
KLL±: Approximate Quantile Sketches over Dynamic
Datasets

Fuheng Zhao Sujaya Maiyya Ryan Wiener Divyakant Agrawal Amr El Abbadi
Department of Computer Science, University of California Santa Barbara

{fuheng zhao, sujaya maiyya, ryanlwiener, agrawal, amr}@cs.ucsb.edu

ABSTRACT
Recently the long standing problem of optimal construc-
tion of quantile sketches was resolved by Karnin, Lang,
and Liberty using the KLL sketch (FOCS 2016). The algo-
rithm for KLL is restricted to online insert operations and
no delete operations. For many real-world applications, it is
necessary to support delete operations. When the data set is
updated dynamically, i.e., when data elements are inserted
and deleted, the quantile sketch should reflect the changes.
In this paper, we propose KLL± – the first quantile approx-
imation algorithm to operate in the bounded deletion model
to account for both inserts and deletes in a given data steam.
KLL± extends the functionality of KLL sketches to support
arbitrary updates with small space overhead. The space
bound for KLL± is O(α1.5/ε log2log(1/εδ)), where ε and δ
are constants that determine precision and failure proba-
bility, and α bounds the number of deletions with respect
to insert operations. The experimental evaluation of KLL±

highlights that with minimal space overhead, KLL± achieves
comparable accuracy in quantile approximation to KLL.

1. INTRODUCTION
With the rise of big data in companies such as Google,

Amazon, and Facebook, managing hundreds of terabytes to
petabytes of data has become a necessity for day to day op-
erations. To make use of this data, it is crucial to develop
a deeper understanding of the underlying distributions of
the data in real datasets. In particular, techniques such as
quantile approximations, a non-parametric representation,
are widely used to characterize data distributions. For large
amounts of data, one-pass1 algorithms are desirable, and
many well-known data sketches are based on one-pass algo-
rithms. For instance, the HyperLogLog [10] sketch2 is a one-
pass algorithm for the count-distinct problem; the Bloom

1Where input data is read only once.
2The term sketch refers to the algorithm and data structures
that can extract valuable information through one pass of
the data.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

Filter [3] data sketch is a one-pass algorithm for the set
membership problem. Several one-pass quantile approxima-
tion algorithms [20, 11, 8, 19, 26, 27, 1, 12] have been pro-
posed to guarantee high precision while using small memory
footprints. Since one-pass algorithms only read each element
from the input only once, these one-pass algorithms are not
only useful for large databases, but are also naturally appli-
cable in the streaming data settings.

Approximate quantile problems are developed for a va-
riety of settings. For example, approximate quantiles are
considered in the streaming data settings [19, 20], sliding
window settings [2], and distributed settings [26]. Moreover,
approximate quantile sketches operate mainly within the
insertion-only model and the turnstile model. The insertion-
only model, also referred as the cash register model, con-
sists of a stream of only insert operations; whereas the turn-
stile model consists of a stream of insert and delete opera-
tions such that deletes are performed on previously inserted
items [27]. Quantile sketches such as the GK sketch [12] and
Q-digest [26] operate in the insertion-only model; and quan-
tile sketches such as Range Subset Sum [11], Dyadic Count-
Min [8], and Dyadic Count Sketch [27] operate in the turn-
stile model. Turnstile model quantile summaries have sig-
nificant usage in database and networking applications, and
are used in most Database Management Systems (DBMSs)
which monitor and maintain a variety of order statistics such
as quantiles over the contents of database relations [24]; in
value range partitioning for parallel database [25]; and in
financial services [16]. Sketches proposed for the turnstile
model assume a fixed universe in order to tolerate an arbi-
trary number of deletions and thus incur higher space and
update complexity compared to data-driven sketch. The ad-
ditional challenge of tolerating an arbitrary amount of dele-
tion for the turnstile model is arguably a infeasible task for
data-driven sketches which stores a subset of items chosen
from the input. Several researchers [11, 27] have noted that
if one first inserts n elements and then deletes all but one
element, the data-driven sketch has no information about
which element will survive since the data-driven sketch only
keeps a subset of items. Wang et al. [27] conjecture the im-
possibility of any data-driven sketch to support the turnstile
model where all elements can be deleted. Therefore, we fo-
cus on developing a data-driven sketch in the context of the
bounded deletion model.

Recently, Jayaram et al. [18] observed that in practice
many turnstile models only incur a fraction of deletions and
thus proposed an intermediate model, called the bounded
deletions model, which naturally lies in between the insertion-

1

only stream model and the turnstile model. Jayaram et
al. [18] use parameter α to denote different degrees of dele-
tions such that at most 1−1/α of prior insertions are deleted;
when α = 1 the input dataset becomes the insertion-only
model. The authors [18] show significant space improve-
ments for many fundamental streaming problems within the
bounded deletion model over the turnstile model, such as
heavy hitters and inner product estimation, and identify the
bounded deletion model as being particularly useful for ap-
plications such as computing differences between network
traffic patterns, identifying new trending searches, L0 esti-
mation of moving sensors (monitoring wildlife or water flow
pattern), and completing synchronization in database ana-
lytical context.

Furthermore the bounded deletion model is important
for maintaining approximate quantiles in real-world applica-
tions such as summarizing product sales in electronic com-
merce platforms and ranking in standardized testings. Many
companies need accurate quantile information to identify
current status and forecast demands of product life cycles
[14]. After customers purchase some products, a certain per-
centage of the customers may return the product and submit
refund requests, hence the quantile summaries should reflect
these changes. However, it is highly unlikely that the ma-
jority of these customers will return their purchases and in
most cases a bounded deletion model can be assumed. In
the context of standardized testing such as SAT, GRE, and
LSAT, quantiles are seen as a more descriptive measurement
compared to the test scores, since the difficulty of the exam
varies. In these standardized testing settings, students may
request to regrade their exam only once to verify any ma-
chine errors in answer sheet scanning or human errors in
grading the essay. The updated grades may change the un-
derlying score distribution. Thus, a quantile summary with
α = 2, is sufficient to reflect all changes even if all students
require a regrade3. In Section 4.3, we also show how to lever-
age KLL± with α = 2 to maintain fixed-size sliding window
quantile approximation over datasets.

In this paper, we extend the original optimal quantile
sketch KLL [19], which operates in the insertion-only model,
and present KLL± quantile sketch that supports bounded
deletions in which the total number of deleted items are
less than a certain threshold of the total inserted items, and
the deleted items are previously inserted into the data set.
The KLL algorithm is online updatable for insert operations,
but not for delete operations. Without delete operations, a
KLL sketch cannot be maintained for a dynamic dataset
that is constantly updated as an expensive scan operation
will be needed to recompute the KLL-sketch, when dele-
tions are applied. Our KLL± expands the functionality of
the original KLL sketch by supporting bounded deletions;
and if the administrator of the big data, knows a priori
that deletions are not insensitively large compared to the
insertions, such as some corrections or adjustments on previ-
ously inserted items, then KLL± can approximate quantiles
with small space and high accuracy. In summary, the main
contributions in this paper are: (i) Presenting the KLL±

sketch, the first data-driven quantile sketch that operates in
the bounded deletion model; (ii) Providing thorough math-
ematical proofs and analysis to guarantee the correctness of

3https://collegereadiness.collegeboard.org/sat/scores/verifying-
scores

KLL± sketches; (iii) Applying the KLL± sketches to main-
tain approximate quantile estimations in the fixed-size slid-
ing window over datasets; (iv) Evaluating KLL± and com-
paring it with KLL, two parallel KLL strategy, and DCS
sketch [27] through various experiments; and (v) Incorpo-
rating several optimization strategies [17] proposed for the
original KLL sketch [19], such as implementing the algo-
rithm with fixed memory size.

This paper is structured as follows: Section 2 discusses
background of quantile sketches and gives an overview of
previous algorithms. Section 3 introduces the KLL± quan-
tile sketch for datasets with an incoming input stream in the
bounded deletion model, and along with the proposed algo-
rithm for compaction referred to as Conditional Compaction
algorithm. Section 4 analyzes the space complexity of our
sketch, and demonstrates a potential use case of KLL± to
maintain fixed-size sliding window quantile approximation
over datasets. Section 5 presents the results of an eval-
uation conducted using synthetic and real world datasets
and compares KLL± with the state of the art KLL sketch
(insertion-only) and DCS sketch (turnstile) [27]. Finally,
Section 6 summarizes our contributions and concludes this
work.

2. BACKGROUND
Given a multiset of n elements S = {s1, ..., sn}, the rank

of an element si ∈ S is the number of elements in S that
are less than or equal to si, and R(si) is the function spe-
cific to a set S that takes as input an element si and returns
its rank. The quantile of an element si ∈ S is defined as
R(si)/n. Equivalently, the φ-quantile of set S, Q(φ) returns
the element si such that Q(R(si)/n) = si. Typically, quan-
tile is represented as a fraction φ ∈ (0, 1]. The relationship
between the rank and quantile of an element can be repre-
sented as: R(si) = φ · n, where φ is a non-zero fraction less
than or equal to one and n is the number of elements in the
dataset. Equivalently, φ elements are less than or equal to
si and (1 − φ) × n elements are greater than si. The most
familiar quantile value is φ = 0.5 which is referred to as the
median of the dataset.

