution may
acquire more tokens, upon which it updates its state of entity
e and serves any pending or future requests.

Note that the above steps describe a proactive redistribu-
tion. Samya also supports a reactive redistribution triggered



when a site receives a client request that cannot be served
locally (due to insufficient locally available tokens). Cloud
workloads typically consist of spikes and a reactive approach
caters to such spiky workloads.

In the following sections, we elaborate on when a re-
distribution is triggered, how the redistribution protocol is
executed, and once the protocol terminates, how the spare
tokens are reallocated. Table 2 defines the variables that will
be used in the following sections.

TABLE 2: Variables used in the t*" redistribution of an
entity e at site <.

[ Symbol ] Meaning |

M Maximum Limit (of entity e)
N Number of sites

TU, Tokens Used at ¢t*" redistribution

TLy Tokens Left at t¢" redistribution

TW; Tokens Wanted at t'" redistribution
St Total spare tokens in tth redistribution

Rt Set of sites participating in '™ redistribution
Ly List of state variables of the sites in R+

4.2. Triggering Redistribution

Before delving into the details of triggering a redistri-
bution, we discuss predictability of cloud workloads. The
cloud computing literature consists of many works that
highlight the predictability of resource demands in the cloud,
e.g., [20], [14], [30], [17], [22], [12]; they also discuss
various techniques to predict resource demand. The common
underlying idea is to collect a large amount of actual demand
data, analyze this data to uncover any periodicity or patterns,
and develop mathematical models that can learn from the
past data to predict future demands.

Samya adopts a similar approach where application-
specific historical resource demand data is collected to train
a learning model. Once this model is trained and tuned to
predict future demands, it is used as the Prediction Module
(Figure 3). The Prediction Module is a pluggable module
wherein the application developers using Samya are free to
choose the best prediction technique suitable for their work-
load. This module can be replaced even after deployment,
if a better learning approach is found or if the application
workload changes. We discuss the prediction methods used
in evaluating Samya in Section 5.

An epoch is defined as the look-ahead time duration
used during prediction. This dictates how far ahead in the
future to predict resource demand (e.g., 5 or 10 minutes)
depending on the workload pattern. Samya supports two
ways of triggering a redistribution.

e Proactive redistribution: After a site serves an ac-
quireTokens(e,n) request, in a background thread, it
checks if it is close to exhausting its local tokens
for that entity. If so, it uses the Prediction module
to predict resource demand for the next epoch. If de-
mand is decreasing, the site continues to serve client
requests. Whereas, if demand is to increase in the

next epoch such that it cannot cater to the increasing
demand locally, the site triggers a redistribution by
updating its state of entity e:

TokensWanted = PredictedV alue — TokensLeft (4)

e Reactive redistribution: Since prediction techniques
are rarely 100% accurate, Samya allows for reac-
tive redistribution wherein a site receives an ac-
quireTokens(e,m) request asking for m tokens and
m > TokensLeft at the site. In order to satisfy this
request, the site triggers redistribution by updating
its state of entity e:

TokensWanted = m (®)]

4.3. Executing Redistribution Protocol

Once a site decides to trigger redistribution, it executes
Avantan: a novel fault-tolerant consensus protocol designed
specifically for redistributing available resources. In this
section we present two different versions of Avantan dif-
fering primarily in their failure assumptions and failure re-
coveries. Sites execute multiple instances of Avantan either
sequentially or concurrently; a single execution instance is
presented in this section. For each instance of redistribution,
the Avantan protocol aims to reach agreement on the list of
sites participating in that instance. The protocol is designed
to tolerate arbitrary crashes, message losses, and network
partitions, while making the best effort in providing liveness.

The two versions of Avantan are:

. Avantan[%“]: Requires a majority (% + 1) of sites
to be alive and communicating during protocol exe-
cution. This version of Avantan is a better choice
when individual network links are highly unreli-
able (prone to message drops) and servers crash
frequently but network partitions are infrequent. In
this version all sites execute one redistribution after
another.

o Avantan[x]: No requirements on majority of sites
being alive to execute the protocol; it tolerates net-
work partitions of arbitrary sizes and allows different
partitions to execute redistribution concurrently. But
this version is sensitive to message losses during the
execution of the protocol.

The two versions also differ in their failure recovery mech-
anism, which will be discussed later. In developing the
protocol, we follow the abstractions defined in the Con-
sensus and Commitment (C&C) framework [28] and the
protocol is motivated by the Paxos Atomic Commit (PAC)
protocol proposed in [28]. Avantan abstractly consists of the
following phases: the first phase executes Leader Election
as well as Value Construction, the second phase makes
the value Fault-Tolerant, and finally, the third asynchronous
phase distributes the Decision.

We explain the two versions of Avantan with respect to
redistributing the tokens of a single entity e; the protocol
can be easily extended to include multiple entities. During



Algorithm 1 Avantan[%“] redistribution protocol.

Let state;; be the state of entity e at site with id ¢ during

tth

execution of Avantan.

