Fifty Years of Fine and Wilf*

* Well, *almost* fifty years...

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
shallit@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~shallit
In this talk, I’ll be speaking about *words*.

A word is a (possibly) empty string of symbols chosen from a finite nonempty alphabet Σ.

Σ^* is the set of all finite words.

ϵ is the empty word.

$|x|$ denotes the length of the word x, and $|x|_a$ is the number of occurrences of the symbol a in x.

x^k denotes the product $\underbrace{xxx \cdots x}_k$.

w^ω is the infinite word $www \cdots$.

If S is a set of words, then S^ω is the set of all infinite words constructed by concatenating elements of S.
Theorem

Let x, y be nonempty words. Then the following three conditions are equivalent:

(1) $xy = yx$;

(2) There exist a nonempty word z and integers $k, \ell > 0$ such that $x = z^k$ and $y = z^\ell$;

(3) There exist integers $i, j > 0$ such that $x^i = y^j$.

However, note that in the implication (1) \implies (2), an even weaker hypothesis suffices: we only need that xy agrees with yx on the first $|x| + |y| - \gcd(|x|, |y|)$ symbols.
We say an infinite sequence \((f_n)_{n \geq 0}\) is periodic with period length \(h \geq 1\) if \(f_n = f_{n+h}\) for all \(n \geq 0\). The following is a classical “folk theorem”:

Theorem. If \((f_n)_{n \geq 0}\) is an infinite sequence that is periodic with period lengths \(h\) and \(k\), then it is periodic with period length \(\gcd(h, k)\).

Proof. By the extended Euclidean algorithm, there exist integers \(r, s \geq 0\) such that \(rh - sk = \gcd(h, k)\). Then we have

\[
f_n = f_{n+rh} = f_{n+rh-sk} = f_{n+\gcd(h,k)}
\]

for all \(n \geq 0\). □
The Fine-Wilf Paper

- N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic functions”

- The Fine-Wilf theorem: a version of the periodicity theorem for finite sequences.

- Answers the question: how long must the finite sequence \((f_n)_{0 \leq n < D}\) be for period lengths \(h\) and \(k\) to imply a period of length \(\gcd(h, k)\)?

- \(D = \lcm(h, k)\) works (of course!), but Fine and Wilf proved we can take \(D = h + k - \gcd(h, k)\).
Figure: Citations of Fine-Wilf, according to Web of Science
The Fine-Wilf Theorems

Theorem 1. Let \((f_n)_{n \geq 0}\) and \((g_n)_{n \geq 0}\) be two periodic sequences of period \(h\) and \(k\), respectively. If \(f_n = g_n\) for \(h + k - \text{gcd}(h, k)\) consecutive integers \(n\), then \(f_n = g_n\) for all \(n\). The result would be false if \(h + k - \text{gcd}(h, k)\) were replaced by any smaller number.

Theorem 2. Let \(f(x), g(x)\) be continuous periodic functions of periods \(\alpha\) and \(\beta\), respectively, where \(\alpha/\beta = p/q\), \(\text{gcd}(p, q) = 1\). If \(f(x) = g(x)\) on an interval of length \(\alpha + \beta - \beta/q\), then \(f = g\). The result would be false if \(\alpha + \beta - \beta/q\) were replaced by any smaller number.

Theorem 3. Let \(f(x), g(x)\) be continuous periodic functions of periods \(\alpha\) and \(\beta\), respectively, where \(\alpha/\beta\) is irrational. If \(f(x) = g(x)\) on an interval of length \(\alpha + \beta\), then \(f = g\). The result would be false if \(\alpha + \beta\) were replaced by any smaller number.
Theorem

Let w and x be nonempty words. Let $y \in w \{w, x\}^\omega$ and $z \in x \{w, x\}^\omega$. Then the following conditions are equivalent:

(a) y and z agree on a prefix of length at least $|w| + |x| - \gcd(|w|, |x|);
(b) $wx = xw$;
(c) $y = z$.

Proof.

(c) \implies (a): Trivial.

(b) \implies (c): By Lyndon-Schützenberger.

We'll prove (a) \implies (b).
Proof.

(a) \(y \in w\{w, x\}^\omega \) and \(z \in x\{w, x\}^\omega \) agree on a prefix of length at least \(|w| + |x| - \gcd(|w|, |x|) \) \(\implies \) (b) \(wx = xw \):

We prove the contrapositive. Suppose \(wx \neq xw \).

Then we prove that \(y \) and \(z \) differ at a position \(\leq |w| + |x| - \gcd(|w|, |x|) \).