2.1 Deterministic and Randomized algorithms
Computing the true median value, especially for large

data sets, is memory intensive. Munro and Paterson [23]
formally proved that to find the true median of a set of
size n with p sequential passes of the input requires at least
Ω(n1/p) memory. Thus, to determine the true median using
a one-pass algorithm requires memory linear to the size of
the set. With limited memory and for large data sets, cal-
culating the exact quantiles is infeasible. An alternate and
more practical approach to the problem is to approximate
the quantiles, represented as ε approximation φ quantile,
where ε is the precision value.

The deterministic ε approximation φ quantile algorithms
take as input a quantile query φ and a precision value ε
and output an answer x such that x’s quantile must be in
the range [φ − ε, φ + ε]. An alternative approach proposes
a family of randomized algorithms where the output answer
x is said to to be within the [φ− ε, φ+ ε] range with a high
probability [17, 19, 20]. These algorithms provide guaran-
tees by bounding the failure probability to at most δ such
that the user has 1 − δ confidence that the sketch’s output
is ε approximation.

2

Sketch Space Update Time Randomization Model Framework
GK Sketch [12] O(1

ε
log(εn)) O(log 1

ε
+ loglog(εn)) Deterministic Insertion-Only Data-Driven

Q-digest [26] O(1
ε
logU) O(log 1

ε
+ loglogU) Deterministic Insertion-Only Universe-Driven

MRL99 [21] O(1
ε
log2(1

ε
)) O(log(1

ε
)) Randomized Insertion-Only Data-Driven

Mergeable KLL [19] O(1
ε
log2log(1

ε
)) O(1

ε
) Randomized Insertion-Only Data-Driven

O(log(1
ε
))[17]

RSS [11] O(1
ε2
log2Ulog logU

ε
) O(1

ε2
log2Ulog logU

ε
) Randomized Turnstile Universe-Driven

DCM [8] O(1
ε
log2Ulog logU

ε
) O(logUlog logU

ε
) Randomized Turnstile Universe-Driven

DCS [27] O(1
ε
log1.5Ulog1.5 logU

ε
) O(logUlog(logU

ε
)) Randomized Turnstile Universe-Driven

Mergeable KLL± O(α
1.5

ε
log2log 1

ε
) O(α

1.5

ε
) Randomized Bounded Data-Driven

s.t. D ≤ (1− 1/α)I O(log(α
1.5

ε
))[17] Deletions

Table 1: Comparison between different quantile sketches

2.2 Quantile Sketch: Insertion-only Model
Greenwald and Khanna [12] developed an algorithm, re-

ferred to as the GK sketch that tracks a sorted subset of
elements in the input data stream such that these elements
provide lower and upper bounds for each quantile individu-
ally instead of maintaining a single bound over all quantiles.
The GK sketch is deterministic and requires O(1/ε log (εN))
space in the worst case. It is conjectured [1], however, that
the GK sketch is not fully mergeable – the property of merg-
ing two sketches on two different datasets is to create one
combined or merged sketch that can then be used for quan-
tile computation over the union of the two datasets. Merge-
ability allows users to compute sketches over multiple data
partitions independently and to combine them in parallel to
compute the summaries. The merged sketch should be as
accurate as a single sketch over the entire data set. This is a
crucial requirement in distributed settings, where data is of-
ten stored distributedly across different machines. Creating
sketches independently and then merging them avoids the
communication costs and large latency of transferring large
amounts of data to a central repository. Furthermore, this
also makes the quantile computation highly scalable in the
context of very large datasets.

Karnin et al. [19] extended the GK sketch and presented
the KLL sketch, an asymptotically optimal but non-mergeable
sketch with O(1/ε log log (1/δε)) space. Karnin et al. also
presented a mergeable KLL sketch withO(1/ε log2 log (1/δε))
space bounds. The core building block for the KLL quantile
sketch is called the compactor, first introduced in [20]. KLL
can be seen as an array of H compactors as depicted in Fig-
ure 1. One of the main contributions by Karnin et al. [19] is
to obtain the optimal sketch size by having different capacity
compactors at different heights and exponentially decreasing
the capacity of compactors at lower heights.

When a compactor[h]’s size reaches its capacity, i.e., kh =
ch, the compactor performs a compaction process, in which
it pushes kh/2 elements from compactor[h] to compactor[h+
1]. Hence, these kh/2 elements update their weight to 2 ·
wh, i.e., 2h. The compaction process introduces error since
each compaction pushes only half of the elements to the
next level. For example, consider a compaction of two el-
ements A, B with weight wh = 1 in which rank(A)=1 and
rank(B)=2. A compaction pushes either A or B, and the
compacted element’s weight becomes wh+1 = 2. If element
A is chosen then the sketch loses the information about
element B and believes element A appeared twice, hence
rank(A)=2 and rank(B)=2 in which case we introduced +1

Figure 1: An illustration of a set of compactors. As the
height decreases from H to 1, the capacity of the compactor
decreases from k to cH−1k. k is a constant given by the
user, and c is a constant between 0.5 and 1.

(+wH) error for rank A. If element B is chosen then the
sketch loses the information about element A and believes
element B appeared twice, hence rank(A)=0 and rank(B)=2
in which case we introduced -1 (−wH) error for rank A. In
both cases, we introduce no error for rank B. Therefore the
rank estimation before and after a compaction process dif-
fers by at most wh as shown in Figure 2. Agarwal et al. [1]
suggested that by removing the odd or even indexed ele-
ments with equal probability, the expected error becomes
zero. This ensures that the total error is bounded by δ for
O(1/ε) quantiles.

In summary, Karnin et al. [19] (i) exponentially decrease
the compactor capacity; (ii) replace compactors of capac-
ity 2 with a sampler, which randomly selects one element
from 2wH−log1/c k elements; (iii) keep the size of the top
O(log log 1/δ) compactors fixed (similar to the MRL sketch
[20]); (iv) replace the top O(log log 1/δ) compactors with a
GK sketch [12]. Recently, Ivkin et al. [17] extended the theo-
retical development of Karnin et al. [19] to achieve practical
improvements for implementing KLL sketches. In summary
the contributions are: (i) Implementing the algorithm with
memory limit parameter, denoted by k, as opposed to δ
(failure probability) and ε (precision) parameters; (ii) ex-
tending the functionality to handle weighted data streams;
and (iii) various optimization strategies to reduce memory
footprint and update time. These optimization strategies
are orthogonal to our work, and in Appedix F we show how
to integrate our work with the Sweep Compactor [17] to

3

Figure 2: Compactor[h] reaches its capacity of 6 and per-
forms a compaction. If the odd indexed terms are chosen
then the compaction contributes +wh error to R(1), R(3),
and R(5). If the even indexed terms are chosen then the
compaction contributes −wh error to R(1), R(3), and R(5).
In both cases the compaction contributes no error to R(2),
R(4), and R(6).

improve the worst case update time.

2.3 Quantile Sketch: Turnstile Model
In the turnstile model, the input data stream consists of

both insertions and deletions and a deletion cannot delete an
element that does not exist. This is also known as the strict
definition for the turnstile model. Gilbert et al. [11] were the
first to propose quantile sketches for the turnstile model and
introduced quantile sketches to support both insertions and
deletions in database management systems (DBMSs). The
authors [11] presented the novel Random Subset Sums (RSS)
sketch, which breaks down the universe U into dyadic inter-
vals and maintains the frequency estimations of elements
for each layer, using total space of O(1

ε2
log2 U log logU

ε
),

with update time O(1
ε2
log2Ulog(logU

ε
)). The dyadic struc-

ture decomposes the universe into logU layers such that
in each i layer the universe is partitioned into U/2i inter-
vals of size 2i. The top most layer represents the interval:
[1, U], the second top most layer represents two intervals:
[1, U/2], [U/2+1, U], the third top most layer represents four
intervals: [1, U/4], [U/4 + 1, U/2], [U/2 + 1, 3U/4], [3U/4 +
1, U] and so on until the bottom layer representing all the
elements in U . Thus, to find the rank estimate of an ele-
ment x ∈ U , we can decompose the interval [1, x] into log x
number of disjoint dyadic intervals, and query each of these
intervals to the frequency estimation sketch of their corre-
sponding layers and then sum all the estimations to obtain
the rank estimation.