1: procedure ELECTION-GETVALUE()

2: BallotNum < (BallotNum.num-+1, selfld)
3: InitVal < currState /* With an updated
kensW anted */
4: Send Election- GetValue(Ball()tNum) to all
5. procedure ELECTIONOK-VALUE()
6: upon receiving Election-GetValue(bal) from S
7: if bal > BallotNum then
8: BallotNum < bal
9: predictedVal < PredictForNextEpoch()
10: if predictedVal > currState. TokensLeft then
11: currState. TokensWanted +
predictedVal - currState.TokensLeft
12: InitVal < currState
13: Send ElectionOk-Value(BallotNum, InitVal,
AcceptVal, AcceptNum, Decision) to S
14: procedure ACCEPT-VALUE()
15: if received ElectionOk-Value(bal, initV, acceptV,
acceptN, dec) from majority then
16: if at least ONE response with dec=True then
17: AcceptVal < acceptV of that response
18: Decision « True
19: else if at least one response with acceptV#£ |
/* dec is Trklle for none. */ tl%
20: AcceptVal < acceptV of that response
21: else
22: AcceptVal < (InitVal || all received initV's)
23: end if
24: AcceptNum < BallotNum
25: Send Accept-Value(BallotNum, AcceptVal, Deci-
sion) to all
26: procedure ACCEPT-OK()
27: upon receiving Accept-Value(bal, acceptV, acceptN,
dec) from S
28: if bal > BallotNum then
29: AcceptVal < acceptV
30: AcceptNum < bal
31: Decision < dec
32: Send Accept-ok(BallotNum) to S
33: procedure DECISION()
34: if received Accept-ok(bal) from majority then
35: Decision + True
36: Send Decision(BallotNum, Decision) to all

TABLE 3: Variables maintained by a site with id s during
each execution of redistribution protocol for entity e.

BallotNum initially < 0,5 >
InitVal state of entity e (Table 1)

AcceptVal initially L (Null)

AcceptNum initially < 0, s >
Decision initially False

\/_/‘\//

Election-GetValue  Accept-Value Decision
ElectionOk-Value Accept-ok

Figure 5: Phases of Avantan[”TH] protocol.

protocol execution, sites maintain the variables defined in
Table 3, which mainly correspond to the standard vari-
ables used in Paxos. BallotNum is a tuple of the form
<num, td> where num is a local, monotonically increasing
integer and id is site id. Ballot number ensures the total
ordering of different redistributions. InitVal is the current
state value of entity e (as defined in Table 1) at site s when
the redistribution starts. AcceptVal represents the list of state
values of the sites participating in the redistribution and
AcceptNum is the ballot number at which a site updates its
AcceptVal. Finally, Decision indicates if the sites reached
agreement on AcceptVal at ballot Ballot Num.

The redistribution protocol is initiated by a site S either
for proactive or reactive reasons. The different phases of the
protocol are shown in Figure 5. Abstractly, site S attempts
to become the leader and collects state values from: at least
a majority of the sites in the case of Avantan[”%“l]; and any
number of sites in Avantan[*]. We denote the set of sites
participating in the t** instance of redistribution as R;>. Site
S then ensures that the list of state values — as denoted by
L; — is fault-tolerantly stored across: a majority of sites in
Avantan[%“]; and the same set of sites that responded with
their state values in Avantan[x]. S then finalizes the value
L, and all participating sites reallocate the tokens. Note that
once a site starts participating in the redistribution protocol,
it queues all the acquireTokens and releaseTokens requests
from clients until the protocol terminates.

4.3.1. Avantan["T“]. The protocol consists of 3 rounds (5
phases) as described in Algorithm 1 and shown in Figure 5:

o Election-GetValue: In the first phase site S attempts
to become the leader as well as collect the state
values from other sites. Site S increments its ballot
number (line 2) and sets its InitVal to the current
local state of entity e, i.e., all the fields of Token-
sUsed, TokensLeft, and TokensWanted. Site S then
sends Election-GetValue(BallotNum) message to
all sites.

3. These variables are defined in Table 2.



o ElectionOk-Value: As shown in lines 6-13, upon
receiving the Election-GetValue message, a site C'
(termed as cohort to distinguish from the leader)
checks if the received ballot number is greater than
its current ballot number. If yes, it updates its
ballot number, and it runs the Prediction Module
to predict its demand for the next epoch (line 9).
If the predicted value is greater than the current
number of tokens left, then site C’s demand is
increasing such that C' cannot satisfy the increas-
ing demand. Hence, it sets its TokensWanted
field (line 11) to the difference between the pre-
dicted value and its locally available tokens. C' then
sets its InitVal to the updated state and sends
ElectionOk-value(BallotNum, InitVal, AcceptVal,
AcceptNum, Decision) to leader S. The Accept-
Val, AcceptNum, and Decision variables are used in
failure recovery; in a failure-free execution, these
variables are set to the initial values as defined in
Table 3.

o Accept-Value: As shown in lines 15-25, the leader
site S waits until it receives ElectionOk-Value
messages from at least a majority of the sites (in-
cluding itself). In a failure-free execution (failure
recovery explained later), S sets AcceptVal to the
concatenated InitVals received in the ElectionOk-
Value responses (line 22), and sets AcceptNum
to its current ballot number. S then sends Accept-
Value(BallotNum, AcceptVal, Decision) to all
sites.

e Accept-ok: Upon receiving the Accept-Value mes-
sage from the leader, indicated in lines 27-32, a
cohort C' checks whether the received ballot number
is at least as high as its current ballot number.
If yes, it updates the AcceptVal, AcceptNum,
and Decision variables and sends an Accept-
ok(BallotNum) message to the leader.

o Decision: Finally, the leader waits for Accept-ok
messages from at least a majority of sites (including
self), then sets its Decision variable to True, and
sends the Decision(BallotNum, Decision) message
to all. The protocol terminates for the leader when it
sends the Decision message; whereas the protocol
terminates for a cohort once it receives the Decision
message. The sites then reallocate the tokens using
the information in AcceptVal and respond to any
pending client requests that were queued. The sites
also reset the variables defined in Table 3 (except
BallotNum) once the protocol successfully termi-
nates.

