Master’s Essay
Efficient Recognition of Integer Sequences

Peter Liu
pwlliu@neumann.uwaterloo.ca

December 1, 1994

Abhstract

Researchers have long sought efficient methods for recognizing in-
teger sequences. There are many ways to accomplish this recognition.
One approach is to search for relations between the given integer se-
quence and a given database of well-known integer sequences. This
paper presents a strategy to achieve the exploration by performing
pattern queries on a database of well-known sequences. Efficiency is
obtained through preprocessing the sequence database, use of hashing
techniques, and use of carefully designed algorithms. Query evaluation
algorithms are presented and performance results are given.

Key Words: Searching, Preprocessing, Hashing, Optimization.

Contents
1 Introduction

2 Previous Work

2.1 Dana Angluin’s Work
22 A K. Dewdney’sWork
2.3 J. Calmet and I. Cohen’s Work
2.4 FEilam-Tzoreff and Vishkin’s Wotk
2.5 F. Bergeron and S. Plouffe’s Work
2.6 A. Bhansali and S. 5. Skiena’s Attempt
2.7 QurApproach L L L.
3 Queries
3.1 Query l: . . o . . e e e e e
3.2 Query 2: . . L. e e
3.3 Query 3: . . . e e e e e
3.4 Query4d: . . . e e e
3.5 Query B: . . oL e e e e e
3.6 Query 6: e e
3.7 Query T: e e e e e e
38 Query 8 e e e
3.9 Query 9: . . L. e e e e e
4 Comparison with a similar system:
4.1 Superseeker of AT&T Bell Labs.
4.2 Comparisoml v . v i i e e e e e e e e e e e
4.3 Our Discoveries v v v v v v vt e e e e e e

5 Future Work

6 Acknowledgement

1 Introduction

Integer sequences have been studied for many years, motivated by needs that
arise in fields such as discrete mathematics, combinatorics, image processing,
speech recognition and others. It was a milestone when Neil Sloane published
his book A Handbook of Integer Sequences [12] in 1973. In his book, he listed
2372 sequences of nonnegative integers, arranged lexicographically, with an
index, references, and notes for users. Since then, it is possible for an user to
find out information about an unknown sequence easily, simply by looking it
up the handbook. However, many sequences do not appear as any one of the
listed sequences; rather, they are simply related with those listed sequences.
For example, an integer sequence can be a linear combination of two se-
quences in the handbook. To check this, it is necessary to build an electronic
edition of the handbook. This would permit queries that are infeasible or
impossible using a printed book. Furthermore, such an electronic handbook
would make it easier to make corrections and additions to cooperate with the
progress in the field. In order to achieve the goal, we must provide efficient
solutions to do the queries. What kind of queries should we allow to be per-
formed? Having designed the query set, what kind of strategies should we
use to evaluate those queries efficiently? This paper is an attempt to solve
some of these particular problems. We have implemented some of these query
algorithms on Sun-Sparc machine by using the C++ language. The program
code is listed in Appendix A. Performance tests have been conducted and
experimental data is reported in section 3.

In section 2, we will discuss some similar work that has been done previ-
ously. In section 3, we will outline some queries which we have implemented
and show their algorithms and their performance results. In section 4, we will
study a similar system, which is called supersecker created by Neil Sloane,
AT&T Bell Lab and others. We will analyze the similarities and differences
between our work and superseeker. Finally, in section 5, we will provide the
possible directions of future work.

2 Previous Work

2.1 Dana Angluin’s Work

One approach to recognize an integer sequence is by checking whether or not
the sequence can be generated from certain rules, for example some standard
recurrence relations. Dana Angluin, a researcher in the Electronics Research
Lab of UC Berkeley, proposed some techniques [2] for constructing easily
inferred sequences in 1974. Her method was to enumerate those techniques
to show the inferrability of some sequences. Basically, her attempt was to
describe what sequences of numbers have an obvious, or easily inferred, pat-
tern. The test of such a sequence is that from a few successive terms of it
a person very easily guesses a correct rule of generation for it. Character-
izing the sequences was chosen as a step towards understanding the process
of learning-from-examples; That was an informal first approximation to that
characterization.

Following is some typical types of sequences of her enumeration:

1. Simple arithmetic sequences.

e constant.
3,3,3,3,3, ..
56, 56, 56, 56, 56, ...
o 2,11 = f(z;), where f(z) =z + ¢, ce,z% cx + d
1,2,3,4,5,6,7,8,09, ...
7,10, 13, 16, 19, 22, 25, ...
2,9, 23, 51, 107, 219, ...

¢ squares and other quadratic polynomials
1, 4, 9, 186, 25, 36, 49, 64, ...
2, 5, 10, 17, 26, 37, 50, 65, ...

o cubes

1, 8, 27, 64, 125, 216, 343, ...
2. Interleaving.

¢ two ‘independent’ sequences interleaved z;,v;
,1,1,2,1,3,1,4,%,5,1,6,1,7,1, 8, ...
¢, 19, 1, 20, 2, 21, 3, 22, 4, 23, 5, 24, 6, 25, ...

4

11, 12, 111, 123, 1111, 1234, 11111, 12345, ...
1,2,3, 11,22, 33, 111, 222, 333, 1111, 2222, ...

o two ‘dependent’ sequences interleaved z;, f(=;)
4, 3,9, 8, 16, 15, 25, 24, 36, 35, 49, 48, ...
2,4,3,8,4,16, 5, 32, 6, 64, 7, 128, ...
32,3, 2,64, 6,4, 128, 1, 2, 8, 256, 2, 5, 6, 512, ...
6, 69, 12, 1236, 24, 2481, 48, 48144, 96, ...
11, 9, 27, 25, 51, 49, 83, 81, 123, 121, ...

¢ interleaved three sequences, with binary operator, z;,y;, f(z:, %)
or T, Tit1, f{Tsi, Tita)
2,4, 6,3,8, 11, 4, 16, 20, 5, 32, 37, 6, ...
2,3, 6,4, 5,20, 6,7, 42,8, 9, 72, 10, ...
6, 12, 612, 24, 48, 2448, 96, 192, 96192, ...

3. Sequences of groups.

¢ constructing sequences of groups
1,2,2,83,3,3,4,4,4,4, ..
1,2,1,3,2,1,4,3,2,1, ...
2, 44, 888, 16161616, 3232323232, ...

s interleaving with groups
10, 11, 22, 100, 111, 222, 333, 1000, 1111, 2222, ...
2, 4,2, 8, 16, 32, 16, 8, 64, 128, 256, 512, 256, ...
41234, 512345, 6123456, T1234567, ...