The proof is by induction on \(|w| + |x|\).

Case 1: \(|w| = |x|\) (which includes the base case \(|w| + |x| = 2\)). Then \(y \) and \(z \) must disagree at the \(|w|'th\) position or earlier, for otherwise \(w = x \) and \(wx = xw \); since \(|w| \leq |w| + |x| - \gcd(|w|, |x|) = |w|\), the result follows.
Case 2: $|w| < |x|$.

If w is not a prefix of x, then y and z disagree on the $|w|$'th position or earlier, and again $|w| \leq |w| + |x| - \gcd(|w|, |x|)$.

So w is a proper prefix of x.

Write $x = wt$ for some nonempty word t.

Now any common divisor of $|w|$ and $|x|$ must also divide $|x| - |w| = |t|$, and similarly any common divisor of both $|w|$ and $|t|$ must also divide $|w| + |t| = |x|$. So $\gcd(|w|, |x|) = \gcd(|w|, |t|)$.

Now $wt \neq tw$, for otherwise we have $wx = wwt = wtw = xw$, a contradiction.

Then $y = ww \cdots$ and $z = wt \cdots$. By induction (since $|wt| < |wx|$), $w^{-1}y$ and $w^{-1}z$ disagree at position $|w| + |t| - \gcd(|w|, |t|)$ or earlier.

Hence y and z disagree at position $2|w| + |t| - \gcd(|w|, |t|) = |w| + |x| - \gcd(|w|, |x|)$ or earlier. ■
The proof also implies a way to get words that optimally “almost commute”, in the sense that xw and wx should agree on as long a segment as possible.

Theorem

For each $m, n \geq 1$ there exist binary words x, w of length m, n, respectively, such that xw and wx agree on a prefix of length $m + n - \gcd(m, n) - 1$ but differ at position $m + n - \gcd(m, n)$.

These words are the finite *Sturmian words*.

Indeed, our proof even provides an algorithm for computing these words:

$$S(h, k) = \begin{cases}
(0^h, 0^{h-1}1), & \text{if } h = k; \\
(x, w), & \text{if } h > k \text{ and } S(k, h) = (w, x); \\
(w, wt), & \text{if } h < k \text{ and } S(h, k-h) = (w, t).
\end{cases}$$
Since 1965, research on Fine-Wilf has been in three areas:

- applications (esp. to string-searching algorithms such as Knuth-Morris-Pratt)
- generalizations (esp. to more than 2 numbers; partial words)
- variations (e.g., to abelian periods; to inequalities)
The famous linear-time string searching algorithm of Knuth-Morris-Pratt finds all occurrences of a pattern p in a text t in time bounded by $O(|p| + |t|)$.

It compares the pattern to a portion of the text beginning at position i, and, when a mismatch is found, shifts the pattern to the right based on the position of the mismatch.

The worst-case in their algorithm comes from “almost-periodic” words, where long sequences of matching characters occur without a complete match.

It turns out that such words are precisely the maximal “counterexamples” in the Fine-Wilf theorem (the Sturmian pairs).
Many authors have worked on generalizations to multiple periods: Castelli, Justin, Mignosi, Restivo, Holub, Simpson & Tijdeman, Constantinescu & Ilie, Tijdeman & Zamboni, ...

For example, Castelli, Mignosi, and Restivo (1999) proved that for three periods $p_1 \leq p_2 \leq p_3$ the appropriate bound is

$$\frac{1}{2}(p_1 + p_2 + p_3 - 2 \gcd(p_1, p_2, p_3) + h(p_1, p_2, p_3))$$

where h is a function related to the Euclidean algorithm on three inputs.
Partial words: words together with “don’t care” symbols called “holes”. Holes match each other and all other symbols.

Theorem

There exists a computable function $L(h, p, q)$ such that if a word w with h holes with periods p and q is of length $\geq L(h, p, q)$, then w also has period $\gcd(p, q)$.

Berstel and Boasson (1999) proved we can take $L(1, p, q) = p + q$.

Shur and Konovalova (2004) proved we can take $L(2, p, q) = 2p + q - \gcd(p, q)$.

Many results by Blanchet-Sadri and co-authors.
Fine & Wilf works for equalities. How about inequalities?

For example, suppose \(f = (f_n)_{n \geq 0}, g = (g_n)_{n \geq 0} \) are two periodic sequences of period \(h \) and \(k \), respectively. Suppose \(f_n \leq g_n \) for a prefix of length \(D \). We want to conclude that \(f_n \leq g_n \) everywhere.