Failure Recovery: If the leader crashes or is network
partitioned from the rest of the sites, the sites must recover
in order to continue serving the clients. The failure recovery
execution follows the same steps as a failure-free execution:
if a site S’ times-out waiting for the leader’s message,
S’ attempts to become the new leader and terminate the
protocol by sending Election-GetValue message to all the

sites. As shown in Procedure Accept-Value (lines 16-28),
in the received ElectionOk-Value messages, if S’ receives
at least one message with Decision as True, this implies
that the previous leader had terminated the protocol and
had sent at least one Decision message before failing; so
S’ chooses the AcceptVal received in this message (lines
18-20).

If none of the received messaged has Decision as True

but at least one message has a non-empty AcceptVal,
this implies that the previous leader had received all the
InitVals and constructed the AcceptVal and had sent
Accept-Value to at least one site before failing; hence the
new leader S’ chooses this value as AcceptVal (lines 21-
22). If multiple sites respond with differing AcceptV als,
the new leader chooses the AcceptV al corresponding to the
highest Accept Num. Any other case implies the previous
leader had either failed to construct AcceptVal or to store
it on a majority before failing, and hence, S’ is free to
construct AcceptVal based on the received InitVals (line
24) (this is also the failure-free behavior). The next steps
of fault-tolerantly storing the chosen value and sending the
decision are the same as in failure-free executions.
Fault Tolerance: As stated in the FLP impossibility result
[18], no consensus protocol can guarantee termination even
with a single site failure. Following the impossibility result,
Avantan[”;“l] can block if a majority of the sites fail or are
unreachable, similar to Paxos.

In spite of the blocking behaviour of Avantan[%ﬂ], the
availability of Samya is higher than that of a system that
executes Paxos for each transaction (e.g., Spanner). This
is because the Avantan["T“] protocol does not block if a
majority of the sites have failed in the first phase of the
protocol. To provide liveness, we use timeouts: if a site that
wants to be a leader sends out Election-GetValue message
but does not receive enough ElectionOk-Value messages
within the timeout period, the site terminates the redistribu-
tion and continues to serve any client requests that can be
served locally. This is acceptable since the leader failed to
construct any value before aborting the redistribution.

Whereas, if the leader successfully constructed a value
(after receives enough ElectionOk-Value messages) and
sent Accept-Value messages to all sites but it failed to make
the value fault-tolerant, i.e., it did not not receive enough
Accept-Ok messages, then that site and the other live sites
are blocked until a majority recover.

Theorem 1: No two distinct values are both chosen for a
given instance of Avantan| "TH I

The recovery mechanism of Avantan guarantees safety of
the value — if a majority of the sites accepted the value
by sending Accept-ok message, then no site will agree on
a different value for that instance of redistribution. This
guarantee is ensured because there exists at least one over-
lapping site in the two sets of majority used in the first and
second phase of the protocol and any new leader learns of
a value that was chosen by the previous leader through the
overlapping site. This guarantee holds as long as majority
of the sites are alive and reachable. g
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Figure 6: Phases of Avantan[x] protocol.

4.3.2. Avantan[x]. Avantan[”TH], similar to Paxos [26] and
other other consensus algorithms, is restrictive as it requires
communication among a majority of sites for redistribution
to succeed. If a majority of the sites are down or if the
network partitions such that no partition has a majority, then
the sites cannot redistribute tokens and may end up rejecting
many client requests. However, the token requirements of a
site .S, as represented in the TokensWanted field of its
state, might be satisfied by fewer than a majority of sites.

The logic of redistributing tokens among a set of sites
does not impose any requirements on the minimum number
of sites. Hence, we propose an alternative consensus proto-
col that allows any subset of sites to participate and ensures
that all participating sites agree on the same value. We mod-
ify Avantan["T“] to accommodate these new requirements.

The failure free execution of Avantan[x] is the same as
the one presented in Algorithm 1 but with 3 major changes:

(i). The leader S that triggers the redistribution sends
Election-GetValue messages to all sites. But instead of
waiting for responses from a majority of sites, it waits until
it receives ElectionOk-Value messages (with TokensLeft
field set) such that S’s token requirements can be satisfied;
if after a predefined amount of time, if S does not receive
enough responses, it aborts the redistribution and notifies
other sites and the client (for reactive redistributions). All
the sites whose InitVals were collected form the set R;
— the set of sites participating in #*" redistribution; in all
subsequent rounds, S communicates only with the sites
in the R;, while notifying the other sites to discard this
redistribution.

(ii). If a cohort site responds with ElectionOk-Value
message to one leader, it rejects all other Election-
GetValue messages from concurrent leaders (even if they
have higher ballot) until the former instance of Avantan[x] is
complete. This ensures that a site participates in one instance
of redistribution after another.

(iii). Rather than wait for any majority of sites to respond
with Accept-ok messages (as shown in line 37), the leader
S waits to receive Accept-ok from ALL the sites in R,
before it sends out the decision.

Different sets of sites can execute parallel redistributions
but an individual site participates in one redistribution at a
time.

Failure Recovery: Since Avantan[x] does not require a
majority quorum to proceed, its failure recovery differs from
that of Avantan[”T“]. In Figure 6, the leader S or other
participants can fail at any point during the execution of
the protocol. Sites such as site NV, that did not even receive

the Election-GetValue message are free to participate in
other redistributions. If the leader fails (crash or network
partition), sites such as 1 and 2 that participated in the
redistribution, must be able to recover.