4, Concatenation.

e constant groups concatenated
1, 122, 122333, 1223334444, ...
90009, 1600061, 250000052, 3600000063, ...

e concatenation of pairs
12, 34, 56, 78, 910, 1112, 1314, ...
21, 411, 8111, 161111, 3211111, ...
2628, 6365, 124126, 215217, 342344, ...

¢ concatenation, other patterns of matching
838, 16416, 32532, 64664, 1287128, ...
38, 815, 1524, 2435, 3548, ...
235, 5711, 111317, 17923, 232931, ...

5. Digits.

o digits intertwined with constants
2, 4, 8, 106, 302, 604, 10208, 20506, ...
2126, 2225, 2326, 2429, 2624, 2821, 212020, ...
o digits repeated as a function of position or value

1166, 3366, 6644, 110000, 114444, 119966, ...
8, 166, 322, 644, 122888, 255666, 511222, ...

2.2 A. K. Dewdney’s Work

Similar to Angluin’s work, in 1986, A. K. Dewdney provided strategies to
infer additional terms for a given finite sequence [8]. He used a “multilevel
inferring” method to obtain possible additional terms to produce different
candidates for the given sequence. Recognition can be achieved by checking
all the candidates.

To demonstrate Dewdney’s strategies, we are presenting two sequence exam-
ples:

e sequence 1: 2, 4, 8, 14, ...
e sequence 2: 1, 2, 6, 24, ...

One common question one may ask is that what are the subsequent numbers
which do not appear here ? In particular, what is the next number in each
of the two sequences ?

9 2_5.2\ 1 1“‘%"‘1\

2 4 6 8 2 3 4

\

2 4 g 14 22
figure 2.1

6

120

By using Dewdney’s strategies: a so-called SEQ program, one candidate
of the answers for sequence 1 is 22; and sequence 2 is 120. Following is the
flow chart diagram of the SEQ program:

Initializing And Input Instructions

V

Try Difference Formulas On First And Second Rows

Loop For k
Loop For i
b} <-- ali+1) - [k a(@)]
(i) <-- b(i+1) - b()

Compute Solution ?

V

Try Difference Formulas On First Row And
Quotient Formulas On Second Row

Loop For k
Loop Fori
b() < a(i+1) - [k a@@)]
e(@) <= ai+1) / b(i)

Compute Solution ?

V

(continue next page)

{(from previous page)

Try Quotient Formulas On First And Second Rows

Loop For k
Loop For i
b(i) <-- [ai+1) - k] / a(i)
c(i) < a(i+1) / b(i)

Compute Solution ?

V

Try Quotient Formulas On First Row And Defference
Formulas On Second Row

Loop For k
Loop For i
b() <~ [aG+1) - k] / a(i)
c{i) <-- b(i+1) - b(i)

Compute Solution ?

v

END
figure 2.2

There are two kinds of rules considered by SEQ: additive and multiplica-
twe. One way to find the rules is to construct a so-called difference pyramid
(see figure 2.1). At the bottom of the pyramid is the given sequence, and the
pyramid is built up from bottom to top by finding the differences between
successive numbers in the preceding level or row of numbers. Thus in se-

quence 1, the first number in the second row of the pyramid is obtained from
the first two numbers in the first row, namely 2 and 4. Their difference is 2,
and so 2 is the first number in the second row. Similarly, the other numbers
in the second row are 8 — 4, or 4, and 14 — 8, or 6; the second row is the
sequence 2, 4, 6. Continuing the same process to a third row of the pyramid
gives a sequence with only two numbers, and they are both 2’s . The equality
of all the numbers in some row signals to stop building the pyramid upward
and to start bwilding it sideways. It is reasonable to assume the next number
in the second row is obtained from the preceding number 6, by adding the
number 2: the sum is 8. So 22 is a possible candidate for the next number.
Actually, the sequence 2, 4, 8, 14, 22, ... is generated by successive values of
the quadratic, or second-degree, polynomial z* — z + 2. The second way is to
construct a set of quotients from the sequence instead of a set of differences
(see figure 2.1). By taking quotients of successive pairs in the sequence 2:
1, 2: 6, 24, ... we obtain the second row in a pyramid, the sequence 2, 3,
4, ... The second sequence hints that the third row in the pyramid must
be obtained by taking differences, not quotients. In due course, the solution
itself is thus 120.

The main strategy in SEQ program is to build pyramids by considering both
the consecutive differences and the consecutive quotients of successive pairs
of numbers in a given row. Even more, it examines successive pairs of num-
bers in a sequence for more general additive and multiplicative rules. In the
additive rule the first member of each pair may be multiplied by a constant k
before the usual addition is done, and in the multiplicative rule the constant
k may be added just after the usual multiplication (see figure 2.2).

2.3 J. Calmet and I. Cohen’s Work

Almost at the same time as Dewdney’s work, J. Calmet and I. Cohen (5]
reported strategies to recognize sequences with recurrence relations (RR).
Their strategies were part of the efforts to build a new system for manipu-
lating integer sequences effectively.

One of the contributions of their work was providing strategies to recognize
recurrence relations in sequences of numbers.

1. They first presented the standard approach method:differences.
Let a, be a sequence, where n = 1, 2, ...

The first differences are:
Aty = Gpp1 — G,
The second ones are:
Ala, = Aty ~ Dag,

and in general:
AMa, = A" la, . — A,

This leads to the RR:
Ama, =3 (i) (j)am+n_1

m

=0

The disadvantage of this method is that its efficiency depends on the
mith differences values.

. Then they mentioned some classical methods such as factorization of
a;, comparison of a known series and study of the ratio ani1/an.

. After that, they provided a general treatment for the following RR:

@n = C(n)tn-1 + B(n)an_s (1)

where
C(n) = can® + c1n + o, (2)
B(n) = bz‘nz + b]_n + bg, (3)

The treatment was that solving the system of linear equations given
by (1) fist. This gives the possible values for B(n) and C(n). Then
the values for the ¢’s and b’s are obtained by solving the systems of
equations (2,3) when C(n) and B(n) are not constant.

. Treatments for following RRs:
an =ba_; +cal_ +da,_1+e (4)

where

{
Uy = b + Z Cilp— 5

=1

10

An = ba‘n—lan—Z +cap1+dan+e

b,b, c,d, e are constant and [is either given in the input or set to 5 by
default.

Gp = Nbpoy + (—1)" (5)
ap = Ny + b (6)

are straightforward. They simply proceeded by checking the given se-
quences of numbers. Note that for some RRs, a minimum number of
terms are required.

Generally speaking their methods were a purely algebraic approach to
the RR problems.