Here the correct bound is \(D = \text{lcm}(h, k) \). Example: take

\[
\begin{align*}
f &= (1^{h-1}2)\omega \\
g &= (2^{k-1}1)\omega
\end{align*}
\]

Then \(f_n \leq g_n \) for \(0 \leq n < \text{lcm}(h, k) - 1 \), but the inequality fails at \(n = \text{lcm}(h, k) - 1 \).

So we need some additional hypothesis.
Theorem. Let \(f = (f_n)_{n \geq 0}, \ g = (g_n)_{n \geq 0} \) be two periodic sequences of real numbers, of period lengths \(h \) and \(k \), respectively, such that

\[
\sum_{0 \leq i < h} f_i \geq 0
\]

and

\[
\sum_{0 \leq j < k} g_j \leq 0.
\]

Let \(d = \gcd(h, k) \).

(a) If

\[
f_n \leq g_n \quad \text{for } 0 \leq n < h + k - d
\]

then \(f_n = g_n \) for all \(n \geq 0 \).

(b) The conclusion (a) would be false if in the hypothesis \(h + k - d \) were replaced by any smaller integer.
Define

\[P(z) = 1 + z + \cdots + z^{h-1} = \frac{(z^h - 1)}{(z - 1)}; \]
\[Q(z) = 1 + z + \cdots + z^{k-1} = \frac{(z^k - 1)}{(z - 1)}; \]
\[R(z) = \frac{(z^k - 1)}{(z^d - 1)}; \quad d = \gcd(h, k) \]
\[S(z) = \frac{(z^h - 1)}{(z^d - 1)}. \]

By hypothesis \(P \circ f \geq 0 \), where by \(\circ \) we mean take the dot product of the coefficients of \(P \) with consecutive overlapping windows of \(f \). Then \(R \circ (P \circ f) \geq 0 \). But then \(RP \circ f \geq 0 \).
Similarly, the hypothesis
\[\sum_{0 \leq j < k} g_j \leq 0 \]
means \(Q \circ (-g) \geq 0 \).
Then \(SQ \circ (-g) \geq 0 \).
But \(RP = SQ \), so
\[\sum_{0 \leq i < h+k-d} e_i(f_i - g_i) \geq 0. \quad (4) \]
where \(R(z)P(z) = \sum_{0 \leq i < h+k-d} e_i z^i \).

It can be shown that the \(e_i \) are strictly positive, so since \(f_n \leq g_n \)
for \(0 \leq n < h + k - d \), we get \(f_n = g_n \) for \(0 \leq n < h + k - d \).

By the Fine & Wilf theorem, \(f_n = g_n \) for \(n \geq 0 \). ■
Maximal counter-examples in (b) can be deduced as the *first differences* of the maximal counter-examples to Fine & Wilf (the Sturmian pairs).

For example, for $h = 5$, $k = 8$ we have $w = (-1, 1, -1, 0, 1)$ and $x = (0, 1, -1, 0, 1, -1, 1, -1)$. Then

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_n</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>g_n</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Suppose we have two periodic sequences of integers, say \((f_n)_{n \geq 0}\) of period \(h\) and \((g_n)_{n \geq 0}\) of period \(k\). For how many consecutive terms can \(f_n + g_n\) strictly decrease?

The answer, once again, is

\[h + k - \gcd(h, k). \]

Here is an example achieving \(h + k - 1\) for \(h = 5\), \(k = 8\):

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>-16</td>
<td>8</td>
<td>-8</td>
<td>-24</td>
<td>0</td>
<td>-16</td>
<td>8</td>
<td>-8</td>
<td>-24</td>
<td>0</td>
<td>-16</td>
<td>8</td>
</tr>
<tr>
<td>(g(n))</td>
<td>0</td>
<td>15</td>
<td>-10</td>
<td>5</td>
<td>20</td>
<td>-5</td>
<td>10</td>
<td>-15</td>
<td>0</td>
<td>15</td>
<td>-10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>(f + g)</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-8</td>
<td>-9</td>
<td>-10</td>
<td>-11</td>
<td>28</td>
</tr>
</tbody>
</table>
A morphism is a map h from Σ^* to Δ^* such that

$$h(xy) = h(x)h(y)$$

for all words x, y.

It follows that h can be uniquely specified by providing its image on each letter of Σ.