A cohort site C' that participated in the redistribution
detects leader failure using time-outs. Upon timeout, C'
checks the progress of the protocol execution using the
variables defined in Table 3. If site C’s Decision variable
is set to True, this implies the protocol had terminated and
so C reallocates the tokens. If the Decision is not true, C'
decides its next action based on the value of AcceptVal:

i). If AcceptVal = 1: This implies that C' did not
receive AcceptVal from the leader S before S failed; thus,
C' is free to abort this redistribution because the previous
leader could not have proceeded to the Decision phase
without the Accept-ok from C.

ii). If AcceptVal # L: This implies that the leader
had chosen a value but may not have decided on it, as the
leader may have failed to receive enough Accept-oks before
failing. In this case, C contacts all sites in R, and waits for
the response from the sites in R; (note that C' knows all
the sites in R; based on list of InitVals in AcceptVal). If
any site responds with Decision as True, this implies the
previous leader was successful in making the value fault-
tolerant but failed before sending Decision to all. Hence,
site C' sends the Decision message to all sites in R;.

Otherwise, if any site responds with AcceptVal = 1,

C can safely abort the redistribution (and perhaps notify
other sites in R;) as this implies that the previous leader
failed before making the constructed value fault-tolerant,
and hence could have decided on it. If all sites in R, except
the previous leader S, respond with identical AcceptVal,
this implies that S was successful in storing the value on all
sites in R; but failed before sending any Decision message.
Hence, site C decides on that value, sets Decision to True,
and sends the Decision message. And finally, if C' cannot
communicate with all the other blocked sites in R;, C is
blocked.
Fault tolerance: Similar to Avantan[%“], failures during
protocol execution can cause the set of sites, R;, partici-
pating in that execution of Avantan[+] to be blocked. But
since Avantan[x] allows fewer number of sites to participate
in a redistribution compared to Avantan[’%rl], the set of
sites not participating in the #*" instance of Avantan[x] are
free to serve client requests or execute another instance of
redistribution. The experiments in Section 5 analyze and
contrast the fault tolerance of the two versions on Avantan
in a practical setting.

Theorem 2: No two distinct values are both chosen by the
set of sites participating in a given instance of Avantan[].

A value is chosen once all the sites participating in
an instance of redistribution, denoted by R, respond with
Accept-Ok messages. In Avantan[x], an individual site par-
ticipates in only one redistribution at a time and rejects
any other concurrent redistribution request. Due to this
behaviour, in a failure-free execution, sites in R; have a
single leader who proposes a single value. Thus, in failure-



free executions, all sites participating in an instance of
Avantan[x] agree on a single value.

If one or more sites fail while executing Avantan[x], the
recovery mechanism indicates that the live sites can either
successfully terminate the redistribution or are blocked until
more sites recover. Blocking implies the sites will not partic-
ipate in other redistributions until the current redistribution
instance is terminated, and hence, the sites in R; will not
choose two distinct values for #*" instance. O

While Avantan seems similar to Paxos, they differ in
two major ways: (i) Paxos aims to reach agreement on
a single, client provided value whereas Avantan collects
partial values from each site and aims to reach agreement on
the aggregated values, and (ii) the redistribution correctness
condition (Equation 1) does not require a majority — a fact
that is exploited in designing Avantan[+]— which is stringent
requirement of Paxos.

4.4. Reallocating Tokens

After a site triggers redistribution and a subset of the
sites execute either versions of Avantan protocol success-
fully, the sites execute a deterministic procedure to reallocate
the tokens. In this section, we discuss how to compute the
spare tokens and the procedure to reallocate the spare tokens.

A successful execution of either versions of Avantan
ensures agreement on the AcceptVal, which is a list of
InitVals, i.e.,:

Et =< €7TUt7TLt,TWt >Vi ERt (6)

The reallocation logic defined in Algorithm 2 takes £,
as input and reallocates the available tokens among the set
of sites in R;. The redistribution algorithm ensures the
constraint in Equation 1 that at no point does the token
allocation count across all sites exceed the maximum limit
M, for a given entity e. For ease of exposition, we again
focus of reallocating the tokens for a single entity e and use
the variables defined in Table 2 to explain the algorithm.

Redistributing tokens: As defined in line 1 of Algo-
rithm 2, the RedistributeTokens procedure takes £; as input.
The spare tokens and the total tokens wanted (sum of tokens
specified in the TokensWanted field of each site) across
all sites in R; are computed as shown in lines 4-6. If the
spare tokens are more than the total tokens wanted, all
pending client requests can be satisfied, and AllocateTokens
procedure is called.

Rejecting requests: If the tokens wanted is more than
the spare, some requests must be rejected. The logic for
handling this case is defined in the procedure at line 10
of Algorithm 2. We take a greedy approach to maximise
overall token usage rather than maximise the number of
requests satisfied. This is achieved by first sorting the list
L, in ascending order of tokens wanted (line 11); we choose
ascending order since the algorithm can reject requests with
least tokens wanted first. From this ascending ordered list,
requests with smaller number of tokens wanted are rejected
(by setting tokens wanted to O in line 13 and increasing the

Algorithm 2 Procedures to re-allocate spare tokens after a
successful redistribution
1: procedure REDISTRIBUTETOKENS(L;)

St +~0
TotalTW <0
for ¢ in R; do
TotalTW « TotalTW + L4[i]. TW;
St — St + Et [’L]TLf
if TotalTW > S; then
Ly, S + RejectSomeRequests(Ly, S¢)

AllocateTokens(L;, S;)

/* Spare tokens */
/* Total tokens wanted*/

R e A S o

10: procedure REJECTSOMEREQUESTS(L¢, St)

11: sortedL; < L; sorted in ascending order of TW;
12: for i in sortedl; do

13: sortedL[i|. TW; < 0

14: S+ 8¢ + sortedL[i]. T Ly

15: if TotalTW < S; then

16: break

17: return sortedL;,S;

18: procedure ALLOCATETOKENS(L¢, S;)

19: for 7 in R; do

20: L:[i]. TokensGranted + L[i|. TW;

21: St «— St — ﬁt [Z]TWt

22: for ¢ in R; do

23: L:[i]. TokensGranted +
L]i].TokensGranted + lm‘?ikf)

spare quantity in line 14) until the number of spare tokens
exceed total tokens wanted (lines 15-16).