Later Cormode et al. [8] proposed the DCM (Dyadic Count
Min) sketch with overall space O(1

ε
log2 U log (logU

ε
))) and

update time O(logU log (logU
ε

)). DCM sketch replaced the
frequency estimation sketch in each layer with a Count Min
Sketch, in which Count Min sketch uses small space to out-
put the frequency estimation of each element with an ad-
ditive factor of ε with high probability. Recently, Wang et
al. [27] proposed DCS (Dyadic Count Sketch) sketch which
replaced the Count Min sketch with Count sketch [5]. Count
sketch is similar to Count Min sketch as it has small space
overhead to output frequency estimation for each element
with an additive factor of ε in high probability. While
Count Min sketch’s estimation is biased toward overestima-

tion, Count sketch gives an unbiased frequency estimation
by reporting the median. Wang et al. [27] point out that the
property of unbiased frequency estimation from the Count
sketch is appealing to the quantile problem. Estimations, by
sketches for each dyadic layers, may give positive errors or
negative errors, and these errors may cancel out each other.
Thus, DCS sketches further improve the space bound to
O(1

ε
log1.5 U log1.5 (logU

ε
))) with the same update time com-

plexity as DCM sketches.
These three data sketches (RSS, DCM, and DCS) guaran-

tee that deleting a previously inserted element has no impact
on the space or accuracy of the sketch. In fact, Gilbert et
al. [11] compared the RSS sketch with 2-parallel GK sketches
(one for insertions and one for deletions), and found that
when deletions are relatively small, the simple 2-parallel GK
sketches exceed the accuracy of RSS by two orders of magni-
tude. When the number of deletions are significantly large,
RSS is more accurate than the 2-parallel GK sketches.

During the past three decades of research, various quan-
tile summaries have been developed through a variety of
models and frameworks. In Table 1, we compare the differ-
ence and similarity among several different sketches. Quan-
tile sketches algorithms can be categorized using data-driven
or universe-driven framewrok [7]. Algorithms in the data-
driven framework keep a subset of items that appeared in
the stream and maintain their statistics. On the other hand,
algorithms in the universe-driven framework maintain at-
tributes over the universe and have space and update time
bounds that depend on the size of the universe |U |. For
instance, Shrivastava et al. [26] proposed a novel quantile
sketch for the insertion-only model and universe-driven frame-
work with O(1/ε log (|U |)) space. Our algorithm uses the
the bounded deletion model and data-driven framework,
more precisely the comparison framework4. The benefit for
sketches in the data-driven framework is that these sketches
make no assumptions on the universe size, hence can han-
dle dataset with attributes involving variable-length strings
while their space and update time are independent from the
universe size; Recent surveys by Wang et al. [27], Greenwald
et al. [13], Chen et al. [6], and Cormode et al. [9] provide
more comprehensive background on quantile sketches.

3. KLL± QUANTILE SKETCH
The challenges for supporting arbitrary number of delete

operations in the turnstile model motivated researchers [11,
8, 27] to explore universe-driven algorithms which necessi-
tate the sketch size and update time to be dependent on the
size of the universe, which can be quite large. Our main goal
is to extend data-driven algorithms to the bounded dele-
tion model where the input consists of I insertions and at
most (1− 1/α)× I deletions. We propose the KLL± Quan-
tile Sketch, a generalization of the KLL sketch to maintain
quantile information in the bounded deletion model using
as small of a memory footprint as possible.

3.1 Basic Structure
Similar to MRL [20] and KLL [19], KLL± can be seen

as an array of H compactors where H denote the total
height. Each compactor is identified by its height, denoted
as compactor[h]. The topmost compactor and the bottom
compactor have heightH and 1, respectively. Each compactor[h]

4Only comparisons are applied on elements.

4

has a limited capacity ch = cH−hk where k is the capacity
of compactor[H]. Each compactor[h] contains kh elements
such that kh < ch and each element in compactor[h] has
weight wh = 2h−1. Once a compactor is full, kh = ch, the
compactor will go thorough a compaction to free spaces for
new elements.

3.2 Differentiating Inserts & Deletes
In the insertion-only model, the incoming data stream

consists of data that is being inserted. To extend this model
to contain both insert and delete operations, we first dif-
ferentiate between insert and delete operations by using
one additional bit (representing the sign) with the data
value. We assume that deletions are negative numbers with
negative weights and insertions are positive numbers with
positive weights. Let function sign(element) return 1 for
inserted element and return -1 for deleted element. The
weight of an element is defined based on the sign func-
tion and the height of the compactor. For any element
in compactor[h]: weight(element) = sign(element) ∗ 2h−1.
Hence, the deleted items are recorded with negative weights
and inserted items with positive weights.

3.3 Conditional Compaction
Once a compactor is full, i.e, kh = ch, the compactor needs

to be compacted to free space for new incoming elements.
The presence of inserted and deleted elements requires a
new compaction algorithm. This section presents a novel
compaction algorithm, Conditional Compaction, described
in Algorithm 1. In the conditional compaction algorithm we
assume that the capacity of the input compactor is even. If
the capacity of the compactor is odd then the first or the
last element is randomly kept to ensure that an even sized
number of elements are compacted.

Before compacting each compactor[h], the elements inside
the compactor[h] are sorted (the sorting order does not mat-
ter), line 1 of Algorithm 1, After sorting, Conditional Com-
paction Algorithm follows the following compaction process:

Discard(−ei, ei): For every element−ei, if there is a match-
ing ei, then Discard(−ei, ei). This is because an insert ei
and a delete ei operation cancel each other and any such
matching pairs of inserts and deletes are discarded in the
compaction process. Since the compactor is sorted5, a clas-
sical two-pointer technique6, can be used to find all match-
ing pairs of 〈delete(ei), insert(ei)〉. If such pairs exist then
Discard(−ei, ei) results in the removal of matched pairs
which in turn creates free space in the compactor and hence
the algorithm skips the rest of the compaction process. A
crucial property of compaction is to push elements to the
compactor at the next level. Since in this case a compactor
will not push any elements to the compactor at the next
level, this is not a full compaction.

Push(ei, ei+1): If no 〈delete(ei), insert(ei)〉 pairs are found
and discarded, then the algorithm performs the push oper-
ation. For every pair of adjacent elements, ei and ei+1 with
the same sign (i.e., they are both inserts or deletes) at level

5If compactor is not sorted, we need to keep a map while
scanning the compactor to find all matching pairs.
6Put one pointer at beginning and one at the end, incre-
ments or decrements the pointers to find all matching pairs
in a single scan.

h, the algorithm decides on a random offset (line 6) whether
the first or the second element of the pair is pushed to the
next level, C[h+ 1].

Keep(ei, ei+1): If the pair of adjacent elements, ei and ei+1,
have different signs (i.e., ei is a delete operation and ei+1 is
an insert operation), then both elements are retained in the
compactor at level h. Note that there will be at most one
such mismatched pair with different signs.

The rationale for keeping adjacent elements with different
signs is based on the following observation. Assume there
is a 〈delete(B), insert(A)〉 pair in compactor[h]. This in-
formation implies that the input contains wh insertions and
at least one of these insertions is element A, and also wh
deletions and at least one of these deletions is element B.
If we randomly push either insert A or delete B into com-
pactor[h+1] which contains elements with weight of 2wh,
then the sketch not only lost the information about wh dele-
tions or wh insertions respectively, but also introduce false
information on the total number of insertions and deletions.

Algorithm 1: Conditional Compaction in KLL±

1 sort(C[h]);
2 Discarded = discard((−x, x) pairs ∈ C[h]);
3 if Discarded then
4 // No compaction needed
5 return;

6 offset = random(0, 1);
7 for i = 0; i < C[h].length; i = i+ 2 do
8 if sign(C[h][i]) == sign(C[h][i+ 1]) then
9 push(C[h][i+ offset]) to C[h+1];

10 else
11 keep(C[h][i], C[h][i+ 1]) in TEMP ;

12 end
13 C[h].clear();
14 C[h]← TEMP ;
15 return;

Two main distinctions that arise in the compaction pro-
cess of KLL± are: (i) discarding matching pairs to free space
before the push operations, and (ii) changing the minimum
capacity of a compactor to at least three (from two in KLL).
The first modification reduces the number of push opera-
tions by removing matched pairs which cancel each other.
Later, we prove that discard operations do not introduce
error and push operations can introduce at most wh error.

The second modification changes the minimal capacity of
a capacitor to three. This modification is necessary because
if the minimum capacity of a compactor is two and these el-
ements neither have the same operation nor are a matched
pair, then the Conditional Compaction would retain both el-
ements in the compactor; and hence the compactor remains
full even after the compaction process. Increasing the min-
imum capacity of a compactor to three guarantees a reduc-
tion in size after a compaction, when the compactor becomes
full. If the compactor contains matched pairs, then the dis-
carded operation can be applied to free space. If there is no
matched pair, then a full compactor with capacity three can
have four possible cases in the compaction process, as shown
in Table 2. Table 2 also describes the compaction strategy
for each of these cases, assuming elements are in the sorted

5

Table 2: Compaction for a full compactor of size 3 consisting
of sorted elements e1, e2, and e3 and no matched pair.

3 Inserts 50%: push(e1 or e2) and keep(e3)
+ + + 50%: keep(e1) and push(e2 or e3)

2 Inserts and 1 Delete keep(e1) and push(e2 or e3)
−+ +

1 Insert and 2 Deletes push(e1 or e2) and keep(e3)
−−+

3 Deletes 50%: push(e1 or e2) and keep(e3)
−−− 50%: keep(e1) and push(e2 or e3)

order and no matching pairs. When the compactor is full,
one element out of two elements with the same operations
is randomly chosen and pushed to the next level, and the
element not been pushed is removed.