2.4 FEilam-Tzoreff and Vishkin’s Work

One alternative approach is that, to search a set of given integer sequences, to
explore certain relations between the given sequence and the set. In partic-
ular, a so called minimum distance relation has been studied extensively by
many researchers. This is motivated by the needs arising from image recog-
nition, speech recognition and molecular biology. Much progress has been
made and many solutions have been produced. Results were summarized by
the book Time Warps, String Fdits, and Macromolecules : the Theory and
Practice of Sequence Comparison [11]. Recently, Eilam-Tzoreff and Vishkin
fertiled this field by providing a strategy [9] to explore relations between a
given integer sequence and the linear combination of a given sequences set.
Their idea was to preprocess the set of given sequences so that it will gain
efficiency in later exploration.

Let P denote the pattern and T denote the text, and let m = |P|,n = |T,
and we assume each element in the P or T is a real number and m < n.

In their paper [9], Eilam-Tzoreff and Vishkin first introduced following five
problems:

1. The adding transformation problem: For each 7,1 < j <n—m +1,

find whether there exists a constant cg such that ¥,1 <7 <m,Tj_14; =
F; + cy. A match is called an adding transformation occurrence.

11

2. The multiplying transformation problem: For each j,1 <7 < n—m+1,
find whether there exists a constant ¢; such that ¥V,1 <¢: < m,T;_14; =
¢1P;. A match is called an multiplying transformation occurrence.

3. The linear transformation problem: For each j,1 < j <n—m+1, find
whether there exists a constant ¢, ¢; such that ¥,1 <7 <m, T 14; =
1 P; + ¢o. A match is called an linear transformation occurrence.

4. The k-degree polynomial transformation problem: For each 7,1 < 7 <
n —m + 1, find whether there exist & 4 1 constants ¢g, ¢y, ..., ¢z such
that V,1 <1 < m,Tj_14i = Lo P! (where P! is the ith element of
the pattern P raised to the lth power). A match is called a k-degree
polynomial transformation occurrence.

5. The k-linear transformation problem: We are given k patterns By, ...B;.
For each 7,1 < 3 < n —m + 1, find whether there exist & constants
€1, Cayveey G such that V1 < ¢ < m, T4 = Zﬁ__l cBy; (where Bj;
denotes the ¢th element of the pattern B;). A match is called a k-linear
transformation occurrence of the k patterns By, By, ..., By in the tex.

Then the authors outlined the relations among these five problems, they
alc:

1. Reduction of the adding transformation problem into the exact string
matching problem.
The algorithm for the adding transformation problem is that for the
given text T we look at T, the sequence of differences of T, which
is defined as: T; = Tyyu — T, 1 < j < n—1. Similatly, define
P, =P —P;,1 <5< m-— 1. Thus, we can apply a known
exact string matching algorithm for 7' and P. The constant ¢, for each
position j is determined by solving T = P, + co.

2. Reduction of the multiplying transformation problem into the exact
string matching problem.
Let T and P be the sequences of quotients of T' and P, respectively,

which are defined as follows: T; = %& forl1 <j<mn—1,and P; = P—%‘ji

for 1 <7 <m—1. Again, we can apply a known exact string ma.tchi:t;g
algorithm for T' and P. The constant ¢; for each position 7 is obtained

by solving T = ¢, ;.

12

3. Reduction of the linear transformation problem into the multiplying
transformation problem.
Let T and P be the sequences of differences of the text and the pattern,
respectively. We apply the multiplying transformation algorithm for T'
and P. The constant ¢o for each position j is determined by solving
the equation T; = &1 P + <.

4. The k-degree polynomial transformation problem is included in the
(k + 1)-linear transformation problem.
To see this simply choose the pattern P}Pi...P!, (denote P') as B;,1 <
7 < k and the pattern consisting of m ones (denoted P°) as Bj.;.

After that, the authors provided the algorithm for the k-linear transfor-
mation Problem. The algorithm has two stages: 1. Analysis of the pattern.
2. Analysis of the text. The main contribution of the algorithm is to use
a table called a witness in the pattern analysis stage, which is defined as
follows:

Figure 2.3 describes the k input patterns By, ..., By, all starting at the same
vertical location and again these same k& patterns starting at location 7 of
the former %k patterns.

For each 7,2 < j < m, witness(j) is a 2k-tuple (I1,0s,...Isz) And each
location I, suggests the equation with 2k unknowns ci, cs, ..., €2z,

k k
N By, =3 cryiBigii-1-
g==1 i=1

The determination of I, locations is that, I; is 1. Once the 7 — 1 independent
equations of locations [y,l5,...,l;_; are given, [; is the least location which
gives the ¢’th independent equation. If an i'th independent equation does
not exist, I, ..., Iy are all zero.

1. Text Analysis.
The test analysis consists of three steps.S; will represent a set whose
elements are k-tuples of real numbers. The first step initializes for each
position j in the tex a set S; such that if a k-linear transformation oc-
currence starts at j then the k multiplyers must be a k-tuple ¢;q, ..., ¢;
in 5;. The the second step, the candidacy of some positions in the tex
is invalidated. The third step applies a kind of character by character

13

check to finally find in which of the remaining candidates a k-linear
transformation occurrence of the pattern really starts.

Pattern Analysis.

The witness table is computed using the naive algorithm. First set
[y = 1. Suppose I1,0,,...,{;_; were determined. The 7 — 1 independent
equations are kept as a triangulated system. In order to determine
the value of I; we search locations 7 > l;_; + 1, in the upper patterns.
Each location j suggests an equation. We add the equation to the
system of the ¢ — 1 independent equations and triangulate the system
so that 1t has 7 independent equations and ; is set to be j. Otherwise,
we continue to the next location. If all locations 7 > I;_; + 1 do not
suggest an ¢th independent equation, then each of ;, .4, ...lo; is set to
ZETO.

Finally, the authors presented the algorithm for the minimum distance
k-linear transformation problem. They defined the minimum distance at
position j, as follows. For each position j, find & numbers c;1,¢;52, ..., Cix
which provide the minimum in

m k
Li =Y (Tj1ei — 3 ¢ B1i)’
=1

I=1

The minimum distance k-linear transformation problem is to find a position
7 and numbers ¢4, ..., ¢; % for which L, is a global minimum.
The algorithm is:

1.
2.

Compute 337, By ;B,;,¥l,r,1 < [,r < k.

Compute 377, TJ?_1+£,Vj, 1<ij<n—-—m+1.

. Compute the k& convolutions >, T;_14:8;, V7,1 <j<n—m+1 for

each [,1 <[< k.

Compute for each j the minimum value of L;.

. Find a position 7 for which a global minimum L; is achieved.