Allocating spare tokens: Finally, AllocateTokens (line
18) is called with updated list £; and spare tokens S;. At
this point, the redistribution satisfies all sites with non-zero
tokens wanted (as the requests that cannot be satisfied are
already rejected). A tokens request is granted as shown in
line 20 and for each granted request, the spare quantity is
updated (line 21) After satisfying all the tokens wanted
requests, if any more tokens are left, they are equally
distributed among all the participating sites (line 23).

S. Experimental Evaluation

In this section we discuss the experimental evaluation
of Samya, specifically the performance of two versions of
Samya where one version uses Avantan["TH] and the other
uses Avantan[+] to handle any redistributions during the
experiments. Samya’s performance is compared with two
baselines implemented by us in Go and one open-sourced
database:

1). MultiPaxSys: A Spanner-like geo-distributed database
that executes multi-Paxos [11] for each transaction.



ii). Demarcation/Escrow: A value-partitioned system
that captures the underlying mechanisms proposed in [10],
[25], [9], [24]. Specifically, Demarcation/Escrow extends
the Demarcation protocol proposed by Barbara et al. [10]
to more than 2 sites, similar to [9] by Alonso et al., and
integrates the notion of site escrows used in [25] by Kumar
et al. All sites start with an equal ‘escrow’ of an entity e
(maximum limit, M., divided equally among all sites), and
the sites serve requests locally until they exhaust the spare
escrow locally. When a request cannot be served locally at
site 7, ¢ borrows escrows from one or more sites. If site ¢
fails to borrow escrow from other sites (if they are also out
of escrows), then site ¢ rejects the client request. A stringent
requirement of this baseline, inherited from [10] and [25],
is it requires the network to be reliable; a message drop may
lead to blocking.

(iii). CockroachDB: A state-of-the-art open sourced geo-
distributed database that uses Raft[32] to replicate any
changes to the data.

In evaluating Samya, the experiments focus on two
performance aspects: commit latency — time taken to commit
a transaction measured by the client as the time from when
it sent a transaction to when it received a response to that
transaction; and throughput — the number of transactions
successfully committed per second, i.e, only the acquireTo-
kens and releaseTokens requests that succeed are counted in
throughput.

5.1. Resource Demand Data and Its Prediction

Samya is evaluated on a VM workload dataset pub-
lished by Microsoft Azure [3]. The dataset, consisting of
roughly 2 million data points, contains a representative trace
of Azure’s VM workload in a single geographical region
collected over a month in 2017. Along with other informa-
tion, it includes VM creation and deletion requests reported
at discrete 5-minute intervals. A detailed description and
an analysis of the dataset is published by Cortez et al.
[14] where several interesting patterns of the dataset are
demonstrated. A noteworthy observation among them is that
the VM requests have nearly periodic properties over time.
The authors conclude that for such requests, “history is
an accurate predictor of future behavior”. We leverage the
periodic property of the requests in the dataset to build a
prediction module for Samya.

5.1.1. Resource Demand Prediction. The original Azure
data was pre-processed such that the number of VM cre-
ations and deletions represent a demand for VMs, as de-
picted in Figure 7. The figure shows the periodically increas-
ing and decreasing demand patterns in the data, indicating
that a learning model can learn these patterns to predict
future demands. Although the cloud computing literature
consists of many sophisticated learning methods for re-
source prediction, we picked 3 simple options for resource
prediction: the random walk model as the baseline model,
ARIMA (autoregressive integrated moving average) as a
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Figure 7: Resource demand data recorded for one month at

a single region.

linear regression model, and LSTM, a type of recurrent
neural network, as a non-linear regression model.

To evaluate which out of the three models best predict
the VM demands in Azure dataset, the original one month
data was split into 80% of training data and 20% of testing
data. The result of our evaluation is shown in Table 4. LSTM
predicted the resource demands with highest accuracy, and
hence, was chosen as the prediction module for Samya.

TABLE 4: Mean Absolute Error (MAE) - in units of number
of tokens - of resource demand prediction for three different
prediction models.

| Random Walk | ARIMA | LSTM
1212.19 ‘ 609.13 ‘259.21

MAE
(no. of tokens)

5.1.2. Data processing. Since Samya is proposed as a
solution for the hot-spot problem of aggregate data, the
dataset used to evaluate Samya needs to have a high request-
arrival-rate. To achieve this, we modified the original data’s
sampling interval of 5 minutes to 5 seconds. As a result, the
same number of requests that arrived in a span of 5 minutes
in the original dataset now arrived in a span of 5 seconds,
generating a workload with high request-arrival-rate. Due to
the shrinking of the sampling interval, the original duration
of 30 days of the entire dataset was reduced to 12 hours.

From this 12 hours of data, we trained the LSTM
prediction model with 11 hours of data, and used the last
one hour (corresponding to 60 hours in the original dataset)
to generate client transactions. This train and test ratio
differs from the 80:20 ratio used specifically to evaluate
various prediction models and to choose one among them;
for real-deployment, the train and test ratio was changed to
approximately 90:10.

Samya is a geo-distributed system with sites across
different time zones while the Azure dataset corresponds
to only a single geographical region in a single time zone.
To generate the client requests at different regions, the
original dataset is phase shifted based on the time difference
between the regions. For example, if the demand in the
original dataset peaks at 10 AM Tuesday and drops at 1 AM
Wednesday, in our experiments, clients in North America
generate peak demand load at 10 AM Tuesday at the same
time as clients in Asia generate the reduced demand of 1
AM Wednesday — phase-shifted demands corresponding to



the time difference between North America and Asia. The
phase shifting retains the periodicity in each region while
avoiding peak demand in all regions at the same time. The
clients in different regions generate respective phase-shifted
transactional workloads where the VM creation and deletion
requests from the dataset are transformed to acquireTo-
kens(VM, 1) and releaseTokens(VM, 1) requests respectively.