3.4 Estimating Ranks and Quantiles
The Output Operation, described in Algorithm 2, sum-

marizes the current snapshot of the sketch. It uses all the
compactors inside the sketch to obtain the quantile informa-
tion. First, the total weight of the sketch is calculated by
summing the weights of all elements, where h is the height
of the compactor and kh is the number of elements in com-
pactor[h] (line 9): TotalWeight =

∑H
h=1

∑kh
i=1weight(eh,i)

Second, a map ItemWeightSortedMap of< item, weights >
pairs is created to contain the final aggregate weights of each
element in the sketch. For each element, the aggregated
weights is calculated by incrementing or decrementing the
corresponding weights, based on the height of the compactor
in which the element was encountered, and whether the cor-
responding operation was an insert or a delete.

Third, since ItemWeightSortedMap is sorted in ascend-
ing order by item value, map Result calculates the estimated
rank of each item by summing through all weights of ele-
ments whose values are less than or equal to the item. To
transform the rank of an item into the quantile of an item,
the rank information is divided by the total weight. The
output operation returns a map that contains the quantile
information for each item in the sketch. To estimate the
rank of element, x, that is not in the output, we can use the
rank of the largest element that is less than x as the estima-
tion. For items with estimate rank less than zero or larger
than the total weight, we treat their rank as zero or as the
total weight since all deleted items are previously inserted
and hence all ranks should be with in [0, TotalWeight].

3.5 An Illustrative Example
Assume a KLL± sketch with k = 6, c = 2/3 in which the

topmost compactor has capacity 6, i.e, k, and the second
topmost compactor has capacity 4, i.e., ck. Items 1 through
8 are inserted and then items 7, 3, 2, and 1 are deleted, in
that order, as illustrated in Figure 3. After the deletions, the
multiset is left with {4,5,6,8} and their respective ranks are
R(4)=1, R(5)=2, R(6)=3, R(8)=4. In the example shown
in Figure 3, the sketch needs to be compacted three times.
Assume the first compaction has offset of 1; the second com-
paction has offset of 0; the third compaction again has offset
of 1. The first conditional compaction occurs after element
6 is inserted, and pushes the 2, 4, and 6 from compactor[1]
to compactor[2]. Compactor[2] maintains full capacity of
6, while the capacity of compactor[1] is now reduced to 4.

Algorithm 2: Output Operation in KLL±

1 Result = map();
2 // A map sorted in ascending Item Order
3 ItemWeightSortedMap =

OrderedMap< item,weights >;
4 TotalWeight = 0;
5 for all compactor[h] in Sketch do
6 for item in compactor[h] do
7 weight = sign(item) 2h−1;
8 ItemWeightSortedMap[(abs(item)] += weight;
9 TotalWeight += weight;

10 end

11 end
12 PrevW = 0;
13 //traverse ItemWeightSortedMap in ascending order

for < item,weights > in ItemWeightSortedMap do
14 Result[item] = (weights+PrevW)/TotalWeight;
15 PrevW += weights;

16 end
17 //result contains the quantile info for each item.
18 return Result;

Figure 3: Items from 1 to 8 are inserted and then items
7,3,2,1 are deleted. The resulting dataset is {4,5,6,8}; KLL±

estimate R(4) = 1, R(5) = 1, R(6) = 3, R(8) = 4.

The second conditional compaction occurs after elements 7,
8, -7 and -3 are added. This compaction finds a matching
pair of -7 and 7 and hence discards the pair, leaving com-
pactor[1] with -3 and 8. The third conditional compaction
occurs after elements -2 and -1 are added. This compaction
pushes -2 to compactor[2], and -1 and 8 are both kept in
compactor[1] since they have different signs. Based on the
current sketch, the original data set are now represented
as {-1, 4, 4, 6, 6, 8}. Finally, to estimate ranks, KLL±

computes the weight of all 〈abs(element), weight(element)〉
pairs. Then sort based on the element’s value: (1, -1), (2, 0),
(4, 2), (6, 2), (8, 1), and compute their corresponding ranks:
R(1) = 0, R(2) = 0, R(4) = 1, R(6) = 3, and R(8) = 4.
To report R(5), we use the rank of largest element that is
less than 5, i.e. R(5) = R(4) = 1, differs from true R(5) by
1. As a result, the output of the sketch in term of rank is:
R(4) = 1, R(5) = 1, R(6) = 3, R(8) = 4.

3.6 Error in Compaction
This section discusses the error introduced by Conditional

6

Compaction. Essentially, the algorithm introduces errors
when pushing one out of two elements and does not intro-
duce any error when discarding matched elements or when
retaining a pair of non-matching elements. Consider the
Push(e1,e2) operation in compactor[h] with weight wh: at
random, either e1 or e2 is pushed into compactor[h+1] with
weight wh+1. Pushing elements to higher weight results in
+wh, 0, or -wh error. By removing the odd or even items
with equal probability, the expected error becomes zero [1].

Lemma 1. Hoeffding’s Inequality. Let X1, · · · , Xn be in-
dependent random variables such that −wi ≤ Xi ≤ wi and
the expected value E(Xi) = 0 for i = 1, 2, . . . , n. Then for
any t > 0 we have:

Pr[|
n∑
i=1

Xi| > t] ≤ 2exp(− t2

2
∑n

1 w
2
i

)

In Condition Compaction, Algorithm 1 discards matched
pairs of inserted and deleted elements. We need to establish
that this does not impact the overall error and make sure
the expected error in one compaction is still zero in order to
apply Hoeffding’s inequality [15] to bound the total errors.
Proposition 1 is proved by induction in Appendix A.

Proposition 1. Discarding matched inserted and deleted
elements within a compactor at level h during a compaction
cycle does not introduce any error to the sketch’s total error.

The Conditional Compaction algorithm has three main
components that can potentially introduce error: (i) Push(ei
or ei+1), (ii) Keep(ei and ei+1), and (iii) Discard(-ei and
ei). Pushing one of two elements from compactor[h] intro-
duces +wh, 0, -wh error; keeping elements in their own com-
pactor introduces no error; discarding the matched pairs of
inserted and deleted elements introduces no error (as proved
in Proposition 1). Hence, we can assert that the expected
error is still 0 when pushing even or odd index terms with
equal probability, and thus we can apply Hoeffding’s in-
equality to bound the probability of total error exceeding
ε · (I −D), where ε is the desired precision and I −D is the
size of the dataset after the deletions, as shown next.

To show that the KLL± sketch ensures that the probabil-
ity of the total error exceeding ε · (I−D) is less than a small
constant probability, δ. Let random variable Xi,h denote
the error introduced by the ith compaction in compactor[h]
and let mh be the number of compactions that occurred at
compactor[h]. Note Xi,h can be 1, 0, or -1. Therefore, the
total error is computed as:

Err =

H∑
h=1

mh∑
i=1

whXi,h (1)

Since we know that E(Xi, h) = 0 by keeping even and odd
terms with equal probability, Hoeffding’s inequality can be
applied:

P (|Err| > ε(I −D)) ≤ 2exp(− ε2(I −D)2

2
∑H
h=1

∑mh
i=1 w

2
h

) ≤ δ

Where δ is a small constant probability. δ denotes the max-
imum failure probability; hence, when δ is small, the algo-
rithm has high confidence for success.

3.7 Space Bound
In this section, we analyze the space bound and approxi-

mation guarantees for KLL± with an array of H compactors.
The minimum capacity of compactors is three to handle both
insert and delete operations. To guarantee any compactor
will have capacity greater than or equal to three, a com-
pactor at height h has capacity of max(

⌊
cH−hk

⌋
, 3). Hence,

as the total height H increases, there will be a stack of bot-
tom compactors with capacity three. In particular, for com-
pactors with small h such that

⌊
cH−hk

⌋
≤ 3,the compactors

will have capacity of three.

Figure 4: H ′ denotes the height of the bottom compactors
with size 3, and H is the height at the highest level. Num-
bers associated with each compactor is its capacity.

Assume that the KLL± sketch has k ≥ 4 and c ∈ (0.5, 1)
with ch = max(

⌊
cH−hk

⌋
, 3), and the incoming data have I

insertions and D deletions such that D ≤ (1 − 1/α)I. Let
r = D

I
be the rate of deletions such that r ≤ (1 − 1/α)

ensuring that the incoming updates have bounded deletions
compared to insertions. H is the height of the compactor at
the highest level; H ′ is the height of the bottom compactors
with capacity three (see Figure 4) such that H ′ ≤ H − 1.

Because each compactor will undergo compaction when it
becomes full, every compactor of capacity three contains at
most two items, and hence the total weight of these bottom
compactors is:

Wbottom ≤
H′∑
h=1

2wh =

H′∑
h=1

2h ≤ 2H
′+1

The total weights of the top compactors is:

Wtop ≤
H∑

h=H′+1

(kh − 1)wh ≤ (k − 1)2H

Combining the total weights of the bottom H ′ and top H −
H ′ compactors results in an upper bound on the number of

items in the dataset: I − D ≤ 2H
′+1 + (k − 1)2H ≤ k2H .

