@article{Pollard&Schnorr:1987,
key = "Pollard and Schnorr 1987",
author = "J. M. Pollard and C. P. Schnorr",
title = "An efficient solution of the congruence
$x^2+ky^2 = m$ (mod $n$)",
journal = IEEE-IT,
volume = "IT-33",
year = 1987,
pages = "702-709"}
@article{Adleman&Estes&McCurley:1987,
key = "Adleman, Estes, and McCurley 1987",
author = "L. M. Adleman and D. R. Estes and K. S. McCurley",
title = "Solving bivariate quadratic congruences in random
polynomial time",
journal = MC,
volume = 48,
year = 1987,
pages = "17-28"}
@techreport{Shallit:1984,
key = "Shallit 1984",
author = "J. O. Shallit",
title = "An exposition of {Pollard's} algorithm for quadratic
congruences",
institution = "University of Chicago, Department of Computer Science",
number = "84-006",
month = "December",
year = 1984}
@inproceedings{Estes&Adleman&Kompella&McCurley&Miller:1986,
key = "Estes, Adleman, Kompella, McCurley, and Miller 1986",
author = "D. Estes and L. M. Adleman and K. Kompella and K. S.
McCurley and G. L. Miller",
title = "Breaking the {Ong-Schnorr-Shamir} signature scheme for
quadratic number fields",
booktitle = CRYPTO85,
editor = "H. C. Williams",
series = LNICS,
number = 218,
address = NY,
publisher = SV,
year = 1986,
pages = "3-13"}
@inproceedings{Ong&Schnorr&Shamir:1985,
key = "Ong, Schnorr, and Shamir 1985",
author = "H. Ong and C. P. Schnorr and A. Shamir",
title = "Efficient signature schemes based on polynomial equations",
booktitle = CRYPTO84,
editor = "G. R. Blakley and D. Chaum",
series = LNICS,
number = 196,
address = NY,
publisher = SV,
year = 1985,
pages = "37-46"}
@inproceedings{Ong&Schnorr&Shamir:1984,
key = "Ong, Schnorr, and Shamir 1984",
author = "H. Ong and C. P. Schnorr and A. Shamir",
title = "An efficient signature scheme based on quadratic equations",
booktitle = "Proc. 16th Symp. Theor. Comput.",
year = 1984,
pages = "208-216"}
@article{Wilker:1980,
key = "Wilker 1980",
author = "P. Wilker",
title = "An efficient algorithmic solution of the {Diophantine}
equation $u^2 + 5v^2 = m$",
journal = MC,
year = 1980,
pages = "1347-1352"}
@article{Pocklington:1917,
key = "Pocklington 1917",
author = "H. C. Pocklington",
title = "The direct solution of the quadratic and cubic
binomial congruences with prime moduli",
journal = PCPS,
volume = 19,
year = 1917,
pages = "57-59"}
@article{Lander&Parkin&Selfridge:1967,
key = "Lander, Parkin, and Selfridge 1967",
author = "L. J. Lander and T. R. Parkin and J. L. Selfridge",
title = "A survey of equal sums of like powers",
journal = MC,
volume = 21,
year = 1967,
pages = "446-459"}
@article{Hardy&Muskat&Williams:1990a,
key = "K. Hardy, Muskat, and Williams 1990a",
author = "K. Hardy and J. B. Muskat and K. S. Williams",
title = "Solving $n = au^2 + buv + c^2$ using the {Euclidean} algorithm",
journal = UM,
volume = 38,
year = 1990,
pages = "225-236"}
@article{Williams&Zarnke:1974,
key = "H. Williams and Zarnke 1974",
author = "H. C. Williams and C. R. Zarnke",
title = "Some algorithms for solving a cubic congruence modulo $p$",
journal = UM,
volume = 6,
year = 1974,
pages = "285-306"}
@article{Hardy&Muskat&Williams:1990b,
key = "K. Hardy, Muskat, and Williams 1990b",
author = "K. Hardy and J. B. Muskat and K. S. Williams",
title = "A deterministic algorithm for solving $n = fu^2 + gv^2$ in
coprime integers $u$ and $v$",
journal = MC,
volume = 55,
year = 1990,
pages = "327-343"}
@article{Vahle:1993,
key = "Vahle 1993",
author = "M. O. Vahle",
title = "Solving the congruence {$x^2 \equiv \mod{a} {n}$}",
journal = MTN,
number = 9,
year = "Spring 1993",
pages = "69-76"}
@article{Heath-Brown&Lioen&te.Riele:1993,
key = "Heath-Brown, Lioen, and te Riele 1993",
author = "D. R. Heath-Brown and W. M. Lioen and te Riele, H. J. J.",
title = "On solving the diophantine equation
$x^3 + y^3 + z^3 = k$ on a vector computer",
journal = MC,
volume = 61,
year = 1993,
pages = "235-244"}
@article{WilliamsK:1994,
key = "K. Williams 1994",
author = "K. S. Williams",
title = "On finding the solutions of $n = au^2 + buv +cv^2$ in
integers $u$ and $v$",
journal = UM,
volume = 46,
year = 1994,
pages = "3-19"}