For example, let

$$h(0) = r$$
$$h(1) = em$$
$$h(2) = b$$
$$h(3) = er$$

Then

$$h(011233) = rememberer.$$
If $\Sigma = \Delta$ we can iterate h. We write

\[
\begin{align*}
 h^2(x) & \quad \text{for} \quad h(h(x)), \\
 h^3(x) & \quad \text{for} \quad h(h(h(x))), \\
\text{etc.}
\end{align*}
\]
Iterated morphisms appear in many different areas (often under the name L-systems), including:

- models of plant growth in mathematical biology
- computer graphics
- infinite words avoiding certain patterns
For example, consider the map φ defined by

\[
\begin{align*}
\varphi(a_r) &= a_l b_r \\
\varphi(a_l) &= b_l a_r \\
\varphi(b_r) &= a_r \\
\varphi(b_l) &= a_l
\end{align*}
\]

Iterating φ on a_r gives

\[
\begin{align*}
\varphi^0(a_r) &= a_r \\
\varphi^1(a_r) &= a_l b_r \\
\varphi^2(a_r) &= b_l a_r a_r \\
\varphi^3(a_r) &= a_l a_l b_r a_l b_r \\
\vdots
\end{align*}
\]

Here the a's represent fat cells and the b's represent thin cells.

This models the development of the blue-green bacterium *Anabaena catenula*.
Szilard and Quinton [1979] observed that many interesting pictures, including approximations to fractals, could be coded using iterated morphisms.

A beautiful book by Prusinkiewicz and Lindenmayer provides many examples.
Example: code a picture using “turtle graphics” where R codes a move followed by a right turn, L codes a move followed by a left turn, and S codes a move straight ahead with no turn.

Consider the map g defined as follows:

\[
\begin{align*}
 g(R) &= RLLSRRRLR \\
 g(L) &= RLLSRRLL \\
 g(S) &= RLLSRRLS
\end{align*}
\]

By iterating g on $RRRR$ we get

\[
\begin{align*}
 g^0(R) &= RRRR \\
 g^1(R) &= RLLSRRLLSRRRLRRLLS \ldots
\end{align*}
\]

These words code successive approximations to a von Koch fractal curve.
Figure: Four iterations in the construction of the von Koch curve
The Matrix Associated with a Morphism

Given a morphism \(\varphi : \Sigma^* \to \Sigma^* \) for some finite set \(\Sigma = \{a_1, a_2, \ldots, a_d\} \), we define the \textit{incidence matrix} \(M = M(\varphi) \) as follows:

\[
M = (m_{i,j})_{1 \leq i, j \leq d}
\]

where \(m_{i,j} \) is the number of occurrences of \(a_i \) in \(\varphi(a_j) \), i.e.,

\[
m_{i,j} = |\varphi(a_j)|_{a_i}.
\]

Example. Consider the morphism \(\varphi \) defined by

\[
\varphi : a \to ab, \quad b \to cc \quad c \to bb.
\]

Then

\[
M(\varphi) = \begin{pmatrix}
a & b & c \\
a & 1 & 0 & 0 \\
b & 1 & 0 & 2 \\
c & 0 & 2 & 0 \\
\end{pmatrix}
\]
The matrix $M(\varphi)$ is useful because of the following proposition.

Proposition. We have

$$
\begin{bmatrix}
|\varphi(w)|_{a_1} \\
|\varphi(w)|_{a_2} \\
\vdots \\
|\varphi(w)|_{a_d}
\end{bmatrix} =
M(\varphi)
\begin{bmatrix}
|w|_{a_1} \\
|w|_{a_2} \\
\vdots \\
|w|_{a_d}
\end{bmatrix}.
$$

Proof. We have

$$
|\varphi(w)|_{a_i} = \sum_{1 \leq j \leq d} |\varphi(a_j)|_{a_i} |w|_{a_j}.
$$
The Matrix Associated with a Morphism

Corollary.

\[
\begin{bmatrix}
\varphi^n(w)|_{a_1} \\
\varphi^n(w)|_{a_2} \\
\vdots \\
\varphi^n(w)|_{a_d}
\end{bmatrix}
\begin{bmatrix}
w|_{a_1} \\
w|_{a_2} \\
\vdots \\
w|_{a_d}
\end{bmatrix}
= (M(\varphi))^n
\begin{bmatrix}
w|_{a_1} \\
w|_{a_2} \\
\vdots \\
w|_{a_d}
\end{bmatrix}
\]
Hence we find

Corollary.

\[
|\varphi^n(w)| = \left[\begin{array}{ccc} 1 & 1 & 1 \\ & \ddots & \end{array} \right] M(\varphi)^n \left[\begin{array}{c} \vert w \vert_{a_1} \\ \vert w \vert_{a_2} \\ \vdots \\ \vert w \vert_{a_d} \end{array} \right].
\]
We can now ask questions about the sequence of lengths

\[|x|, \ |h(x)|, \ |h^2(x)|, \ldots \]

These questions were very popular in mathematical biology (L-systems) in the 1980’s.