We can then bound the total number of items:

n = I +D = (1 + r)I ≤ k2H
1 + r

1− r (2)

Since the topmost compactor[H] exists, this implies that
compactor[H−1] has been compacted. Thus , n ≥ cH−1wH−1

≥ ck2H−2 = k2H(c/4). By moving H to the left hand side
and n to the right hand side, we get:

H ≤ log2(4n/ck) = log2(n/ck) + 2

7

The keep operation and discard operation introduce no
error as shown in Proposition 1, and only the push opera-
tion will introduce at most ±wh error. Also, because the
conditional compaction Algorithm 1 will perform no com-
paction if there are any discard operations, the push opera-
tions are performed on compactor[h] that contains kh = ch
elements. Then let mh denote the number of compactions
occurred for compactor at height h, and the total error in-
troduced in the sketch is upper bounded by the number
of compactions: Err =

∑H
h=1

∑mh
i=1 whXi,h where Xi,h is

a random variable denote the error introduced by the ith

compaction in which E(Xi,h) = 0 and |Xi,h| ≤ 1, shown in
Equation 1. We can bound the number of compactions, mh,
at height h, where each compaction is performed on kh = ch
elements with weight wh as mh ≤ n

chwh
≤ 2n

k2H
(2/c)H−h

(derivation in Appendix B) by substituting in Equation 2,
mh ≤ 2 1+r

1−r (2/c)H−h. Note in this upper bound, we did
not consider discard operations; discard operations only re-
duce the number of compactions. We now apply Hoeffding’s
inequality to bound the probability for compactors to intro-
duce more than ε · (I −D) error:

P (|Err| > ε(I −D)) ≤ 2exp(− ε2(I −D)2

2
∑H
h=1

∑mh
i=1 w

2
h

) ≤ δ

The denominator can be expanded to
∑H
h=1

∑mh
i=1 w

2
h =∑H

h=1mhw
2
h ≤ 1+r

1−r
16n2

c(2c−1)k2
, where r = D

I
≤ (1 − 1/α)

(Full derivation included in Appendix C). Let C = c(2c−1)
32

,
we get the form:

P (|Err| > ε(
1− r
1 + r

n)) ≤ 2exp(−(
1− r
1 + r

)3Cε2k2) (3)

Since 0 ≤ r ≤ (1 − 1
α

), we can derive 1 + r ≤ 2 − 1
α

,

1 − r ≥ 1
α

, and hence 1−r
1+r

≥ 1
2α−1

. Setting k = (2α −
1)1.5/(ε

√
C)
√

ln(2/δ) suffices to bound the failure probabil-
ity by δ. Therefore, the total space used is:

H∑
h=1

ch ≤ 3H + k

H∑
h=1

cH−h = O(k + log(n/k)) (4)

Theorem 1. In the bounded deletion model D ≤ (1 −
1/α)I, there exists a data sketch that computes an ε approx-
imation for the rank of a single item with probability 1 − δ
whose space complexity is O(α

1.5

ε

√
log(1/δ) + log(εn

α1.5)).

In order to have ε approximations for all items, the fail-
ure probability need to be decreased into εδ, bounding the
failure probability for approximating a set of O(1/ε) items.
Thus, to solve all quantile approximation, the space com-
plexity becomes:

O(
α1.5

ε

√
log(1/εδ) + log(

εn

α1.5
)

Note that the space complexity includes log(εn) term and
this is due to the stack of compactors with size 3. We can
further reduce the space complexity by replacing the bottom
compactors with samplers as discussed in the next section.

4. SAMPLER AND MERGEABILITY
In this section, we describe how to incorporate the sam-

pling approaches from the original KLL [19] to further re-
duce the space bound while still maintaining full mergeabil-
ity. We also discuss the merge operation between two KLL±

sketches to construct a combined sketch over the union of
the underlying datasets, and, in the end, propose a new al-
gorithm that leverages KLL± sketches to maintain quantile
approximations in fixed-size sliding window.

4.1 Sampler-based Bottom Compactors
From the Conditional Compaction Algorithm, when a bot-

tom compactor is full, an inserted item or a deleted item is
randomly chosen out of two insertions or two deletions. This
is equivalent to replacing the bottom H ′ compactors with
two samplers (one for insertions and one for deletions) to
simulate the bottom compactors and consume O(1) space.
Karnin et al. [19] introduced the mergeable sampler and
prove the correctness of the sampling schema.The sampler
has an associated height h, and h increases over more and
more inputs. The sampler outputs an item with weight 2h

as input to the compactor of level h + 1. Therefore, the
sketch only contains compactors with heights greater than
H ′ (from H ′ + 1 to H).

More precisely [19], the sampler has an associated height h
and stores one item with weight at most 2h−1. An update is
processed as follows: Let winternal be the weight of the inter-
nal item stored in the sampler and wnew be the weight of the
newly arriving item. This wnew is 1 for items from the input;
However, when merging two sketches (as in Section 4.2),
wnew are used to represent the item weight from another
sampler. If winternal + wnew < 2h, then the sampler stores
the new item with probability wnew/(winternal + wnew). If
winternal + wnew = 2h, then the sampler pushes the stored
item into compactor[h + 1] and resets winternal to zero. If
winternal+wnew > 2h, then the sampler pushes the item that
has larger weight with probability max(winternal, wnew)/2h;
the sampler also updates the stored item to the item that has
smaller weight and resets winternal to min(winternal, wnew).
The last case is necessary to support merge operations. Hence
for a sampler at height h, this approach takes an input of
W items where 2h−1 < W ≤ 2h. With probability W/2h,
it pushes one of the observed items chosen at random and
otherwise pushes nothing. Lemma 2 in Karnin et al. [19]
establishes that the sampler’s push operation introduces an
unbiased error of 2hYh,i where Yh,i is a random variable with
E(Yh,i) = 0 and |Yh,i| ≤ 1.

In KLL±, the bottom compactors of capacity 3 are re-
placed by two samplers, one for insertions and one for dele-
tions. The insert and delete samplers share the same height
thus ensuring that when an item is output to the compactor,
the item will have the same weight independent of whether it
is an insertion or a deletion. Since there are total I insertions
and D deletions, as the shared samplers’ height increase the
insert sampler at height h at most pushes I

2h
elements of

weight 2h to the first compactor and similarly the delete
sampler of height h at most pushes D

2h
elements of weight 2h

to the first compactor. Hence there are at most n
2h

elements
pushed for sampler height h. The total errors introduced are
the sum of all the errors produced by the push operations
from both of these two samplers. Given the probability of
the samplers total error exceeding ε(I − D) should be less

than or equal to δ, setting k = (2α− 1)1.5/ε
√
log(1/εδ) is

sufficient, as shown in Appendix D.

Theorem 2. In the bounded deletion model, there exists
a data sketch that computes an ε approximation for the rank

8

of a single item with probability 1−δ whose space complexity
is O(α1.5/ε

√
log(1/εδ)).

The total sketch size becomes
∑H
h=H′ ch =

∑H
h=H′ c

H−hk ≤
k

1−c = O(k), c ∈ (0.5, 1), and O(k) = O(α1.5/ε
√
log(1/δ)).

Moreover, fixing the capacity of the top O(loglog(1/δ)) com-
pactors to k as in KLL[19] can be applied to reduce the

KLL± sketch size toO(α
1.5

ε
log2log 1

ε
) and still remain merge-

able. In KLL± with input size of I+D, the probability of to-
tal error in rank estimation exceeding ε(I−D) should be less
than or equal to δ. The proof of this space bounds is shown
in Appendix E. Lastly, Karnin et al. [19] suggest to replace
the top compactors by the GK sketch to obtain an asymp-
totically optimal space bound while sacrificing mergeability.
However, since the GK sketch does not support deletes, this
optimization is not applicable in KLL±.

4.2 Mergeability
KLL± sketches with the same deletion upper bound α are

fully mergeable, and the merge operation is described in Al-
gorithm 3. The mergeability of KLL± sketches is desirable
for distributed settings. The samplers in Section 4.1 are de-
signed to support merge operations by supporting weighted
updates. To merge two sketches < SA, SB >, first combine
the samplers from both sketches. Assume SA’s samplers
have height hA and SB ’s samplers have height hB such that
hA ≥ hB . SB feeds its stored insert and delete items from
its insert and delete samplers, respectively, with their inter-
nal weights into SA’s samplers, and then all compactors with
height less than or equal to hA in SB feed their items into the
appropriate sampler in SA with proper weights, calculated
using their height (wh = 2h−1). Compactors with height
larger than hA are appended to the same height compactors
in SA. Lastly, each compactor that contains elements more
than its capacity is compacted and the new maximal H is
computed after all compactions are completed i.e., using the
combined length of these two sketches.