5.2. Experimental Setup

The three systems, Samya, Demarcation/Escrow, and
MultiPaxSys were deployed on Google Cloud Platform
where each server was a general purpose n1-standard VM
with 8 vCPUs and 30 GiB RAM. For most experiments, the
VMs were placed in 5 different regions: US-Westl (US),
Asia-East2 (AS), Europe-West2 (EU), Australia-Southeast1
(AU), and SouthAmerica-Eastl (SA). 3 to 5 is the typical
default number of replicas used in current state-of-the-art
databases [4], [5]. The inter-region latency is presented in
Table 5.

TABLE 5: Inter-region latencies in ms.

| AS EU AU SA
US [ 131 132 161 180
AS | - 262 125 302
EU | - - 265 218
AU | - - - 305

To simplify the evaluation, in the experiments, we
merged the application managers and clients into a single
machine. Thus, each region consisted of one VM as the
client generating token acquire or release requests and an-
other VM as the server serving client requests. In the exper-
iments, all five clients generated phase-shifted transactions
simultaneously and a client’s requests were served by the
site closest to it.

For MultiPaxSys and CockroachDB, since the recom-
mendation is to place a majority of the sites in close-by
regions to achieve faster replication time, we placed 3 out
of 5 sites in different regions within the US, and 2 others
in Asia and Europe.

All the experiments focused on entity VM and the maxi-
mum global limit, M., was set to 5000, indicating that each
site in Samya and Demarcation/Escrow starts with 1000
tokens. Note from Figure 7 that a single region’s demand
can go beyond 1000, ensuring that sites in Samya would
require redistribution. Another implementation specific op-
timization was when to perform predictions: since prediction
can be computationally expensive, in our experiments, a
site predicts future demand only when its TokensLeft
value is 20% of the tokens granted value in the previous
redistribution round. If the prediction indicates an increase
in demand, the site triggers a proactive redistribution.

5.3. Latency and throughput

The first set of experiments evaluate the commit la-
tency and throughput of the two versions of Samya, and
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Figure 8: Latency of each transaction sent for an hour.

the three baselines: Demarcation/Escrow, MultiPaxSys and
CockroachDB by generating load for one hour (correspond-
ing to 60 hours in the original dataset), creating roughly
820000 transactions. The goal of this experiment is to study
the behavior of the systems over extended periods of time
when the workload is highly contentious (each request either
acquires or releases tokens for the same entity, VMs).

Latency: Figure 8 plots a sample of commit latencies
of individual transactions sent by clients for the duration of
an hour. Since each transaction in MultiPaxSys and Cock-
roachDB executes a replication round before responding to
the client, and the workload is contentious, both the systems
incur significantly higher latencies compared to Samya.
For Samya (both versions), most client requests are served
locally at the closest site; the spikes in latencies of specific
transactions indicate an ongoing redistribution during that
transaction’s processing. For Demarcation/Escrow, although
most requests are served locally, due to the lack of prediction
and an efficient escrow redistribution strategy, the peaks
in resource demand causes latency peaks; hence latency of
Demarcation/Escrow is higher than Samya.

Latency incurred at different percentiles for all five
systems are tabulated in Table 6. The interesting behaviour
here is the contrast in latency numbers for Avantan[x]
and Avantan[”TH]. We suspected Avantan[x] to outper-
form Avantan[";l], since the latter needs to wait for re-
sponses from a majority to execute a redistribution, un-
like Avantan[x], which can proceed with any number of
responses. But the latencies in Table 6 indicate the opposite
- Avantan["%’l] has lower latencies than Avantan[x] across
all percentiles.

This counter-intuitive result is explained by the differ-
ence in how the two versions construct the value during
the first phase of the redistribution protocol. Avantan[”T'H]
requires at least a majority of sites to respond with their local
token values, which the leader concatenates into a single
value (i.e., AcceptVal). This redistribution re-balances the
tokens between a majority of sites. Whereas, Avantan[x] col-
lects just enough responses (consisting of local token values)
to satisfy its token needs, and immediately proceeds to the
fault-tolerance phase. While this greedy approach may be
beneficial for specific transactions, Avantan[+] ends up re-
balancing the tokens between a small number of sites, caus-
ing more sites to trigger subsequent redistributions. Hence,




TABLE 6: Various latency percentiles in ms.

Samya w/ | Samya w/ | Demarcation/ .
Av nT-H ] A [+] Escrow MultiPaxSys | CockroachDB
90%" percentile 1.40 ms 2.9 ms 3.5 ms 126.8 ms 158.7 ms
95t percentile 10.2 ms 37.3 ms 59.6 ms 172.7 ms 184.2 ms
99t percentile 65.1 ms 97.3 ms 213.9 ms 276.3 ms 351.4 ms
in the long run, Avantan[’%l] is better at re-balancing the 10k
tokens and causing fewer redistributions. In the experiments, e —&— Avantan[23!
for the same client workload, Avantan["%rl] required 208 :él 8k --¥-- Avantan[*]
redistributions (proactive and reactive combined) whereas = 6k s=pe-- MultiPaxSys
Avantan[*] required 792 redistributions. a
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Figure 9: Throughput of the systems recorded for an hour.

Throughput: Figure 9 shows the 5-minute moving aver-
age throughput of all five systems when five clients generate
concurrent requests each second and send the requests to
the sites. Since MultiPaxSys and CockroachDB serve these
requests sequentially (as they all update the same data entry),
their throughput is roughly 16-18x worse than Samya and
11x worse that Demarcation/Escrow. This result highlights
the benefits of dis-aggregating an aggregate value to allow
executing concurrent transactions.

