
Synchronized Sequences

Jeffrey Shallit

School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1 Canada

shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

Jeffrey Shallit Synchronized Sequences WORDS 2021 1 / 50

Automatic sequences

A sequence (a(n))n≥0 over a finite alphabet is k-automatic if there is a
deterministic finite automaton with output (DFAO) that, on input n in
base k, reaches a state with output a(n).

The most famous automatic sequence is the Thue-Morse sequence

t = t0t1t2 · · · = 0110100110010110 · · · ,
defined by tn = s2(n) mod 2, where s2 is the sum of the bits in the binary
representation of n.

It is generated by the following DFAO:

0/0

0

1/11
1

0

Jeffrey Shallit Synchronized Sequences WORDS 2021 2 / 50

Regular sequences

A sequence (c(n))n≥0 taking values in Z is k-regular if there are a finite
number of sequences c1 = c, c2, . . . , ct such that each subsequence of the
form (c(k jn + e))n≥0, j ≥ 0, 0 ≤ e < k j , is a Q-linear combination of the
(ci (n))n≥0.

An alternate definition is that there exists a linear representation (v , γ,w)
where

v is a 1× t matrix;

γ is a t × t-matrix-valued morphism; and

w is a t × 1 matrix,

such that
c(n) = vγ(x)w ,

where x is the base-k representation of n.

An example of a 2-regular sequence is s2(n), the sum of the base-2 digits
of n.

Jeffrey Shallit Synchronized Sequences WORDS 2021 3 / 50

Synchronized sequences

In this talk I will speak about a class of sequences that lies strictly between
the automatic sequence and the regular sequences: the synchronized
sequences.*

* Not the same notion as “synchronized” in the sense of Černý’s
conjecture!

Like automatic sequences, the first-order logical theory of synchronized
sequences is decidable, which means many assertions about them can be
mechanically verified.

Like regular sequences, the synchronized sequences take their values in an
infinite alphabet, namely N.

So, combining the virtues of both classes, the synchronized sequences are
a particularly nice class to study.

Jeffrey Shallit Synchronized Sequences WORDS 2021 4 / 50

Representation of numbers

Let (n)k be the canonical representation of n in base k , with no leading
zeros, starting with the most significant digit.

This can be generalized to pairs as follows: pad the representation of the
shorter number with leading zeros so they have the same length. Then
encode (m, n)k by a sequence of pairs of digits. For example,

(43, 17)2 = [1, 0][0, 1][1, 0], [0, 0], [1, 0][1, 1].

It can also be generalized to pairs of bases: (m, n)k,` means

m is expressed in base k, and

n is expressed in base `.

Jeffrey Shallit Synchronized Sequences WORDS 2021 5 / 50

Definition of synchronized sequence

We say that a sequence (f (n))n≥0 is (k , `)-synchronized if there is a DFA
recognizing the language

[0, 0]∗{(n, f (n))k,` : n ≥ 0}.

In other words, the graph of the function f is a regular language.

(If k = ` we just say f is k-synchronized .)

Jeffrey Shallit Synchronized Sequences WORDS 2021 6 / 50

Three example sequences

a(n) =

 ∑
0≤i≤n

s2(i)

 mod 2 =

 ∑
0≤i≤n

ti

 mod 2 (automatic)

b(n) =
∑

0≤i≤n
(s2(i) mod 2) =

∑
0≤i≤n

ti (synchronized, not automatic)

c(n) =
∑

0≤i≤n
s2(i) (regular, not synchronized).

n 0 1 2 3 4 5 6 7 8 9 10 OEIS Seq.

a(n) 0 1 0 0 1 1 1 0 1 1 1 A255817
b(n) 0 1 2 2 3 3 3 4 5 5 5 A115384
c(n) 0 1 2 4 5 7 9 12 13 15 17 A000788

Jeffrey Shallit Synchronized Sequences WORDS 2021 7 / 50

https://oeis.org/A255817
https://oeis.org/A115384
https://oeis.org/A000788

a(n) is an automatic sequence

a(n) =

 ∑
0≤i≤n

ti

 mod 2.

0/0

0 1/1
1

2/0

0
3/0

1

4/1

0
5/11

6/1

0

7/0
1

0

1

01

0

1

0
1

Jeffrey Shallit Synchronized Sequences WORDS 2021 8 / 50

b(n) is a synchronized sequence

b(n) =
∑

0≤i≤n
(s2(i) mod 2).