Algorithm 3: Merge Two KLL± Sketches

1 if SA.SamplerHeight < SB.SamplerHeight then
2 swap(SA, SB)
3 SA,InsertSampler.update(SB,InsertSampler);
4 SA,DeleteSampler.update(SB,DeleteSampler);
5 for all compactor[h] in SB do
6 if h ≤ SA.SamplerHeight then
7 for item in compactor[h] do
8 if insert(item) then
9 SA,InsertSampler.update(item, 2h−1);

10 if delete(item) then
11 SA,DeleteSampler.update(item, 2h−1);

12 end

13 else
14 SA.compactor[h].concatenate(compactor[h]);

15 end
16 SA.compaction();
17 return SA;

4.3 Fixed-Size Sliding Window
We consider a potential use-case for KLL± sketch to main-

tain ε-approximate quantiles in a fixed-size sliding window

Figure 5: Grey blocks are expired sketches; yellow block
is the current active sketch; blue block is the current
under-construction sketch; green block is the current backup
sketch.

over append only datasets, e.g., transaction logs. In the
fixed-size sliding window, the window boundary synchronously
shifts over the data, and the sketch reports the quantile in-
formation for the most recent w items.

In the fixed-size sliding window, the input items are in-
sertions, and the expired elements (elements except the re-
cent w items) need to be deleted. Since the KLL± sketch
only tolerates bounded deletions, it cannot directly support
such a sliding window setting as the ratio between deletions
and insertions will eventually approach to one. However, we
observe that by partitioning the input data into three over-
lapping blocks, we can ensure the deletions are bounded for
each block. The three blocks or data partitions are termed
as active, under-construction, and backup sketches as shown
in Figure 5. Each block can be represented by one KLL±

sketch to support bounded deletions.
Initially all sketches contain no elements. When the active

sketch has inserted w
2

elements, new incoming elements are
inserted into both the active sketch and backup sketch. Once
the active sketch contains w elements and the backup sketch
contains w

2
elements, incoming elements are inserted into

the backup and under-construction sketches and the out-
dated (oldest) elements are deleted from the active sketch.
When the backup sketch has w elements, the active sketch,
which has deleted w

2
elements, becomes expired. The backup

sketch now becomes the new active sketch and the under-
construction sketch becomes the new backup sketch. Since
deleting the expired sketch (previously active sketch) saves
space, the freed space is used to construct the new under-
construction sketch.

At any point in time, the quantile information is reported
of the most recent w elements by merging the active and
under-construction sketches, i.e, the yellow and blue blocks
shown in Figure 5. Also note that, since deletions only arrive
when the sketch has already inserted w items, all sketches
will have a deletions to insertions ratio of r = d

w
, and be-

cause a sketch expires after at most w
2

deletions, i.e, d ≤ w
2

,

r ≤ 0.5w
w
≤ 1

2
and hence setting α = 2 is sufficient to ensure

that r ≤ 1
2
. In fact, the α can also be changed to other val-

ues; however, the number of backup sketches will also change
accordingly. Thus, we have demonstrated a randomized al-
gorithm to maintain quantile summary in fixed-size sliding

window with three O(α
1.5

ε
log2log 1

ε
) sketches and α = 2.

9

5. EXPERIMENTS
This section experimentally evaluates KLL± for datasets

that experience an input data stream that consists of both
insertions and bounded deletions of elements. KLL± is the
first quantile sketch algorithm to operate in the bounded
deletion model and the experiments aim to identify the over-
head incurred in accounting for bounded deletes compared
to other sketches:

• KLL: Since KLL is insertion-only, the input stream
only inserts those elements that are left after all the
deletions.

• Two-Parallel KLL: Two independent KLL sketches:
one for insertions and one for deletions; then aggregate
their estimations to approximate quantiles.

• DCS7: A universe-driven sketch that assumes a bounded
universe to tolerate an arbitrary number of deletions.

5.1 Experimental Setup
We set c = 2/3 for all the experiments, and implemented

KLL± by enhancing the Python 3.7.6 code-base of the origi-
nal KLL sketch algorithm presented in [17, 19]. The changes
incorporated in our implementation are: (i) the minimum
capacity of a compactor is increased from 2 to 3; (ii) bot-
tom compactors of capacity 3 are replaced by 2 samplers,
one for insertions and one for deletions; and (iii) the com-
paction algorithm is modified to implement our new Condi-
tional Compaction algorithm.

The metric for accuracy measurement is the Kolmogorov-
Smirnov divergence [4] – the maximum deviation among all
quantile queries – a measurement widely used to perform
comparisons between CDFs with different distributions [17].
For each experiment, the maximum errors are averaged over
5 independent runs. These experiments are performed on
a machine with 2.9 GHz quad-core Intel Core i7 processor
and 16GB of 2133MHz LPDDR3 on-board memory.

5.2 Data Sets
The experimental evaluation is conducted using both syn-

thetic data sets and real world data sets consisting of ele-
ments that are inserted and deleted. For the synthetic data,
we consider three different distributions:

• Uniform Distribution: The insertions are randomly
generated from a discrete uniform distribution, and the
deletions are uniformly chosen from the insertions.

• Zipf Distribution: The elements drawn from bounded
universe and the frequencies of elements follow the Zipf
Law [28], in which the frequency of element with rank
R: f(R, s) = constant

Rs where s indicate skewness. Dele-
tions are uniformly chosen from the insertions.

• Binomial Distribution: The elements are generated
according to the binomial distribution with parame-
ters n and p where p is the probability of success in n
independent Bernoulli trials.

In addition to the synthetic data sets, we used the follow-
ing real world Wiki dataset8:

7See chapter 4 in [9] for implementation details.
8https://dumps.wikimedia.org/other/pagecounts-ez/

• Page View Statistics for Wikimedia (Wiki) [22]:
This is an extensive data set consisting of page count
files from 2007 to 2016, wherein the experiments use
the most recent, i.e., the 2016 page count files. The
2016 page count files include 8 months of<projectname,
pagename, #requests, #bytes> tuples. The data are
aggregated by day and within each day, data are sorted
on projectname and pagename. In the experiments,
deleted items are random uniformly chosen from the
inserted items and each update is a concatenation of
projectioname and pagename and the comparison model
is lexicographic.

We also conducted experiments by exploring two addi-
tional properties of the data sets:

• Sorted Dataset: Input is sorted in descending or-
der such that insertions arrive before deletions; The
deletions are uniformly chosen from the insertions.

• Shuffled Dataset: The insertions are randomly shuf-
fled and the deletions are also randomly shuffled and
uniformly chosen from the insertions.

5.3 Evaluation
All experiments measure the maximum error by Kolmogorov

Smirnov divergence. The y-axis depicts the average of max-
imum quantile error over 5 independent runs: lower y-axis
values indicate better accuracy. Most of the following exper-
iments evaluate the error value in approximating quantiles
while increasing the sketch size in which the x-axis denotes
the sketch size. Except for Section 5.3.6, we assume all in-
sertions arrive before any deletions into the sketch. This
input pattern is in fact an adverse pattern as the discard
operation will find less matched pairs.

5.3.1 KLL± vs. Two-Parallel KLL vs. DCS
This experiment compares the accuracy among KLL±,

two-parallel KLL method, and DCS under the same memory
budget. The experiment measures the quantile estimation
when the underlying dataset is entirely changed: We first
insert one million elements from the binomial distribution
with parameter of B(216, 0.5) in which the elements should
be densely centered at value 215. Then another one mil-
lion elements are inserted from a uniform distribution in
Figure 6(a), or from a zipf distribution with skewness fac-
tor of 0.5 (moderate skew) in Figure 6(b). Both the uni-
form distribution and zipf distribution assume a bounded
universe where |U | = 216, and all inputs are randomly shuf-
fled. Finally, all elements from the binomial distribution are
deleted. Since the total insertions are two millions and the
total deletions are one million, the delete:insert ratio is 0.5.

Figure 6(a) and (b) show that both data driven sketch
approaches, KLL± and Two Parallel KLL, perform signif-
icantly better than the universe driven DCS sketch. Fur-
thermore, although the maximum error of KLL± and Two
Parallel Method decreases as the sketch size increases, KLL±

has less maximum error across all sketch sizes. This finding
is expected since KLL± makes a best effort to apply discard
operations thus catching cancellations early on and reducing
the number of compactions, whereas in the two-parallel KLL
method each sketch has no knowledge about the other and
accumulates all the errors. We also observe that DCS per-
forms worse on the zipf distribution compared to a uniform

10

(a) (b) (c)

Figure 6: Comparison of KLL± with Two Parallel KLL and DCS when the underlying data distribution is entirely changed
from Binomial to (a) Uniform and to (b) Zipf (.5). (c) KLL± accuracy with different delete:insert ratios.

distribution. The skewness in the input data distribution
affects the performance of DCS in which DCS’s accuracy
decreases when the skewness increases. This observation for
universe-driven DCS sketch is in consistent with the theoret-
ical expectations [27]. On the other hand, the performance
of both data-driven sketches, KLL± and two-parallel KLL,
is not affected by the skew in the input.

5.3.2 Error correlations: deletion ratio & sketch size
We experimentally verified that the delete to insert ratio

on the data set affects the accuracy of the sketch. By scaling
the sketch size by a factor of (2α−1)1.5 according to Section
4, KLL± can keep the errors to the same level compare with
errors from KLL with no deletions, as shown in Figure 6 (c).
This scaling factor depends on the insert:delete ratio r. For
example, when r = 0.5, we set α = 2 to increase the KLL±

sketch size. Note (2α − 1)1.5 is actually an upper bound,
as in the proof we make no assumptions on the number of
discard operations which is affected by the input pattern.
Hence. we expect KLL± with scaled sketch sizes to perform
no worse than the original KLL with no deletions.