For example, here is a classical result:

Theorem. Suppose \(h : \Sigma^* \rightarrow \Sigma^* \) is a morphism, and suppose there exist a word \(w \in \Sigma^* \) and a constant \(c \) such that

\[c = |w| = |h(w)| = \cdots = |h^n(w)|, \]

where \(n = |\Sigma| \). Then \(c = |h^i(w)| \) for all \(i \geq 0 \).
Proof of the Theorem

It suffices to show \(|h^{n+1}(w)| = c\), because then the theorem follows by induction on \(n\).

Let \(M\) be the incidence matrix of \(h\). By the Cayley-Hamilton theorem,

\[M^n = c_0 M^0 + \cdots + c_{n-1} M^{n-1} \]

for some constants \(c_0, c_1, \ldots, c_{n-1}\).

Define \(f_i = |h^i(w)|\) and let

\[v = [|w|_{a_1} |w|_{a_2} \cdots |w|_{a_n}]^T. \]

Then for \(0 \leq i < n\) we have

\[f_{i+1} - f_i = [1 1 \cdots 1](M^{i+1} - M^i)v \]
\[= [1 1 \cdots 1]M^i(M - I)v \]
\[= [1 1 \cdots 1]M^i v' = 0, \]

where \(v' := (M - I)v\).
Proof of the Theorem

Now

\[f_{n+1} - f_n = [1 1 \cdots 1] M^n v' \]

\[= [1 1 \cdots 1] (c_0 + \cdots + c_{n-1} M^{n-1}) v' \]

\[= \sum_{0 \leq i < n} c_i [1 1 \cdots 1] M^i v' \]

\[= 0, \]

since each summand is 0.

Hence \(f_{n+1} = f_n \). \qed
Another Question

We might also ask, how long can the sequence of lengths

$$|x|, |h(x)|, |h^2(x)|, \ldots$$

strictly decrease?

This question arose naturally in a paper with Wang characterizing the two-sided infinite fixed points of morphisms, i.e., those two-sided infinite words w such that $h(w) = w$.
If Σ has n elements, we can easily find a decreasing sequence of length n. For example, for $n = 5$, define h as follows:

\[
\begin{align*}
 h(a) &= b \\
 h(b) &= c \\
 h(c) &= d \\
 h(d) &= e \\
 h(e) &= \varepsilon
\end{align*}
\]

Then we have

\[
\begin{align*}
 h(abcde) &= bcde \\
 h^2(abcde) &= cde \\
 h^3(abcde) &= de \\
 h^4(abcde) &= e \\
 h^5(abcde) &= \varepsilon
\end{align*}
\]
So

\[|\text{abcde}| > |h(\text{abcde})| > |h^2(\text{abcde})| > |h^3(\text{abcde})| > |h^4(\text{abcde})| > |h^5(\text{abcde})| = 0.\]
Conjecture. If \(h : \Sigma^* \rightarrow \Sigma^* \), and \(\Sigma \) has \(n \) elements, then

\[
|w| > |h(w)| > \cdots > |h^k(w)|
\]

implies that \(k \leq n \).

Another way to state the Decreasing Length Conjecture is the following:

Conjecture. Let \(M \) be an \(n \times n \) matrix with non-negative integer entries. Let \(v \) be a column vector of non-negative integers, and let \(u \) be the row vector \([1 \ 1 \ 1 \ \cdots \ 1]\). If

\[
uv > uMv > uM^2v > \cdots > uM^k v
\]

then \(k \leq n \).
There is a nice correspondence between directed graphs and non-negative matrices, as follows:

If G is a directed graph on n vertices, we can construct a non-negative matrix

$$M(G) = (m_{i,j})_{1 \leq i,j \leq n}$$

as follows: let

$$m_{i,j} = \begin{cases}
1, & \text{if there is a directed edge from vertex } i \text{ to vertex } j \text{ in } G; \\
0, & \text{otherwise.}
\end{cases}$$

Then the number of distinct walks of length n from vertex i to vertex j in G is just the i,j'th entry of M^n.