0

[0,0]

1

[1,0]

2

[1,1]

3
[0,1]

4[1,1]

5[0,0]
6 [1,0]

[0,0]

[1,0]

[0,1]

[1,1]

[0,1]

[1,1]

[1,0]

This DFA accepts the input [1, 1][1, 0][1, 0], so b(7) = 4.

Jeffrey Shallit Synchronized Sequences WORDS 2021 9 / 50

c(n) is a regular sequence

c(n) =
∑

0≤i≤n
s2(i).

It has linear representation

v =

[0
0
0
1

]T
; γ(0) =

[2 0 0 0
−1 1 0 0
1 0 2 0
0 0 0 1

]
; γ(1) =

[2 0 0 0
0 1 0 0
1 0 2 0
1 1 1 1

]
; w =

[1
0
0
0

]
.

For example,
c(5) = vγ(1)γ(0)γ(1)w = 7.

Jeffrey Shallit Synchronized Sequences WORDS 2021 10 / 50

History of synchronized sequences

Although the idea of synchronization goes back to the 1950’s (Rabin-Scott
1959; Elgot-Mezei 1965; Frougny-Sakarovitch 1993), the first paper
discussing synchronized sequences was by Carpi and Maggi (2001).

They proved that if an aperiodic sequence is k-automatic, then its
separator function (n→ length of the shortest novel factor beginning at
position n) is synchronized.

Here a novel factor means it has never occurred previously in the sequence.

Carpi and Maggi also proved a number of closure properties of
synchronized sequences.

And they proved an upper bound on the growth rate of a synchronized
sequence.

Jeffrey Shallit Synchronized Sequences WORDS 2021 11 / 50

Connection between logic and synchronization

A theorem of Bruyère et al. implies

Theorem. If we can write a first-order formula ϕ, with two free variables
s and n, asserting that s = f (n), in terms of k-automatic sequences,
logical operations, universal and existential quantifiers, and comparisons
and addition on integers, then f is a k-synchronized sequence.

Furthermore, there is an algorithm to “compile” a formula ϕ into a
synchronized DFA computing f .

Free software called Walnut, created by Hamoon Mousavi, can be used to
create synchronized DFA’s from first-order logic statements, and test their
properties.

Jeffrey Shallit Synchronized Sequences WORDS 2021 12 / 50

Automatic sequences and synchronization

Many aspects of automatic sequences are synchronized.

For example, the uniform recurrence function for x: Rx(n) is the smallest
integer m such that every length-m block contains all factors of x of
length n.

This is well-defined iff x is uniformly recurrent.

If x is automatic, then we can show Rx(n) by constructing a first-order
formula with free variables n and s, asserting that s = Rx(n).

We do this as follows:

Jeffrey Shallit Synchronized Sequences WORDS 2021 13 / 50

The recurrence function is synchronized

FactorEq(i , j , n) := ∀t (t < n) =⇒ x[i + t] = x[j + t]

Occurs(i , j , n, s) := (n ≤ s) ∧ ∃k (k + n ≤ s) ∧ FactorEq(i , j + k , n)

ContainsAll(j , n, s) := ∀i Occurs(i , j , n, s)

Recur(n, s) := (∀j ContainsAll(j , n, s) ∧
(∃k ¬ContainsAll(k , n, s − 1))

Here

FactorEq(i , j , n) asserts that x[i ..i + n−] = x[j ..j + n − 1]

Occurs(i , j , n, s) asserts that x[i ..i + n − 1] occurs as a factor of
x[j ..j + s − 1]

ContainsAll(j , n, s) asserts that x[j ..j + s − 1] contains all length-n
factors of x
Recur(n, s) asserts that every length-s block contains all length-n
factors of x, but some length-(s − 1) block doesn’t.

Jeffrey Shallit Synchronized Sequences WORDS 2021 14 / 50

Computing the recurrence function of Thue-Morse with
Walnut

We use the following Walnut commands:

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

def tmoccurs "n<=s & Ek k+n<=s & $tmfactoreq(i,j+k,n)":

def tmcontainsall "Ai $tmoccurs(i,j,n,s)":

def tmrecur "(Aj $tmcontainsall(j,n,s)) &

(Ek ~$tmcontainsall(k,n,s-1))":

Walnut then outputs a 12-state synchronized automaton computing Rt(n).