The input stream contains one million elements in random
shuffled order and drawn from a uniform distribution. The
deletions are uniformly chosen from the insertions. This ex-
periment shows the interplay of space versus accuracy when
the deletes in the input stream increase and verifies the the-
oretical claim made in Section 4.1 that increasing the sketch
size in accordance with the increase in delete:insert ratios
keeps the error roughly constant. Figure 6 (c) shows that
the higher delete:insert ratio leads to larger errors, while
increasing the sketch size with the increase in deletions en-
sure the accuracy is no worse than the original KLL with
no deletions. For instance, when KLL uses k = 512, the
corresponding average maximum error value is 0.0028. For
r = 0.25, if the space used by KLL± is scaled with α = 4

3
then k increased to 1102 and the corresponding averaged
maximum error value is 0.0022. Similarly for r = 0.5, scal-
ing the space used by KLL± with α = 2, k increases to
2661 and the corresponding averaged maximum error value
is 0.0019. This verifies the theoretical expectation that scal-
ing the sketch size according to the delete:insert ratio keeps
the error roughly constant.

5.3.3 Different Data Distributions
In this experiment, we further demonstrate the trade-off

between space and accuracy on different data distributions.

Figures 7(a) through 7(c) depict the quantile approxima-
tion errors for two types of data distributions: for synthetic
datasets uniform and zipf and for real world data Wikime-
dia page view statistics. For each type of data distribution,
the experiment also plots the behaviour of KLL± and KLL
when the input steam is sorted vs. shuffled. While the
universe-driven DCS’s accuracy is independent from the in-
put pattern and the number of deletions [27], the DCS plots
in Figure 7(a) and (b) are used as a comparison reference for
KLL± with large delete:insert ratio, namely 90%. In Fig-
ure 7 (a) and (b), note that even when a significant number
of items are deleted and the delete:insert ratio becomes 90%,
KLL± still performs well compare to DCS.

The behavior of all sketches is consistent across all data
distributions: using more sketch space leads to smaller er-
rors. Furthermore, the experiment shows that KLL± be-
haves worse on shuffled streams compared to sorted streams,
across all types of data distributions. This finding is con-
sistent with [17] where it is observed that the randomness
within the stream affects the accuracy of the KLL sketch.

5.3.4 Update Time
In this section, we experimentally compare the update

time among KLL, KLL±, and DCS sketches. The items in
the input stream are shuffled uniform distribution of |U | =
216. We also include the update time of DCS for U = 232.
All sketches share the same space budget. In Figure 8(a), the
y-axis is the update-time and the x-axis is the stream length,
smaller y-value implies faster update time per item. The
result is aligned with our expectation, namely that KLL±

incurs slightly more time than KLL using the same memory
budget, because KLL± makes a best effort to apply discard
operations before compaction. In DCS, on the other hand,
the universe size affects the update time as a larger universe
size leads to slower update time per item.

5.3.5 Error Sensitivity to stream length
This experiment demonstrates that the quantile approx-

imation error of KLL± is independent of the input stream
length, as shown in Figure 8(b). In this figure, the x-axis de-
notes the input stream length in which N =(I+D), where N
is the total number of operations in the stream, and r deter-
mines the percentage of elements that are deleted. For this
experiment,KLL and KLL± both uses parameter k = 1024.
The insertions are randomly shuffled items from uniform
distribution and the deletions are randomly chosen from the

11

(a) (b) (c)

Figure 7: Trade-off between space and accuracy on different data distributions

(a) (b) (c)

Figure 8: (a) Update time per item in KLL, KLL±, and DCS with universe size of 216 and 232; (b) Maximum error of shuffled
uniform streams with varying stream length; (c) Interleaved deletion pattern.

previously inserted items. This experiment highlights that,
for a given delete:insert ratio, the error remains roughly con-
stant with the increase in stream length and hence is inde-
pendent of the input stream size.

5.3.6 Interleaved Deletions
All prior experiments were performed under the assump-

tion that the input consists of all inserted items first, fol-
lowed by deleted items. In this experiment, we explore the
performance of KLL± with inputs consisting of interleaved
inserts and deletes. The input stream is a shuffled uniform
distribution. The input is divided into a number of folds,
such as 1, 10, 100, and 1000 folds, in which 1 fold means the
whole input stream consist of a single pair of insertions and
deletions (i.e., <all inserts, all deletes>). Similarly, a 100
folds means the stream consists of 100 pairs of (I

100
, D

100
) sub-

streams in which I is the total number of insertions and D is
the total number of deletions. For each pair of <insertions,
deletions>, the deletions are uniformly chosen from the in-
sertions. More folds imply deleted items are closer to their
corresponding inserted items. In Proposition 1, we showed
that discard operations introduce no error. When deleted
items are closer to the inserted items, we expect more dis-
card operations leading to fewer errors. Figure 8(c) shows
that when number of folds are small, the averaged maxi-
mum error is higher, and when number of folds increases
and hence the number of interleavings is greater, KLL± im-
proves its performance by applying more discard operations,
thus reducing the overall averaged maximum error. On the
other hand, the performance of Two Parallel KLL sketches

will not improve in the interleaved deletion pattern, as the
insertions and deletions are separately managed. All exper-
iments in Section 5.3.1 have insertions before any deletions.
When the insertions and deletions are mixed, the maximum
error of the KLL± decreases which reflects more realistic
real world scenarios.

6. CONCLUSIONS
Quantile approximations have an important role in both

research as well as real world systems. Many algorithms
have been proposed to approximate quantiles for the the
insertion-only and the turnstile models. In this work, we
propose a data-driven algorithm KLL± to approximate quan-
tiles in the bounded deletions model. To our knowledge, this
is the first work to account for bounded deletions for approx-
imating quantiles. The experimental evaluations of KLL±

highlight that the accuracy provided by the quantile ap-
proximations of KLL± is significantly better than the state
of the art DCS sketch even when a significant fraction (90%)
of elements are deleted. We also demonstrate that the accu-
racy of KLL± is not affected by the underlying distribution
of the data which is not the case with the universe-driven
sketch such as DCS. Furthermore, the experiments highlight
that KLL± has much faster update times compared to DCS.
These characteristics of KLL± makes it a practical choice for
real world applications. Finally, we also demonstrated that
the deletion property of KLL± can be leveraged for main-
taining quantile estimation in fixed-sized sliding windows
over datasets.

12

7. REFERENCES
[1] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips,

Z. Wei, and K. Yi. Mergeable summaries. In
Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles
of Database Systems, pages 23–34, 2012.

[2] A. Arasu and G. S. Manku. Approximate counts and
quantiles over sliding windows. In Proceedings of the
twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
286–296, 2004.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] F. P. Cantelli. Sulla determinazione empirica delle
leggi di probabilita. Giorn. Ist. Ital. Attuari,
4(421-424), 1933.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In International
Colloquium on Automata, Languages, and
Programming, pages 693–703. Springer, 2002.

[6] Z. Chen and A. Zhang. A survey of approximate
quantile computation on large-scale data. IEEE
Access, 8:34585–34597, 2020.

[7] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan,
O. Spatscheck, and D. Srivastava. Holistic udafs at
streaming speeds. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of
data, pages 35–46, 2004.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[9] G. Cormode and K. Yi. Small Summaries for Big
Data. Cambridge University Press, 2020.

[10] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007.

[11] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss. How to summarize the universe:
Dynamic maintenance of quantiles. In VLDB’02:
Proceedings of the 28th International Conference on
Very Large Databases, pages 454–465. Elsevier, 2002.

[12] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. ACM SIGMOD
Record, 30(2):58–66, 2001.

[13] M. B. Greenwald and S. Khanna. Quantiles and
equi-depth histograms over streams. In Data Stream
Management, pages 45–86. Springer, 2016.

[14] X. Guo, K. C. Lichtendahl, and Y. Grushka-Cockayne.
Quantile Forecasts of Product Life Cycles Using
Exponential Smoothing. Harvard Business School,
2018.

[15] W. Hoeffding. Probability inequalities for sums of
bounded random variables. In The Collected Works of
Wassily Hoeffding, pages 409–426. Springer, 1994.

[16] P. Indyk. Algorithms for dynamic geometric problems
over data streams. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing,
pages 373–380, 2004.

[17] N. Ivkin, E. Liberty, K. Lang, Z. Karnin, and
V. Braverman. Streaming quantiles algorithms with
small space and update time. arXiv preprint
arXiv:1907.00236, 2019.

[18] R. Jayaram and D. P. Woodruff. Data streams with
bounded deletions. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 341–354, 2018.

[19] Z. Karnin, K. Lang, and E. Liberty. Optimal quantile
approximation in streams. In 2016 ieee 57th annual
symposium on foundations of computer science (focs),
pages 71–78. IEEE, 2016.

[20] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. ACM SIGMOD Record,
27(2):426–435, 1998.

[21] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. ACM
SIGMOD Record, 28(2):251–262, 1999.