14

2.5 F. Bergeron and S. Plouffe’s Work

In 1991, S. Plouffe and Francois Bergeron presented a strategy: Computing
the Generating Function of a Series Given its First Terms [4]. In their
technical report, they outlined the strategy and gave the Maple program
which produced generating functions for about 600 sequences out of the 4568
sequences appearing in the projected second version of Sloane’s handbook.
The main idea of their method was to use operations on a given series that
might transform it into a series admitting a rational generating function.
Upon success, one needs only compute the inverse of these operations on the
rational function obtained. The critical part of the program was a test for
the existence of a good rational generating function for a series. They used
convert /ratpoly function of Maple with a test on the sum of degree of the
numerator and denominator. And the most important part of the program
was 1n the rationality test with some operations like derivatives, logarithmic
derivative, reversion of series.

The strategy is as follows:

1. Perform transformation 7 on a given series

o= ag+ oz + aze® + ... + apz™ + O(z"*).

2. Then test the resulting series 7(«) for rationality
T(a) = by + by + byz® + ... + bpz® + O(:c’“"'l).
3. If 7(a) admits a rational generating function f(z), then the program

computes 7~ f(z)), where 7~ is the inverse transformation for 7.

Following are three examples they presented in their paper, which were gen-
erated by using their program:

1. Example 1
sequence : 2,5, 532’5’ g° 7y 5
— 2 1
).

=+ 1In(
This result illustrates the use of the derivative in the program.

generating function : 1
-

22—z
(1-=)

15

2. Example 2
5 17 73 97 2461 3631 152531

sequence: 1,1,1, =

6’24’ 120’ 180 5040’ 8064’ 362880

T3

Vi-z

This result illustrates the use of the logarithmic derivative in the pro-
gram.

generating function :

3. Example 3

sequence : 1,3,12,55,273,1428,7752,43263, 246675.

1
_ (124/81z — 12 — 108/z)* — (12+/81z — 12 4 108,/z)
B 6/
This result illustrates the use of a rationality test on the reverse (sub-

stitutional inverse) of a series. The reverse of this generating function
1s

%
-1,

generating function : f(z)

(1+2)°

Hence the generating function f(z) is obtained as the real solution of
the cubic equation

1+ f(z))’z — f(=) = 0.

Later in 1992, as part of his Masters’ degree fulfillment {10], S. Plouffe
presented his enhancement for their results by adding three so-called P-
recurrences, Fuler and Recoupment methods in the Maple program, and de-
tailed his discoveries by listing 1031 sequences, which could be produced their
generating functions by using the program mentioned above, which were out
of 4568 sequences in the projected second version of Sloane’s handbook. In
his article, he illustrated all 1031 such sequences, the related generating func-
tions, the sequence number for both sequences in The Handbook [12] and in
the new version one. Moreover, he showed the kind of methods: methods in
[4], or methods in [10] , from which the generating function was produced.

16

2.6 A. Bhansali and S. S. Skiena’s Attempt

Recently, in 1994, A. Bhansali and S. S. Skiena introduced a concept: (RD}*
sequences, a class of sequences defined by a generalization of difference and
ratio table algorithms in their paper [1].

1. Difference table is defined as follows:
Let {a.} be a sequence, where n = 1, 2, ...

relation:
A™a, = A™ g, — A™ g,

AN, = a,
this will lead to kth-degree polynomial:
m (o)
P(n,m) =3 () A ag
i=0 \?

2. Ratio table is defined as follows:

relation: .
61-,1_ — 5m a‘n+1
Gn = m—1 ?
a
5%, = a,

will lead to kth-degree exponential function:

P(n,m) =] (6'50)(7)

3. (RD)* table is defined as follows:
(RD)* table is the combination of Difference and Ratio tables

4. A (RD)* sequence is a sequence .S for which there exists a finite heig
ht integer { RD*) table which generates S.

5. Let f be a function defining the sequence S at level d + 1 of a (RD)*
table. Then, if the operations are all difference, the closed form g
representing S is:

If the operations are all ratio, the closed form g representing S is:
n—d—1.

o(n) = ([T Fa) (I £

=0 =0

6. Results:
The integer (RD)* table of minimum height % associated with a se-
quence S of length n can be found in O(kn) time.

The paper [1] also presented the implementation of SEQ, a program for
sequence analysis by using above ideas.

2.7 Our Approach

Our approach is closely reflect our goal: building an electronic handbook of
wnteger sequences. such an electronic handbook has the capabilities: to query
the known sequences in the Handbook [4, 10] for a given sequence according
to certain relationship by a guery language, to deduce the sequence to see if
it fits certain standard forms, or tocompute additional terms of the sequence.
Our approach is a searching strategy rather than a computing strategy. To
recognize a given sequence, our method is to search the integer sequence
database to see if the sequence has a or more relations with the sequence(s)
in the database. Let S be a given sequence, D be the sequence database.
These relations are as follows:

1. Is there an exact match between S and T; € D ?

2. Is S simply some sequence in the D shifted ?

3. Are all members of 5 contained in some sequence T; € D?

4. Is S an affine transformation of some sequence T; € D 7

5. Can S be written as a polynomial, of degree bounded by a constant ?
6. Can S be written as the linear combination of two T; and T} € D?

7. Is the 5 close to a 137

8. Does S leave a constant remainder when divided by a T} 7

18

9. Does affine transformation of S give a subsequence of some T; € D?

Querying thousands of integer sequences in nine {or more later) forms makes
our system more complicated and challenging to be implemented. Due to the
increasing volume of integer sequences, efficient algorithms must be created
to evaluate those queries, and to improve the system’s responsiveness. In
this paper, we are presenting some of these nine query evaluation algorithms.
The efficiency is obtained through preprocessing the database, use of hashing
techniques and use of number theory. The detail algorithms is given in section

3.

3 Queries

There are 9 pattern queries we present here. They are the direct consequences

of our goal, implementing an elecironic handbook of Sloane’s handbook. Most

of the queries gain efliciencies by means of preprocessing the integer sequence
database D.

Definition 1: Let n,m > 0 be integers, and let S1 = {s1[0], s1[1], s1[2], ...s1{n|}
and S2 = {s2[0], s2[1], s2[2], ...s2[m]} be two integer sequences, we say two
sequences S1 and 52 are identical, denoted as

51 =52
if and only if
s1[k] = s2[k],k =0,1,...,m, and n=m.

Definition 2: Let n,m > 0 be integers, and let S1 = {s1[0], s1[1], s1[2], ...s1[n]}
and 52 = {s2[0], s2[1], s2[2], ...s2][m]} be two integer sequences, we say two
sequences S1 and 52 are an exact match, denoted as

S51=582
if and only if

slik] = s2[kl,k = 0,1,...,h; A = min{m,n}.