Note: A means “for all”, T represents the Thue-Morse sequence, E means
“there exists”, ~ means “not”, & means “and”, => means “implies”.

Jeffrey Shallit Synchronized Sequences WORDS 2021 15 / 50

Computing the recurrence function of Thue-Morse

With this synchronized automaton we can easily reprove a 1938 theorem
of Morse and Hedlund:
Theorem. The recurrence function for the Thue-Morse sequence is

Rt(n) =


3, if n = 1;

9, if n = 2;

9 · 2j + n − 1, if n ≥ 3 and 2j + 2 ≤ n ≤ 2j+1 + 1.

We can verify this formula for n ≥ 3 with Walnut as follows (letting the
variable x stand for 2j):

reg power2 msd_2 "0*10*":

eval checktmrecur "An,x,s (n>=3 & $power2(x) & x+2<=n

& n<=2*x+1 & $tmrecur(n,s)) => s+1=9*x+n":

which returns TRUE.

Jeffrey Shallit Synchronized Sequences WORDS 2021 16 / 50

Subword complexity

Recall that the subword complexity function ρx(n) is defined to be the
number of distinct length-n factors appearing in x.

Theorem. If x is automatic then ρx(n) is synchronized.

Proof. We need a nontrivial idea: in an automatic sequence, the novel
factors occur consecutively in a finite number of clumps. So we can
construct a first-order formula asserting that s = ρx(n) by

using existential quantifiers for the starting and ending positions of
clumps,

verifying that novel factors occur inside the clumps and not outside,
and

asserting that s is the sum of the clump sizes.

Jeffrey Shallit Synchronized Sequences WORDS 2021 17 / 50

Computing values of a synchronized function

Suppose we have a synchronized DFA M for f (n). How do we actually
evaluate f on some particular n?

It’s not hard: take the DFA M and intersect it with a DFA Mn recognizing
those strings with 0∗(n)k in the first coordinate, and anything in the
second coordinate, obtaining M ′.

This DFA Mn has O(log n) states, so M ′ also has O(log n) states, and
only recognizes 0∗(n, f (n))k .

We can therefore compute f (n) using breadth-first search in M ′ in
O(log n) time.

Jeffrey Shallit Synchronized Sequences WORDS 2021 18 / 50

Using Walnut to verify the automaton for a(n)

a(n) =

 ∑
0≤i≤n

ti

 mod 2.

0/0

0 1/1
1

2/0

0
3/0

1

4/1

0
5/11

6/1

0

7/0
1

0

1

01

0

1

0
1

It suffices to check the assertions that a(0) = 0 and
a(n + 1) = (a(n) + tn+1) mod 2 for all n. We can do this in Walnut as
follows:

eval verifyseqa "SA[0]=@0 & (An SA[n+1]=@1 <=>

((SA[n]=@0 & T[n+1]=@1)|(SA[n]=@1 & T[n+1]=@0)))":

where SA is the DFAO at top right. And Walnut returns TRUE.

Jeffrey Shallit Synchronized Sequences WORDS 2021 19 / 50

Verifying the synchronized automaton for b(n)

b(n) =
∑

0≤i≤n
(s2(i) mod 2).

0

[0,0]

1

[1,0]

2

[1,1]

3
[0,1]

4[1,1]

5[0,0]
6 [1,0]

[0,0]

[1,0]

[0,1]

[1,1]

[0,1]

[1,1]

[1,0]

It suffices to check that b(0) = 0 and b(n + 1) = b(n) + tn+1.

We can do this in Walnut as follows:

eval verifyseqb "$seqb(0,0) &

An,y,z ($seqb(n,y) & $seqb(n+1,z)) =>

((z=y & T[n+1]=@0)|(z=y+1 & T[n+1]=@1))":

Jeffrey Shallit Synchronized Sequences WORDS 2021 20 / 50

Computing the linear representation for c(n)

c(n) =
∑

0≤i≤n
s2(i).

Then

c(2n + 1) =
∑

0≤i≤2n+1

s2(i) =
∑

0≤i≤n
s2(2i) +

∑
0≤i≤n

s2(2i + 1)

=
∑

0≤i≤n
s2(i) +

∑
0≤i≤n

(s2(i) + 1) = 2c(n) + n + 1

and

c(2n) = c(2n + 1)− s2(2n + 1)

= (2c(n) + n + 1)− (s2(n) + 1) = 2c(n) + n − s2(n).