Between Demarcation/Escrow and Samya, the demand
prediction and a more efficient redistribution strategy of
Samya causes its throughput to be almost 1.3x better than
Demarcation/Escrow. The performance difference between
Avantan["TH] and Avantan[x] is due to the increased num-
ber of redistribution in the latter, which slows the rate with
which client requests are served.

Since this experiment establishes that the performance
of MultiPaxSys and CockroachDB are comparable, we use
MultiPaxSys for performance comparisons in the following
experiments.

5.4. Failure Experiments

5.4.1. Crash Failures. This set of experiments evaluate the
Samya and MultiPaxSys when crash failures occur (Demar-
cation/Escrow is not evaluated in failure experiments for it
requires reliable networks and hence is not fault-tolerant).
The experiment starts with five regions and roughly every
10 minutes, we crash both the site and the client in a
region, until only one region remains alive, while recording
the throughput throughout the experiment. The results are
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three sites crash, the throughput of MultiPaxSys drops to 0,
since no transaction can be committed once a majority of
the sites fail.

For the two versions of Samya, the performance is
roughly the same up to 2 site failures (note that the per-
formance is similar for both and not worse for Avantan[x]
because in the first few minutes, the number of redis-
tributions are low due to low resource demand in the
Azure dataset; when the number of redistributions are low,
the two versions perform comparably). When 3 sites fail,
Avantan[”%“l] attempts redistribution, times-out, and fails
to perform any redistribution due to the failed majority.
However, sites continue to serve requests that can be served
locally. Meanwhile, Avantan[+] can successfully redistribute
tokens even if only a minority of the sites are alive, thus
causing its performance to be higher than Avantan[”TH]
when failures occur.
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Figure 11: Throughput recorded during network partition.

5.4.2. Network Partitions. This experiment measures the
performance of Samya and MultiPaxSys during a network



partition. The experiment is performed in the presence of a
3-2 network partition, i.e., one partition consists of 3 sites
and the other consists of 2 sites, and clients send transactions
for thirty minutes. The results are indicated in Figure 11. In
MultiPaxSys, only the partition with 3 replicas continues to
serve client requests and are up-to-data while the other two
replicas are rendered stale. Its performance is significantly
low compared to Samya.

For Samya, although both Avantan[%“] and Avantan[x*]
start off with comparable performance, once the sites ex-
haust local tokens and trigger redistributions, Avantan[x]
outperforms Avantan[”T“], since Avantan[%“] cannot re-
distribute tokens in the smaller network partition whereas
Avantan[*] can.

The two failure experiments highlight that between
the two versions of redistribution strategies for Samya,
Avantan[*] performs better in a failure prone environment,
compared to Avantan["%rl]; but in a failure-free scenario,
Avantan[”TH] performs better as indicated in Section 5.3.

One advantage of MultiPaxSys over Samya in both
failure scenarios is that MultiPaxSys can allot more tokens
as long as a majority of the replicas are alive, because the
synchronous replication makes sure that the entire quota
limit can be used. Whereas some tokens claimed tokens in
Samya are lost temporarily until recovery.

5.5. No Constraint vs. No Redistribution
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Figure 12: Throughput of Samya with no constraints and no
redistributions vs. Samya with redistributions.

The remaining experiments focus on contrasting the two
version of Avantan in Samya. In this experiment, we explore
whether redistribution is worth it and the cost of redistribu-
tion on throughput. This experiment compares Samya’s per-
formance with its two baseline versions: i). No Constraints:
there is no upper-bound on the number of resource tokens
allotted, hence every requests (acquire or release) succeeds
locally at a site; ii). No Redistribution: there is a maximum
limit constraint but once a site exhausts its local quota, it
simply rejects the client request, rather than triggering a
redistribution (neither proactive nor reactive). The results
are shown in Figure 12.

Comparing the baselines: i). Samya with no constraints
is the best case scenario with optimal performance, and as

seen in Figure 12, Samya with constraints and redistributions
has only 3.5-4% less throughput than the optimal through-
put. ii). Samya with both versions of Avantan has about 14%
higher throughput than Samya with no redistributions, i.e.,
14% of the transactions would be rejected if Samya did not
perform redistributions. This indicates that although execut-
ing global redistribution is expensive, the system performs
better with the redistributions.

5.6. Proactive vs. Reactive Redistributions
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Figure 13: Samya’s performance with and without predic-
tions.

This experiment aims to measure the significance of pre-
dictions in Samya. Performance of four variants of Samya
are measured: Avantan["TH] with and without prediction,
and Avantan[+] with and without prediction. The clients
execute transactions for thirty minutes for each variant. As
indicated in Figure 13, Samya performs about 1.4x better
with predictions (for both versions). Predictions proactively
prepare a site for the incoming demand and allows a site to
indicate its token requirements with higher precision. This
experiment highlights the advantages of using predictions in
building distributed systems such as Samya.

5.7. Increasing number of sites
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Figure 14: Average throughput (line graphs) and latency (bar
graphs) measured for increasing number of sites.

This set of experiments evaluate the scalability of Samya
by increasing the number of sites from 5 to 20, with addi-
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tional sites spawned in each of the 5 regions in which pre-
vious experiments were conducted. In this experiment, for
each configuration, the clients generate transactions for 10
minutes. Figure 14 depicts the average latency and average
throughput for each configuration. As indicated in the figure,
Samya shows a roughly linear increase in throughput as the
number of sites increase, while keeping the average latency
below 2ms for both versions of Avantan. This experiment
highlights that Samya is highly scalable as more clients can
concurrently acquire or release tokens when the number of
sites increase.