19

Definition 3: Let n,m > 0 be integers, and let S1 = {s1[0], s1[1], s1[2], ...s1[n]}
and 52 = {s2[0], $2[1], s2[2], ...s2[m]} be two integer sequences, we say S1 is
a shifted sequence of 52, denoted as

51 =52
if and only if 3¢ € [0, m — 1] such that,
sl[k] = s2[k + g,k = 0,1,...,h; b = min{m — g,n}.

Definition 4: Let n,m > 0 beintegers, and let 51 = {s1[0], s1[1], s1{2], ...s1[n]}
and 52 = {s2[0], s2[1], s2[2], ...s2[m]} be two integer sequences, we say S1 is
a subsequernce of 52, denoted as

S1e 52
if and only if Fhy € [0,7m] such that,
sllk] = s2[he], k= 0,1, ...,n; by < hpqa.

Definition 5: Let n,a > 0 be integers, and let S = {s[0], s[1], s[2], ...s[r]} be
an integer sequence, we denote the integer sequence 7' = {a - [0], e - s[1],a -
s[2],...a - s[n]} as

T=a-5.
Definition 6: Let n,b > 0 be integers, and let S = {s[0], s[1], s[2], ...s[n]}
be an integer sequence, we denote the integer sequence 7' = {s[0] + b, s[1] -
b,s[2] +b,...s[n] + b} as

T=5+b.
Definition 7: Let n,g > 0 be integers, and let § = {s[0], s[1], s[2], ...s[n]}
be an integer sequence, we say sequence T' = {s{0}¢, 5[1]7, 5[2]9, ...s[n]?} is the
gth-power sequence of S, denote as

T = 5%

Definition 8: Let n > 0 be an integer, and let 5 = {s{0}, s[1], 5[2], ...s[r]}
be an integer sequence, we denote [S| as the length of sequence S, thus, we

have
|S|=n+ 1.

20

Definition 9: Let n,m > 0 be integers, and let 51 = {s1[0], s1[1],51[2], ...s1[n|}
and 52 = {s2[0], s2[1],s2[2],...s2[m]|} be two integer sequences, we denote
|S1 — 52|, be the distance of two sequences 51 and 52, we define:

1. when m < n,

51— 52], = minhego,nmm]J S (s[k] — Tefe + A1),
k=0
2. when m>n
51— S2l, = nﬁnhe[o,m,n]\] 3 (sl + b) — Ti[R])™.
k=1

Definition 10: Let n,m,w > 0 be integers, and let §1 = {s1[0], s1[1], s1[2], ...s1[n]},
52 = {s2[0], s2[1], s2(2], ...s2[m]} and T = {¢{0],¢[1],%[2], ...t[w]} be three in-
teger sequences, we say

S51=T {(mod 52),
if and only if, for V& € [0, w|, where w < min{m,n}, such that,
s1[k] = t[k] (mod s2[k]).

Definition 11: Let n,m > 0 be integers, let ¢ > 0 be constant, and let
S1 = {s1]0},s1[1],s1[2], ...s1{n]} and S2 = {s2(0], s2[1], s2[2],...s2[m]} be

two integer sequences, we say
Sl=c¢ (mod 52),
if and only if, for Vk € [0, k], where h = min{m, n}, such that,
sl[k] = ¢ (mod s2[k]).

Definition 12: Let n,m > 0 beintegers, and let 51 = {s1[0], s1[1], s1[2], ...s1{n]}
and 52 = {s2[0], s2[1],52[2],...52[m|} be two integer sequences, we denote
sequence {s1[0] + s2([0],s1[1] + s2[1],s1[2] + s2[2],..., s1[R] + s2[h]}, where

h = min{m,n} as

51+ S2.

21

3.1 Query 1:

Is there an exact match between S and T; € D7 That is,
4, ;=8

Evaluation strategy:

s Preprocessing: Every time when new sequence(s) are added to the
database, we need to sort the new database to make an updated one
with sequences in lexicographical order.

o Search Algorithm: Using binary search:
Let N be the number of integer sequences in the database, A; = 1 and
ha = N, then
Step 1: binary search, such that

Ie[l,N], T,=8

that is, compute h = [ﬁl—‘g—hﬂ, check if Ty, = S then exit step 1.
if T, > 5 then b = [%1

otherwise, if T, < S then b = f%}

if A = hy or A = hy exit step 1.

go back to do checking.

Step 2: backward linear search, such that

Vi<i,T;=S§

that is, in case of a match T; = S

let j=¢—1 checkif T3 =5

if it is true repeat until a false.

Step 3: forward linear search, such that

Vs>, T,=8

that is, in case of a match T, = §

let s==474+ 1 checkif 7, =5

if it 1s true repeat until a false.

Step 4: Retrieve those sequence T, where

Vr € {7, $]

22

Because the chance of an exact match is rare, on average the algorithm

runs in O(Mlog(N)),
where M = min(|5|, average of |7;|), N = number of 7% in the database.

o Performance tests:

| Queries | Response time |
10(times) 0.03(seconds)
20 0.06
30 0.10
40 0.12
50 0.19
100 0.40
150 0.61
200 0.81
300 1.22
400 1.60
500 2.03
600 2.41
700 2.79
800 3.15
900 3.53
1000 3.91

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.
3.2 Query 2:
Is S simply some sequence T; € D shifted 7 That is,
Evaluation strategy:
o Search Algorithm: Using Knuth — Morris — Pratt(K M P) [13] match-

ing algorithm: first we compute the prefix function, then we check

23

whether or not there is a full number integer match. (Details of the
KMP algorithm can be found in [13])

o Complexity of Algorithm: On average, the algorithm runs in O(M N),
where M = min(|5|, average of |T;|), N = number of T; in the database.

o Performance tests:

[Queries | Response time |
10(times) 1.01(seconds)
20 2.01
30 3.00
40 4.02
50 5.01
100 10.1
150 15.2
200 20.2
300 30.3
400 40.3
500 50.4
600 63.5
700 73.7
800 83.5
900 93.2
1000 103.3

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS§ 4.1.2 / Sun-Sparc.

3.3 Query 3:
Are all members of S contained in some sequence T; € D ? That is,
i, S € T

Evaluation strategy:

24

o Search Algorithm: This is a naive algorithm: For a given sequence
S = (s[1],s[2],-..s}m}) and a sequence T; in the database, First we
check if 3k, such that s[1] = T;[A;], then we check if 3h; > hy such
that s[2] = Ti[hs], and so on. Finally, we check if 3h,, > hyn_1 such
that s[m] = T;[hn].

o Complexity of Algorithm:
An upper bound on the running time of the algorithm is O(N M), where
M = max|T;|.

¢ Performance tests:

Queries Response time
10(times) 0.73(seconds)
20 1.42
30 2.17
40 3.00
50 3.76
100 7.84
150 12.8
200 17.0
300 24.8
400 34.3
500 41.4
600 49.0
700 56.7
800 64.9
900 73.2
1000 81.0

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.