Jeffrey Shallit Synchronized Sequences WORDS 2021 21 / 50

Linear representation for c(n)

This means that the 2-kernel of (c(n))n≥0 is a subset of

〈 (c(n))n≥0, (s2(n))n≥0, (n)n≥0, (1)n≥0 〉.

We can find a linear representation for c(n) by observing that

[c(2n) s2(2n) 2n 1] = [c(n) s2(n) n 1]


2 0 0 0
−1 1 0 0
1 0 2 0
0 0 0 1


and

[c(2n+1) s2(2n+1) 2n+1 1] = [c(n) s2(n) n 1]


2 0 0 0
0 1 0 0
1 0 2 0
1 1 1 1

 .
Jeffrey Shallit Synchronized Sequences WORDS 2021 22 / 50

Verifying another formula for a synchronized sequence

One big advantage to a synchronized sequence is that there is a decision
procedure to verify formulas for it.

For example, if we look up sequence A115384 in the OEIS, we find the
formula

b(n) =

⌊
n + 1

2

⌋
+

(1 + (−1)n)(1− (−1)tn)

4
.

As stated this is not quite amenable to verification (because of the
exponents). However, note that if x ∈ {0, 1} then (−1)x = 1− 2x . So
simplifying, we need to verify that

b(n) =

⌊
n + 1

2

⌋
+ [tn = 1 and n even],

where [z] is the Iverson bracket, equal to 1 if z is true and 0 otherwise.

Jeffrey Shallit Synchronized Sequences WORDS 2021 23 / 50

https://oeis.org/A115384
https://oeis.org

Verifying a formula for a synchronized sequence

We need to verify that

b(n) =

⌊
n + 1

2

⌋
+ [tn = 1 and n even],

We can do this in Walnut as follows:

def even "Em n=2*m":

def odd "Em n=2*m+1":

eval checkform "An,b $seqb(n,b) <=>

((T[n]=@1 & $even(n) & b=((n+1)/2)+1)|

((T[n]=@0 | $odd(n)) & b=(n+1)/2))":

which returns TRUE.

Jeffrey Shallit Synchronized Sequences WORDS 2021 24 / 50

Relationship between automatic, regular, and synchronized
sequences

In what follows, k and ` are arbitrary integers ≥ 2.

Theorem. Let (a(n))n≥0 be a (k , `)-synchronized sequence. Then it is
k-automatic iff a(n) = O(1).

Theorem. Let (a(n))n≥0 be a (k , `)-synchronized sequence. Then it is
k-regular.

Theorem. Let (a(n))n≥0 be a (k , `)-synchronized sequence and let S be
the range of the sequence (a(n))n≥0. Then the characteristic sequence
(χS(i))i≥0, defined to be 1 if i ∈ S and 0 otherwise, is `-automatic.

Jeffrey Shallit Synchronized Sequences WORDS 2021 25 / 50

Growth rate of synchronized sequences

Let k , ` ≥ 2 be integers, and define β = (log `)/(log k).

Theorem. Let (f (n))n≥0 be a (k , `)-synchronized sequence. Then

(a) f (n) = O(nβ);

(b) If f (n) = o(nβ), then f (n) = O(1);

(c) If there exists an increasing subsequence 0 < n1 < n2 < · · · such that

limi→∞ f (ni)/n
β
i = 0, then there exists a constant C such that

f (n) = C for infinitely many n.

Jeffrey Shallit Synchronized Sequences WORDS 2021 26 / 50

Growth rate of synchronized sequences

Proof. (a): Suppose f 6= O(nβ), where β = (log `)/(log k).

Then there exists an increasing subsequence (ni)i≥0 such that

f (ni)/n
β
i →∞.

Suppose the DFA recognizing {(n, f (n))k,` : n ≥ 0} has t states (t is the
pumping lemma constant).

Choose i such that ni ≥ kt and f (ni)/n
β
i > `t+1, and in the pumping

lemma let z = (ni , f (ni))k,`.

Then |z | > t, and furthermore we have

|f (ni)`| > log` f (ni) > log`(n
β
i `

t+1) = (log` n
β
i) + t + 1

= (β log` ni) + t + 1 = (logk ni) + t + 1 ≥ |(ni)k |+ t.