[22] D. Mituzas. Page view statistics for wikimedia
projects, 2013.

[23] J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoretical computer science,
12(3):315–323, 1980.

[24] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J.
Shekita. Improved histograms for selectivity
estimation of range predicates. ACM Sigmod Record,
25(2):294–305, 1996.

[25] V. Poosala, Y. E. Ioannidis, et al. Estimation of
query-result distribution and its application in
parallel-join load balancing. In VLDB, volume 96,
pages 3–6, 1996.

[26] N. Shrivastava, C. Buragohain, D. Agrawal, and
S. Suri. Medians and beyond: new aggregation
techniques for sensor networks. In Proceedings of the
2nd international conference on Embedded networked
sensor systems, pages 239–249, 2004.

[27] L. Wang, G. Luo, K. Yi, and G. Cormode. Quantiles
over data streams: an experimental study. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 737–748,
2013.

[28] G. K. Zipf. Human behavior and the principle of least
effort: An introduction to human ecology. Ravenio
Books, 2016.

13

APPENDIX
A. DISCARD OPERATIONS INTRODUCE

NO ERROR TO THE TOTAL ERROR

Proposition 1. Discarding matched inserted and deleted
elements within a compactor at level h during a compaction
cycle does not introduce any error to the sketch’s total error.

Proof. By Induction.
Base case: X and -X both are in compactor[1]. Assume

the input stream inserts X and then deletes X, incurring no
compaction process in between. Now, if compactor[1] under-
goes a compaction, removing X and -X from compactor[1],
does not introduce any error since X is intended to be deleted.

Induction hypothesis: Assume compactor[h] includes X
and -X and removing both X and -X from compactor[h]
during its compaction does not introduce any additional er-
rors.

Induction Step: Compactor[h + 1] contains X and -X.
Removing X and -X from compactor[h + 1] does not in-
troduce any additional errors. The input data must have
consisted of 2 * 2h of insertions and 2 * 2h deletions, and X
must have been inserted at least once and deleted at least
once. Note the X in compactor[h+1] is the push result of
a (X,Y) or (Y,X) pair in compactor[h] and Y may not be
the same as X. The error introduced from the push oper-
ations is accounted separately. Since X at compactor[h+1]
implies 2wh occurrence of X and X at compactor[h] implies
wh occurrence of X, having X and -X in compactor[h + 1]
is logically equivalent to having 2 pairs (X, X) and (-X,-X)
in compactor[h], and after reorganization we can regroup to
two pairs of (-X, X) in compactor[h], as shown in Figure 9.
Since removing the (X, -X) pair in compactor[h] introduces
no additional error by induction hypothesis, removing of X
and -X in compactor[h + 1] also introduces no additional
error.

Conclusion: By the principle of induction, discard matched
pair in the same compactor[h] does not introduce error.

Figure 9: X in compactor[h+1] is logically equivalent to
having two X in compactor[h], since they represent equal
numbers of X blocks with weight 1.

B. BOUND ON THE NUMBER OF COM-
PACTIONS

Let mh denote the number of compactions occurs for com-
paction with height h. Since each compaction is performed
on kh elements with weight wh: mh ≤ n

khwh
= n

cH−hk2h−1

= n

cH−hk2(H−h)+h−1−(H−h) = n

k2(H−h)+h−1(2
c
)H−h

mh ≤
n

k2H−1
(
2

c
)H−h

By substituting in equation 2:

mh ≤ 2
1 + r

1− r (
2

c
)H−h

C. EXPANDING BOTTOM SUMMATION
We want to derive the upper bound for the failure prob-

ability using Hoeffding’s inequality, and we can derive an
upper bound for the bottom summation in the equation.
Let r denote the ratio between I and D, r = D

i
≤ (1− 1/α).∑H

h=1

∑mh
i=1 w

2
h =

∑H
h=1mhw

2
h ≤ 1+r

1−r
∑H
h=1 2(2

c
)H−h22h−2

= 1+r
1−r

∑H
h=1

2H−h

cH−h 22h−1 = 1+r
1−r (2

c
)H−1∑H

h=1 2h ∗ ch−1 =

2 1+r
1−r (2

c
)H−1∑H

h=1(2c)h−1 since it is a geometric sequence,

2 1+r
1−r (2

c
)H−1 (2c)H−1

2c−1
≤ 2 1+r

1−r (2
c
)H−1 (2c)H

2c−1
= 2 1+r

1−r 22Hc/(2c−
1) since H ≤ log2n/ck + 2:

H∑
h=1

mh∑
i=1

w2
h ≤

1 + r

1− r
16n2

c(2c− 1)k2

D. KLL± WITH COMPACTORS AND SAM-
PLERS.

Let mh,type denote the total number of sample opera-
tions performed on a type sampler with height h (i,e, over
2h−1 items). Since the sample operation is performed af-
ter processing at least 2h−1 items, mh,insert ≤ I

2h−1 and

mh,delete ≤ D
2h−1 . Let mh,n denote the total number of

sample operations performed at sampler height h, such that
mh,n = mh,insert +mh,insert, and mh,n ≤ I+D

2h−1 :

ErrH′ =

H′∑
h=1

mh,n∑
i=1

2hYh,i

where Yh,i
9 is a random variable for the i-th sample oper-

ation on sampler with sampler height h such that the ex-
pected error is 0 and is |Yh,i| ≤ 1. We can apply Hoeffding’s
inequality to bound the total error of the sample operations:

P (|ErrH′ | > ε(I −D)) ≤ 2exp(− ε
2(I −D)2

2Err2H′
)

The denominator can be expanded: Err2H′ =
∑H′

h=1

∑mh,n

i=1 22h

=
∑H′

h=1mh,n22h ≤
∑H′

h=1 n2h+1 ≤ 4n2H
′

= 4n2H

2H−H′ ≤
16n2

ck2H−H′ . Substitute the bottom summation into the in-

equality, we get :

P (|ErrH′ | > ε(I −D)) ≤ 2exp(−(
1− r
1 + r

)3cε2k2H−H
′
/32)

and hence P (Err > 2ε(I−D)) ≤ 2exp(−(1−r
1+r

)3cε2k2H−H
′
/32)+

2exp(−(1−r
1+r

)3Cε2k2). Since 1−r
1+r

≥ 1
2α−1

, taking H ′ =

H −O(log(k)) and setting k= O(α1.5/ε
√
log(1/δ)) is suffi-

cient.

9lemma 2 at page 8 in [19].

14

E. FIXING TOPMOST COMPACTOR
Let the topmost s compactors to have fix capacity k in-

stead of exponentially decreasing the capacity, then our sketch
contains three components: two samplers correspond to level
1 to H ′′, compactors with decreasing capacity correspond
to level H ′′ to H ′, and s topmost compactors with fixed
capacity k correspond to H ′ to H ′ + s = H. The two sam-
pler and bottom compactor contribute at most ε(I − D)
errors with 1 − δ probablity as long as (2α − 1)1.5εk2s ≥
c′
√
log(2/δ). Moreover, the topmost compactors contribute

at most
∑H
H′+1mhwh =

∑H
H′+1 n/k = sn/k errors, such

that we need s(1+r)I/k ≤ ε(1−r)I. Setting s to O(loglog 1
δ
)

and k to O(α
1.5

ε
loglog(1

δ
)) will satisfy both requirements.

The topmost compactors of fixed capacity become the dom-
inant term in space complexity, O(sk), and thus the total

space complexity becomes O(α
1.5

ε
log2log(1

δ
))

F. WORST CASE UPDATE TIME

Algorithm 4: Sweep Compactor Algorithm [17]

1 i* = argmin(C[h][i] ≥ C[h].θ) ;
2 if i == None then
3 i = 0 ;
4 if sign(C[h][i]) != sign(C[h][i+1]) then
5 //can’t push between an insertion and a deletion
6 i += 1 ;

7 offset = random(0,1) ;
8 C[h].θ = C[h][i+1] ;
9 push(C[h][i+offset]) ;

10 delete C[h][i+1] and C[h][i] ;

[17] proposed many novel optimizations which are orthog-
onal to our work. For instance, the Sweep Compactor which
reduce the worst case update from O(klogk) to O(logk) can
be applied in KLL± sketch. The worst case update time
occurs when a full compactor need to be compacted and
the most expensive operation in the compaction algorithm
is the sorting the all items in compactor. [17] improve the
worst update time by maintaining a balanced binary search
tree to store items instead saving the items in a list, and
once compactor is full, it will push only one item into higher
compactor (saves two spaces).

Essentially to improve the worst case update time for
KLL± sketch, we need to apply discard operation on the
balanced BST structure, Fortunately, the worst case time
complexity for search, insert, delete operations in balanced
BST structure are log time to the size of the tree. There-
fore, before inserting any item e, we can break it down into
two parts: (i) search for item −e; (ii) If −e is found, then
delete −e. Else, insert e into the tree. Therefore, We are
certain that when the compactor is full and need to be
compacted, the tree contains no (−ei, ei) pairs since such
pairs are checked and removed at each update. Now, the
compaction algorithm Sweep Compactor can be applied to
KLL±.

15