3.4 Query 4:

Is the sequence S an affine transformation of some sequence T; € D 7 That
is,

25

di,a,b, S=al; +b
Evaluation strategy:

o Preprocessing: Our idea comes from the paper [9]. First, we compute
the differences of all the terms of T}, then divide each term by its next
term in the difference sequence to obtain a new sequence. Namely,

Tk + 1]

Tk = Tk + 1] — Tolk]; Tu[k + 1) = T[H]

k>0

Then, we sort all the I'; in lexicographical order to form a table 7.

s Search Algorithm: Given a sequence 5, we simply use binary search to
search the table 7 to do exact match search. Namely, search to see if

S-—EI‘I',HT,'EJ

We fetch all the indices of matched sequences [';, which are candidates
using the ideas in [9], Finally, we confirm those sequences for the affine
transformation matches by exact checking: § = aT; + 5.

o Compleaity of Algorithm: On average, algorithm runs on O(la(NM))
~ O(In(N)), where M < N.

e Performance tests:

26

| Queries Response time
10(times) 0.05(seconds)
20 0.11
30 0.16
40 0.21
50 0.27
100 0.58
150 0.85
200 1.18
300 1.76
400 2.34
500 3.04
600 3.61
700 4,15
800 4.71
900 5.37
1000 5.95

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.

3.5 Query 5:

Can the sequence S be written as a polynomial, of degree bounded by ¢, in
some T; € D 7 That is,

3i,p <c, S=P(Ti) = ap+ a1 T; + a1} + ... + a, I

Evaluation strategy:

27

o Search Algorithm: This is a naive algorithm. Assuming p < |S|, we
solve the equation

s(1]
512
3[3]

S[p +

1 na) TP TP . . . TP
1 Tl TP TP . . . TP
LT TP TP . . . Tap
=|1 mezE m4r .. T
1 1 Tip+1 Tlp+1° Tlp+1f . . . Tp+1)

and then, confirm the match by exact term by term checking

sik] = ag ++ a1 Ti[k] + a2 Ti[k]* + ... + @, Ti[k]P,p < k < |S]

However, we use a better algorithm as follows:
because

2 2552 (sfillg] -

ma) =3 T (s

i=0 h#j

our confirmation checking is simply done by

P D<h<p [] k

—SlRD i < k< 18]

PLE) =2 I (

i=0 hi#; [2l5] -

s[t][R])

e Complexity of Algorithm: Compute P(T;) needs O(M?), so an upper

bound for the algorithm is O(M*N),

e Performance tests:

28

where M = min{c, |S|, max|T}|}.

g
151
a2

Queries degree=4 I degree=6 |
10(times) 2(seconds) 3(seconds)
20 3 5
30 5 8
40 7 11
50 8 14
100 15 29
150 24 42
200 32 96
300 47 84
400 62 113
500 76 141
600 92 169
700 107 197
800 124 224
900 143 251
1000 163 278

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.

3.6 Query 6:

Can S be written as the linear combination of two T} and 7; € P 7 That is,
i, j,a,b, S = ol + 0T}

Evaluation strategy:

o Preprocessing:
First pick a small set of primes, say P = {2, 3, 5, 7, 11, 13, 17}, and
then for each prime p € P, we do the following:
for each b € {0, 1, 2, , p-1}, we compute bT;[7]
2, ... &p, where Np~*r = 1, or e, = [log (N)].
Then, we build the sorted lists in such a way that each item in the
list has the mapping into the same point H, which is a vector of

(@1, @2y v Be,).

(mod p) fori =1,

29

Thus, we produced an hashing table, which will facilitate our search
later for this query.

Preprocessing Cost:
Runing time: The computation dT;[¢] (mod p) need a total

N> (pep) =N} (p[log,(N)])

peP peP

multiplications and mod operations. So it costs O(NIn(XN)) running
time. For example, if NV = 2372, then it will be

(211434 T+5%54+T#d+11%3+13%3+17%3)N = 21942372 = 519468

multiplications and modulus.

Consumption Space: For each prime p, there are p mappings into
the table for each sequence T;, plus N headers hashing to the lists,
therefore there are

N+> p+ N =5IN
peP

nodes. And each node has 8 bytes, thus total space needed is 445N,
which is O(N). For example, if N=2372, the table will be approxi-
mately 1.4 Mbytes.

Search Algorithm: Given a sequence S we need to search, our algorithm
proceeds in following steps,

1. Phase I: finding candidates.
1. For each 7 € [1,N]
2. For p =2 do
compute (5 — aS;[7]) (mod 2} to obtain a vector H,, where j =
1, 2,...ea5 a = 0,1,
3. For a = 0,1, lookup the hashing table and fetch a pointer
pointing to a list L, of indices by using H,. Do the concatenation
of two lists Ly and L, to initiate a new sorted list L.
4. For each p € {3, 5,7, 11, 13, 17} do
If ist £ empty, exit.
5. For each a € {1, 2, ... p-1} do
Compute the S — aS;[j](modp) to obtain a vector H,, where j =

30

1,2, ... e,. Lookup the hashing table and fetch a pointer pointing
to a list L, of indices by using H,.

6. Do the intersection by Merge Join two sorted lists of L, and £
to create a new sorted list 7.

6.0. Assume [1{i] € L, and I2[5] € L, the Merge Join algorithm is
as follows,

6.1. Begin with s = j = 1, i I1[i] > 2}, =5 + 1;

6.2. Else if I1[¢] < 12[f],7 =1+ 1;

6.3. Else if [1[{] = [2[j] remove I2[j] from L, then add it in a
sorted list 7 and

64. j=7+1landi=2+1.

7. Thus, building a temporary list 7 by adding the removed items.
if list £ empty, exit.

8. Finally, assign the sorted list T to L.

As a result, we produce a list of indices £ (maybe empty) for
the i, say (41,%2,...7;). We conclude that it could be true that
S = aT; + bTy;, 3; € [1, N}, which we call 4; as candidates for <.

2. Phase 2: confirmation.
Do the exact term by term checking for the query § = oT; + 0T},

o Analysis of Algorithm:
Because Np~° =~ 1, it means that on average, there is one item in
each entry of the hashing table. There would be on average p hits of
S — aT;, for each prime p. Thus, the initial list £ would most likely
have 2 items for all 7 € [1, N]|. So now, when we proceed prime 3 and
do the intersection, we are in the situation of using a list each with
about 3 items to intersect the list at hand with 2 items. What will
be the results 7 Obviously, if we assume the integers are uniformly
distributed in the database, the possibility for one item in 3 item list
to match one of the item in 2 item kst at hand will be Z. And there
are 3 items, the possibility for the intersected list to have one item
would therefore be 3 « & = £. For the same reason, the possibility
of the intersected list with 2 items will be wg?’ and so on. Because,
there are total NV lists in the table, and there would be %’;ﬁ = 6 lists
with one item, and N * %x% ~ 0 lists with 2 items or more, after the
(2,3) intersection. So on average, there will be only 6 lists participating

the prime 5 intersection, which is considered to be constant in running

31

time. After prime 5 intersection, the possibility for a list to have one
item is & %6 & 0 (for N >> 30). As a result, usually there would not be
any list to be processed after prime 5 intersection. All the computation
mainly is in prime 2, prime 3, prime 5 phases.