Jeffrey Shallit Synchronized Sequences WORDS 2021 27 / 50

Growth rate of synchronized sequences

Hence the first component of z starts with at least t 0’s, while the second
component starts with a nonzero digit.

When we pump (that is, write z = uvw with |uv | ≤ t and |v | ≥ 1 and
consider uv2w) we only add to the number of leading 0’s in the first
component, so its numerical value does not change.

But the second component’s base-` value increases in size (since it starts
with a nonzero digit). This implies that f is not a function, a
contradiction.

Parts (b) and (c) can be proved in a similar way.

Jeffrey Shallit Synchronized Sequences WORDS 2021 28 / 50

Closure properties

Theorem. Suppose (a(n))n≥0 and (b(n))n≥0 are (k, `)-synchronized
sequences. Then so are the sequences

(a) (a(n) + b(n))n≥0;

(b) (a(n) ·− b(n))n≥0, where x ·− y is the “monus” function, defined by
max(0, x − y);

(c) (|a(n)− b(n)|)n≥0;

(d) (bαa(n)c)n≥0, where α is a non-negative rational number;

(e) (max(a(n), b(n)))n≥0;

(f) (min(a(n), b(n)))n≥0;

(g) running maximum, defined by c(n) = max0≤i≤n a(n);

(h) running minimum, defined by d(n) = min0≤i≤n a(n).

Jeffrey Shallit Synchronized Sequences WORDS 2021 29 / 50

Closure properties

Let’s prove (c): If a(n), b(n) are both (k, `)-synchronized then so is
|a(n)− b(n)|.

Let A be a (k , l)-synchronized DFA computing a(n) and B be a
(k , l)-synchronized DFA computing b(n).

It suffices to write a first-order formula with free variables n and s
asserting that s = |a(n)− b(n)|:

∀x , y (A(n, x) ∧ B(n, y)) =⇒
((x ≥ y =⇒ x = s + y) ∧ (x < y =⇒ y = s + x)).

Jeffrey Shallit Synchronized Sequences WORDS 2021 30 / 50

Guessing a synchronized automaton

Suppose you have a sequence over N defined in some way, and you suspect
it is k-synchronized. How can you check this?

In general, of course, there is no algorithm.

However, in some cases, the following idea works. Use the Myhill-Nerode
theorem to guess an automaton recognizing the language
[0, 0]∗{(n, f (n))k : n ≥ 0}.

We can do this by computing f to hundreds or thousands of terms, and
then checking the Myhill-Nerode equivalence relation just on the terms we
have computed.

After a candidate has been guessed, use Walnut to verify that it has the
desired property. This gives a rigorous proof that your guess was correct!

Jeffrey Shallit Synchronized Sequences WORDS 2021 31 / 50

Propp’s sequence

We can illustrate the “guessing” approach with Propp’s sequence; it is the
unique increasing sequence (s(n))n≥0 of natural numbers with the property
that s(s(n)) = 3n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s(n) 0 2 3 6 7 8 9 12 15 18 19 20 21 22 23

Assuming that s(n) is a 3-sychronized function, we can “guess” its
automaton using the procedure just described.

We get...

Jeffrey Shallit Synchronized Sequences WORDS 2021 32 / 50

Propp’s sequence

Now we can verify that our guess is correct: indeed s(s(n)) = 3n for all n.

eval proppcheck "?msd_3 An,x,y

($prop(n,x) & $prop(x,y)) => y=3*n":

Jeffrey Shallit Synchronized Sequences WORDS 2021 33 / 50

Propp’s sequence

We can also verify yet another formula for s, namely

s(n) =


0, if n = 0;

n + 3k , if 3k ≤ n < 2 · 3k for k ≥ 0;

3(n − 3k), if 2 · 3k ≤ n < 3k+1 for k ≥ 0.

with the following Walnut code:

reg power3 msd_3 "0*10*":

def pow3n "?msd_3 $power3(x) & x<=n & n<3*x":

x is the largest power of 3 that is <= n

eval proppcheck3 "?msd_3 An,x (($pow3n(n,x) & n<2*x) =>

$prop(n,n+x)) | (($pow3n(n,x) & n>=2*x) =>

$prop(n,(3*n)-3*x))":

Jeffrey Shallit Synchronized Sequences WORDS 2021 34 / 50

Fibonacci synchronization

Up until now, we have discussed synchronization with respect to
representations in base k .