Path Algebra
Similarly, given a non-negative $n \times n$ matrix $M = (m_{i,j})_{1 \leq i, j \leq n}$ we may form its associated graph $G(M)$ on n vertices, where we put a directed edge from vertex i to vertex j iff $m_{i,j} > 0$.
Lemma. Let $r \geq 1$ be an integer, and suppose there exist r sequences of real numbers $b_i = (b_i(n))_{n \geq 0}$, $1 \leq i \leq r$, and r positive integers h_1, h_2, \ldots, h_r, such that the following conditions hold:

(a) $b_i(n + h_i) \geq b_i(n)$ for $1 \leq i \leq r$ and $n \geq 0$;

(b) There exists an integer $D \geq 1$ such that
\[
\sum_{1 \leq i \leq r} b_i(n) > \sum_{1 \leq i \leq r} b_i(n + 1)
\]
for $0 \leq n < D$.

Then $D \leq h_1 + h_2 + \cdots + h_r - r$.

Remark. When $r = 2$ and $\gcd(h_1, h_2) = 1$, then it can be shown that the bound in this Lemma is tight.

For example, for $h_1 = 5$, $h_2 = 8$ we find

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1(n)$</td>
<td>0</td>
<td>-16</td>
<td>8</td>
<td>-8</td>
<td>-24</td>
<td>0</td>
<td>-16</td>
<td>8</td>
<td>-8</td>
<td>-24</td>
<td>0</td>
<td>-16</td>
<td>8</td>
</tr>
<tr>
<td>$b_2(n)$</td>
<td>0</td>
<td>15</td>
<td>-10</td>
<td>5</td>
<td>20</td>
<td>-5</td>
<td>10</td>
<td>-15</td>
<td>0</td>
<td>15</td>
<td>-10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>$b_1(n) + b_2(n)$</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-8</td>
<td>-9</td>
<td>-10</td>
<td>-11</td>
<td>28</td>
</tr>
</tbody>
</table>
Theorem. Suppose M is an $n \times n$ matrix with non-negative integer entries. If there exist a row vector u and a column vector v with non-negative integer entries such that

$$uv > uMv > uM^2v > \cdots > uM^k v,$$

then $k \leq n$. Also $k = n$ only if $M^n = 0$.
Proof.

- Let M be the matrix in the statement of the theorem and G its associated graph.
- Let $u = (u_1, u_2, \ldots, u_n)$ and $v = (v_1, v_2, \ldots, v_n)^T$.
- Let V be the set of vertices in G.
- Consider some maximal set of vertices forming disjoint cycles $\{C_1, C_2, \ldots, C_r\}$ in G.
- Then V can be written as the disjoint union

$$V = C_1 \cup C_2 \cup \cdots \cup C_r \cup W,$$

where W is the set of vertices which do not lie in any of the disjoint cycles.
Any directed walk in G of length $|W|$ or greater must intersect some cycle C_i, for otherwise the walk would contain a cycle disjoint from C_1, C_2, \ldots, C_r.

Associate each walk of length $\geq |W|$ with the first cycle C_i it intersects.

Define $P_{i,j,l}^s$ to be the number of directed walks of length s from vertex i to vertex j associated with cycle l.

Also define

$$T_l^s := \sum_{1 \leq i, j \leq n} u_i v_j P_{i,j,l}^s.$$

Then for any $s \geq |W|$ we have

$$uM^s v = \sum_{1 \leq l \leq r} T_l^s. \quad (5)$$
Then

\[T_i^s \le T_i^{s+|C_i|}, \]

since any walk of length \(s \) associated with cycle \(C_i \) can be extended to a walk of length \(s + |C_i| \) by traversing the cycle \(C_i \) once.

From the inequality \(uM^s v > uM^{s+1} v \) for \(0 \le s \le k - 1 \) and Eq. (5) we have

\[
\sum_{1 \le l \le r} T_i^s > \sum_{1 \le l \le r} T_i^{s+1}
\]

for \(|W| \le s < k \).

Now for \(1 \le i \le r \) and \(j \ge 0 \) define \(b_i(j) = T_i^{|W|+j} \) and \(h_i = |C_i| \).

Then the conditions of the previous Lemma are satisfied.
We conclude that

\[k - |W| \leq |C_1| + |C_2| + \cdots + |C_r| - r. \]

Moreover

\[|C_1| + |C_2| + \cdots + |C_r| + |W| = |V| = n \]

and so \(k \leq n - r \).

Finally \(k = n \) implies that \(r = 0 \), so \(G \) is acyclic and \(M^n = 0 \).

So the Decreasing Length Conjecture is proved.