Therefore, on average there will be

S (pivep* N)+5%4%6=(2+12+3%8)N + 120 ~ Nln(N)
(2,3) i

multiplications, subtractions and mod operations, and (2*3+4+2) N =

8N comparisons. The confirmation phase could be considered in con-
stant running time. Thus, the algorithm runs in O(NIn(N)).

Performance lests:

| Queries | Naive Algorithm | Our Algorithm |

10{times) 595(seconds) 28(seconds)
20 1230 59

30 1961 90

40 2685 121

50 3259 150

100 5543 209

150 7876 436

200 10230 591

300 14858 891

400 19511 1187

500 24109 1488

600 28719 1783

700 33128 2086

800 37685 2385

900 43119 2683

1000 48881 2982

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.x / Sun-Sparc.

32

3.7

Query 7:

Is the S close to a T; € D? That is,

Jiye, |S—-Til, < ¢

Evaluation strategy:
We use Ly Euclidean distance to compute the distance.

Search Algorithm: For a given sequence S = (s[1],s[2],...s[m]) and a
sequence T; in the database, we consider two cases:
L.m=|5<|L|=w

Compute and check to see if 3h € [0, w — m], such that

Jg(s[k] ~ T+ K < c

retrieve those T satisfying the equation.
2.m=|8>|T|=w
Compute and check to see if 3k € [0, m — w], such that

k=1

Jf: (sl + B — TyR]Y? < e

retrieve those T;s satisfying the equation.
Complexity of Algorithm: The algorithm runs in O(mwN).

Performance tests:

33

I Queries | Response time |

10(times) 44{seconds)
20 64
30 85
40 108
50 129
100 242
150 352
200 462
300 726
440 974
500 1248
600 1496
700 1750
800 1995
900 2234
1000 2454

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the handbook [12].
3. Testing Environment: Sun0S 4.1.2 / Sun-Sparec.

3.8 Query 8:

Does S leave a constant remainder when divided by a 1; € D 7 That is,
A, S=c¢ (mod T;)

Evaluation strategy:

o Search Algorithm: Given a sequence S = (s[0],s[1],...s[m]), we sim-
ply check whether or not there is a constant for Vk € [L,A],A =
min{rm, |T;|},7 € [1, N}, such that

skl = ¢ (mod T;[k])

More precisely, first compute remainder = s[1] mod %;[1], then check
to see if remainder = s[k] mod ¢;[k],Vk € [1, A]
Notice that we simply skip the items with Ti[k] = 0.

34

o Complexity of Algorithm: Obviously, an upper bound of the algorithm
will be O(M N), where M = min{m, max|T;|}.

o Performance tests:

| Queries | Response time |

10(times) 1(seconds)
20 2

30 3

40 4

50 5

100 9

150 13

200 18

300 27

400 36

500 46

600 55

700 64

800 74

900 82

1000 91

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.

3.9 Query 9:

Does some affine transformation of S give a subsequence of some T; € D?
That is,

Ja £ 0,b, aS+be T
Evaluation strategy:
o Search Algorithm: Given a sequence S = (s[0], s[1], s{2],...s[m]), the

search algorithm proceeds in following steps (assume m < |T3|):

35

1. Pick the smallest k& > 0, such that s{k] # s[k + 1].

2. Advance p, such that p is the smallest integer with T;[q1] = T;[qz) =
.= Ti[q), and ¢, < p, r = 1,2,..k. If not exists such p € [1,[T|], exit.
.Forj=1.

4. Solve the equation.

(i 1) ()= ()

slk+1) 1/\b/) \Tp+74]/"

5. Check the following items of sequence T; by using unique solution
a, b, namely to see if dh,, such that

oo

a * S[g] +b= Ti[qk]:g = 1)27 :k '"" 1;

axslk+1+ql+b=Tip+7+hy,a=1,2,cc m—k—1,hy < hyuy < |T}|

6. If true, query is confirmed and retrieve 7;. Otherwise advance j by
1, and back to step 4.

o Complexity of Algorithm: Each checking of S needs m = |5| steps, and
the worse case is to go through the entire sequence T; with M = |Tj]
steps. There are N sequences in total, consequently, the algorithm runs

in O(mMN).

o Performance tests:

36

l Queries | Response time ‘

10{times) 30(seconds)
20 58
30 87
40 119
50 147
100 311
150 491
200 642
300 983
400 1277
500 1576
600 1875
700 2177
800 2477
900 2805
1000 31056

1. Above 1000 queries were randomly generated during testing.
2. The sequence database is based on the Handbook [12].
3. Testing Environment: SunOS 4.1.2 / Sun-Sparc.

4 Comparison with a similar system:

4.1 Superseeker of AT&T Bell Labs.

Recently, there is an integer sequence on-line lookup system appearing, which
is called superseeker, built by Neil Sloane, Simon Plouffe, Bruno Salvy and
others. It is an on-going system still under development, and the authors
expect a new version will be launched in a few months. In the superseeker
system, users can query an integer sequence by sending it via e-mail. When
the superseeker received a lookup sequence, it will be processed in following
steps:

1. Do an exact match checking to see if a match in the On-Line Encyclo-
pedia of Integer Sequences (which is an extension of the sequences in A
Handbook of Integer Sequences [12]).

37

. Test if S[n] is a polynomial in n.
. Test if the differences of some order {54{n|} are periodic.

. Test if any row of the difference table of some depth is essentially
constant.

. Form some generating functions for the sequence for each of types:

e ordinary generating function
s exponential generating function
e reversion of ordinary generating function

¢ reversion of exponential generating function

logarithmic derivative of ordinary generating function

logarithmic derivative of exponential generating function

Interested readers can find more details on these generating functions
in paper [9].

. Look for a linear recurrence with polynomial coeflicients for the coefli-
cients of the above 6 types of generating functions.

. Apply the 98 transformations to the sequence and look up the result
in the table. (Interested readers can have details of the 98 transfor-
mations by sending an e-mail to superseeker@research.att.com with a
single line of integer sequence). For example , following are some of the
98 transformations:

¢ Odd index in the sequence.