However, it is quite possible to have synchronization in alternative number
systems, such as Fibonacci representation.

In this system, we write a natural number n in the form

[a1 · · · at]F =
∑

1≤i≤t
aiFt+2−i ,

where the Fibonacci numbers are defined by F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Every natural number n has a unique representation (n)F like this (up to
leading zeroes), provided ai ∈ {0, 1} and aiai+1 = 0 for all i .

Jeffrey Shallit Synchronized Sequences WORDS 2021 35 / 50

Fibonacci synchronization and Wythoff sequences

Recall that the Fibonacci word f = f0f1f2 · · · = 01001010 · · · is the fixed
point of the morphism 0→ 01, 1→ 0.

Our goal is to find synchronized automata for two classical
number-theoretic sequences: the lower and upper Wythoff sequences:

L(n) = bϕnc
U(n) = bϕ2nc,

where ϕ = (1 +
√

5)/2, the golden ratio.

n 0 1 2 3 4 5 6 7 8 9 10 OEIS Seq.

fn 0 1 0 0 1 0 1 0 0 1 0 A003849
L(n) 0 1 3 4 6 8 9 11 12 14 16 A000201
U(n) 0 2 5 7 10 13 15 18 20 23 26 A001950

Jeffrey Shallit Synchronized Sequences WORDS 2021 36 / 50

https://oeis.org/A003849
https://oeis.org/A000201
https://oeis.org/A001950

Fibonacci synchronization and Wythoff sequences

We start with the sequences computing the positions of the n’th 0 (resp.,
n’th 1) in the Fibonacci word f:

Theorem. P0(n) = [(n)F0]F and P1(n) = [(n)F01]F .

This immediately gives two simple synchronized automata for P0(n) and
P1(n).

Jeffrey Shallit Synchronized Sequences WORDS 2021 37 / 50

Fibonacci synchronization and Wythoff sequences

In Walnut we can define

reg shift {0,1} {0,1} "([0,0]|[0,1][1,0])*":

def p0 "?msd_fib $shift(n,s)":

def p1 "?msd_fib Er,t $p0(n,r) & $p0(r,t) & s=t+1":

Theorem. For n ≥ 1 we have L(n) = P0(n − 1) + 1 and
U(n) = P1(n − 1) + 1.

In Walnut we can use this theorem to define

def lowerw "?msd_fib (n=0&s=0) | Et $p0(n-1,t) & s=t+1":

def upperw "?msd_fib (n=0&s=0) | Et $p1(n-1,t) & s=t+1":

Jeffrey Shallit Synchronized Sequences WORDS 2021 38 / 50

Fibonacci synchronization and Wythoff sequences

This gives Fibonacci-synchronized automata for L(n) (top) and U(n)
(bottom).

Jeffrey Shallit Synchronized Sequences WORDS 2021 39 / 50

Fibonacci synchronization and Wythoff sequences

Using these we can easily prove recent results of Kawsumarng et al.:

Theorem.
(a) Every integer n > 9 can be written as the sum of L(i) + U(j) + U(k);
(b) Every integer n > 26 can be written as the sum U(i) + U(j) + U(k).

eval kawa "?msd_fib An (n>9) => Ei,j,k,r,s,t $lowerw(i,r) &

$upperw(j,s) & $upperw(k,t) & n=r+s+t":

eval kawb "?msd_fib An (n>26) => Ei,j,k,r,s,t $upperw(i,r) &

$upperw(j,s) & $upperw(k,t) & n=r+s+t":

Both of these return TRUE.

Jeffrey Shallit Synchronized Sequences WORDS 2021 40 / 50

Minimal excludant and Fibonacci synchronization

We can also use our Fibonacci-synchronized automata to prove a basic
characterization of the lower and upper Wythoff sequences, namely:
For a set S (N, we define mex(S) = min{n : n 6∈ S}. Then

Ln = mex{Li ,Ui : 0 ≤ i < n}
Un = Ln + n.