5.8. Read-Write workload
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Figure 15: Average throughput measured with increasing
ratio of read-only transactions.

This experiment compares the average throughput of the
two versions of Avantan with that of MultiPaxSys, when
the ratio of read-only transactions increases, as shown in
Figure 15. For Avantan, when a client issues a read request
to a site S, S communicates with all the other sites to
learn their current token availability, aggregates the received
values and responds to the client with a global snapshot
of the total available tokens. For MultiPaxSys, the current
available tokens is read at a single leader site. This exper-
iment highlights the threshold at which MultiPaxSys has
performance advantages over Avantan: when the read ratio
increases roughly past 65%, the throughput of MultiPaxSys
increases more than Avantan. Since reads are performed at
a single site in MultiPaxSys and most writes are performed
a single site in Samya, one would expect the crossover
point to be at 50%, which is not the case. The reason
is: in our experimental setup, five geo-distributed clients
generate requests in parallel and for MultiPaxSys, all client
requests are sent to one single leader site, which sequentially
processes the requests, thus incurring high latency. Whereas
for Avantan, due to the decentralised design choice, write
requests are typically served locally by sites closest to the
clients, in parallel. Hence, as long as an application’s write
load is 35% or more, it can benefit by choosing Samya.

5.9. Varying the maximum limit M,

This experiment compares the average throughput of the
two versions of Avantan when the maximum limit M, of
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Figure 16: Average throughput measured with increasing
maximum resource limit M.

VM resource increases from 600 to 16000, as shown in
Figure 16. This experiment consists of 5 sites in 5 different
regions and each experimental run was executed for half
an hour. From the VM demand data shown in Figure 7,
624 is the mean positive demand and 3118 is max positive
demand at a single region. Hence, in this experiment we
set the maximum limit from 600 to 16000. When M. is
set to 600, each site starts with 120 tokens each, causing
roughly 1960 redistributions (predictive and reactive com-
bined); similarly, with M, set to 16000, each site starts
with 3200 tokens causing no redistribution. The experiment
shows that Avantan’s throughput increases roughly 5x when
the maximum limit is increased from mean to max demand
for the specific Azure VM demand data, thus bringing out
the sensitivity of Avantan’s performance with regard to the
maximum resource limit.

5.10. Request arrival rate

n+1]

Avantan[=5

12k
10k
8k
ok
4k
2k

Avantan[*]
MultiPaxSys

Throughput (tps)

01— s
52040 100 200 300
Delay in seconds between subsequent requests

Figure 17: Average throughput measured with increasing
delay between requests.

This experiment measures the sensitivity of Avantan to
the request arrival rate. As mentioned in Section 5.1.2, to
generate a high request arrival rate, the original data’s sam-
pling interval was modified from 5 minutes (300 seconds)
to 5 seconds. This experiment starts with 5 second interval
and goes up to the original scale of 300 seconds. For each
configuration, we measure the average throughput of a 5-
minute moving average throughput. As seen in Figure 17,
the throughput of Avantan reduces by 33% when the request



arrival rate reduces by 60x (5 seconds to 300 seconds).
For MultiPaxSys, we notice as increase in throughput for
reduced request arrival rate as the number of contentious
requests sent per second reduces, causing MultiPaxSys to
commit more transactions (i.e., the rate of aborted transac-
tions decreases). The main conclusion of this experiment
is that even at the original request arrival rate, Avantan
commits 43% more transactions than MultiPaxSys.

5.11. Limitations and Future Work

Effect of Maximum Limit M.: Samya’s performance is in-
versely correlated to the number of redistributions executed
by the sites (as indicated in Section 5.3). The higher the
maximum limit, M., for a resource e, the fewer the number
of redistributions sites need to execute. Hence, if most
resources of an application have small maximum limit value,
Samya’s performance benefits may reduce, as indicated in
the experiment presented in Section 5.9.

Read-Heavy Workloads: In its current design, Samya is
optimized for update heavy workloads. Samya can be easily
extended to incorporate partial read transactions, i.e., trans-
actions that read partial resource availability information
stored at a single site. To obtain global resource availability
information, sites in Samya execute a round of communi-
cation, unlike reading at the leader in Spanner-like systems.
Therefore, Samya is a better choice if the client workload
consists of at least 35% writes, as indicated in Section 5.8.
Global Predictions: In its current design, a site in Samya
predicts future demand locally and triggers a redistribution.
In addition to relying on each site’s local knowledge to de-
termine when to trigger redistribution, a global optimizer can
be designed that predicts workload spike/trough at each site
and triggers redistribution based on the global knowledge.
This is an interesting future direction.

6. Conclusion

In this paper, we propose Samya — a geo-distributed data
management system to store aggregate data, presented as a
system that specifically maintains cloud resource usage data.
Samya dis-aggregates the aggregate resource usage data and
stores fractions of available tokens of resources on multiple
geo-distributed sites. The dis-aggregation allows concurrent
updates to the hotspot data, in contrast to sequentially order-
ing all concurrent and contentious updates at a leader site
as in traditional geo-distributed databases such as Google’s
Spanner. A site in Samya serves client requests indepen-
dently until, based on a learning mechanism, it predicts an
increase in its local resource demand that cannot be satisfied
locally. This triggers a synchronization protocol Avantan
to redistribute the available tokens, after which, sites con-
tinue to serve client requests independently. We discuss two
version of Avantan where one version performs better in
an infrequent failure setting, and the other performs better
when crash failures or network partitions are frequent. The
experimental evaluation of Samya’s performance highlights
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the benefit of dis-aggregation as Samya commits 16X to 18x

more transactions than a Spanner-like database.
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