¢ Even index in the sequence.

e sequence ﬂnﬂ

» sequence S[n + 1] — Sin].

¢ sequence S[n + 2| — S[n|.

¢ sequence S[r + 1] + S[n].

o sequence S[n + 2} + Sn).

38

 sequence S[n] + n.

» sequence S[n| + 1.

® sequence ‘_’J(E]Elé)['f}l
¢ sequence Vn + 1] — Vin].
¢ sequence Vin + 2] —

[|4
[Vi
e sequence Vin + 1] + Vin].
[{
[
[

7).

e sequence Vin + 2] + Vin].
» sequence Vin| +

¢ sequence Vin|+

8. If the original sequence is not in the table, find the 3 closest sequences
in the table using the L1 metric. Only those with L1 < 3 are reported.

4.2 Comparison

Basically, superseeker’s lookup strategy is to search the sequence table, to
test if there are exact matches between an given sequence or its transfor-
mations and the sequences in the table. Our approach is also search the
similar sequence table, so we share the same methodology of querying a set
of well-know sequences. Our difference is the way we have done the querying.
Superseeker uses the given sequence or its transformation sequences to query
the database. Its queries are mainly of exact match searches. While we use
the given sequence itself to query the database, and our queries are not just
exact matches., They could be the linear combination of two sequences in
the table, or the affine transformation of a sequence or the the polynomial of
a sequence bounded by a constani. These differences make our system more
complicated and challenging to be implemented. Due to the increasing vol-
ume of integer sequences, efficient algorithms must be created to evaluate
those queries, and to improve the system’s responsiveness. The algorithms
we have present in section 3 are just part of our efforts to solve the problem.

4.3 Our Discoveries

Because our different approach from Supersecker, we have recognized sequence
patterns which Superseeker could not recognize. For example,

39

by using Query 7: linear combination of two sequences, we found that there
are relations among sequences in Handbook [12] as follows,
Tise3 = Ta1o + Ters

Tie25 = Toso + Tio4s

Ty746 = 2% Th305

Tiozs = 2% Tgz5 + Tr42s

T2008 = 2 * T7g9 + T1700

by using Query 4: affine transformation of a sequence, we found that,
Tegr = Th105 ~ 1

Trar = Th11s — 1

Ta33 = Thga3 — 2 = T30 — 1

Tora = 2% Tose — 1

Ti084 = Th5aa — 2

Ti141 = Thagr — 1

Ti239 = Thgas — 1

Ti331 = 3 % T1gs — 2

Tias0 = 2 % Ty492 — 2

Tisae = 2% Tgg1 — 1

Tiger =2+ T10a0 — 1 = 2% Te16+ 1 =4 % T39; — 3

Tisar = 2% Th195 — 1

Tiezz = 2% Th191 — 1

Ti746 = 2 % Thp05

Tivas = 2% Tgp8 — 2

Note that above T; means the ith sequence in the Handbook [12].

5 Future Work

We are presenting a work still in progress. The research presented in this
essay can certainly be extended in many ways.

One way is that, to design and implement the query language, to extend the
query set, and provide efficient compilation strategies of such queries. Such
extension will facilitate the sequence search and provide a more friendly user
interface and improve the system’s responsiveness.

Another way is to create new evaluation algorithms for some of the queries.
For example, Query 5: polynomsial bounded by constant match could be im-

40

proved by new algorithms. This would be the same case for Query 10: some
affine transformation is a subset of some sequences in the fable. Right now
we are only using naive algorithms to handle this two queries. We have tried
Query: linear combination of three sequences, and we found its processing
time was extremely long, more than twenty hours for only one query ! It is
not acceptable. Is there any techniques to solve the problem of this particu-
lar query ?

Extensions could also be made by integrate some transformation capability
with the search mechanism. Unlike superseeker which does all the 98 trans-
formations before looking up the table, we should build the transformation
capability inside the query language. Providing methods for deducing se-
quences is another important extension. Researchers have provided eflicient
solutions to deduce that a sequence fits one of a number of standard forms.
Although, attempts like building deducing sequence capabilities on top of an
algebra system have been made (see [5]), or enumerating some easy inferring
rules to deduce a sequence(see [5] or [8]). However, progress is too little in
this field in comparing with the progress in other fields of computer science.
Finally, once we recognize an integer sequence, an user may reasonably re-
quest to see additional terms, or a specific term not stored. So, it is valuable
to provide methods to compute additional terms of a given sequence. D). An-
gluin [2] and A. Dewdney [8] have attempted to provide some tricks to handle
the problem. More studies should be conducted to deal with this particular
problem and efficient algorithms should be created in the near future.

6 Acknowledgement

I wish to acknowledge the debt of gratitude I owe to my supervisor, Dr. J.
O. Shallit. This essay would not have been possible without his guidance
and inspiration.

41

References

[1]

A. Bhansali and S. S. Skiena’s, Analyzing Integer Sequences, DI-
MACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 15, 1994.

D. Angluin, Easily inferred sequences, Memorandum ERL-M499,
Electronics Research Laboratory, University of California, Berkeley,
31 December 1974.

J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theo-
retical Computer Science 98 163-187, 1992.

F. Bergerom and S. Plouffe, Computing the generating function of a
series given its first terms, Technical Report No. 164, Université du
Quebec & Montfeal, Oct. 22, 1991.

J. Calmet and I. Cohen, Symbolic manipulation of recurrence rela-
tions: an approach to the manipulation of special functions, in N.
Inada and T. Soma, eds., Symbolic and Algebraic Computation by
Computers, World Scientific Publishing, 55-65, 1985.

J. Shallit. Integer sequence project. unpublished notes, Department
of Computer Science, University of Waterloo, May 20, 1991.

P. J. Cameron, Some sequences of integers, Discrete Math. 75 89—
102, 1989.

A. K. Dewdney, Computer recreations: how a pair of dull-witted
programs can look like geniuses on 1.Q). test, Sci. Amer. 254(3) 14—
21, (March 1986).

L. Eilam-Tzoreff and U. Vishkin, Matching patterns in strings sub-
ject to multi-linear transformations, in R.M. Capocelli, ed., Se-
quences, Springer-Verlag, 45-57, 1990.

S. Plouffe, Approximations de series generatrices et quelques con-
jectures, Unité de Recherche no. 1304, Laboratoire Bordelais de
Recherche en Informatique, Sept. 1992.

42

[11]

[12]

[13]

D. Sankoff and J. B. Kruskal, Time Warps, String Edits, And
Macromolecules: The Theory And Practice of Sequence Compari-
son. Addison-Wesley, 1983.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press,
1973.

Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast
pattern matching in strings. SIAM Journal on Computing, 6{2):323-
350, 1977.

43