We can check this as follows:

def incl "?msd_fib Ei i<n & ($lowerw(i,s) | $upperw(i,s))":

s appears in {L_i, U_i : 0 <= i < n }

def mex "?msd_fib (~$incl(n,s)) & At (t<s) => $incl(n,t)":

s equals mex {L_i, U_i : 0 <= i < n }

eval mexchk1 "?msd_fib An,s $mex(n,s) <=> $lowerw(n,s)":

eval mexchk2 "?msd_fib An,s $upperw(n,s) <=>

(Et $lowerw(n,t) & s=t+n)":

Jeffrey Shallit Synchronized Sequences WORDS 2021 41 / 50

Abelian properties

A property of a word is called abelian if it depends only on the number of
occurrences of each letter in the word.

For example, an abelian square is a word of the form xx ′ where x ′ is a
permutation of x , like the English word reappear.

Although first-order formulas can’t deal with abelian properties in general,
if an automatic infinite word has the property that the number of
occurrences of each letter in a length-n prefix is synchronized, then we can
do so.

Examples of such words include the Thue-Morse word t and the Fibonacci
word f.

Jeffrey Shallit Synchronized Sequences WORDS 2021 42 / 50

Tribonacci synchronization: a new result

With the same ideas we can write first-order formulas for properties of the
Tribonacci sequence tr = 0102010 · · · , defined as the fixed point of the
morphism 0→ 01, 1→ 02, 2→ 0.

An abelian cube is a word of the form w = x x ′ x ′′, where x ′, x ′′ are
permutations of x , like the English word deeded. The order of the abelian
cube w is defined to be |x |.

What are the orders of abelian cubes appearing in tr?

Answer: there is a Tribonacci automaton of 1169 states (!) recognizing
the set of all these orders (expressed in the Tribonacci numeration
system). Probably there is no simple description of what these orders are.

Jeffrey Shallit Synchronized Sequences WORDS 2021 43 / 50

Unsynchronized sequences

Not all aspects of automatic sequences are synchronized.

For example, the number of unbordered length-n factors of an automatic
sequence need not be synchronized.

Here is another example: f (n) = n2 cannot be (k, k2)-synchronized.

Proof. Assume it is. Then f (n + 1) would be (k , k2)-synchronized, and
hence f (n + 1)− f (n) = 2n + 1 would be (k , k2)-synchronized. But this
violates the growth rate theorem we presented earlier.

Jeffrey Shallit Synchronized Sequences WORDS 2021 44 / 50

Unsynchronized sequences

Sometimes we can use (the lack of) synchronization to prove that a
sequence is not k-automatic for any k .

For example, consider vn, the fixed point of the morphism a→ aab,
b → b.

vn = aabaabbaabaabbb · · ·

If it were k-automatic, then the starting position pn of the first block of n
b’s in vn would be synchronized, and hence pn = O(n).

But it is easily checked that pn = 2n+1 − n − 1, a contradiction.

Jeffrey Shallit Synchronized Sequences WORDS 2021 45 / 50

Lagniappe: Hilbert’s spacefilling curve

Hilbert’s spacefilling curve can be viewed as a curve that traverses all the
points in N× N, each lattice point visited exactly once.

It can be constructed by an iterative process, where we join four copies of
the previous iteration.

1

0

3

= A2

ordinary orientation diagonal flip

diagonal flip180◦ flip

0

1

2A1 =

Jeffrey Shallit Synchronized Sequences WORDS 2021 46 / 50

Hilbert’s spacefilling curve

0

1

2A3 =

ordinary orientation

diagonal flipdiagonal flip

180◦ rotation

Jeffrey Shallit Synchronized Sequences WORDS 2021 47 / 50

Hilbert’s spacefilling curve

Let us write (xn, yn) for the n’th lattice point in the Hilbert curve.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

xn 0 0 1 1 2 3 3 2 2 3 3 2 1
yn 0 1 1 0 0 0 1 1 2 2 3 3 3

It turns out that n→ (xn, yn) is synchronized, but only if we represent
things in the right way!

We must represent n in base 4, and xn and yn in base 2.

In other words, (n, xn, yn) is (4, 2, 2)-synchronized, with a 10-state
automaton.

Jeffrey Shallit Synchronized Sequences WORDS 2021 48 / 50

Hilbert’s spacefilling curve

With this synchronized automaton, we can easily construct a
two-dimensional automatic sequence containing a bitmap image of the
Hilbert curve:

Jeffrey Shallit Synchronized Sequences WORDS 2021 49 / 50

A final word

Thanks to Arturo Carpi and his co-authors for this wonderful concept of
synchronized sequence!

Jeffrey Shallit Synchronized Sequences WORDS 2021 50 / 50

