
Developing Walnut Commands for Sequence Properties

Jeffrey Shallit

School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 1 / 41

Introduction

As you know, Walnut is free software to allow you to rigorously prove or
disprove first-order statements about (generalized) automatic sequences.

The goal of this talk is to develop a few Walnut commands to solve
interesting problems in combinatorics on words.

I’ll assume you have some familiarity with Walnut and understand the
basic syntax of a Walnut command.

I’ll also assume you know what automata and regular expressions are and
what an automatic sequence is.

Along the way I’ll give some hints about how to avoid common pitfalls,
debug Walnut predicates, and make them run faster.

We’ll also see some open problems nobody currently knows how to solve.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 2 / 41

Terminology and notation

A word or string is a list of letters.

A factor (sometimes called a subword) is a contiguous block sitting inside
another word. For example, woord is a factor of zakwoordenboek.

We can specify a factor by giving its starting and ending positions inside a
word, as in f[i ..j].

We say x is an n’th power if x = yn =

n︷ ︸︸ ︷
yy · · · y for some string y .

By xω we mean the infinite word xxx · · · .

By (n)k we mean the string representing n in base k, with no leading zeros.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 3 / 41

Some things to remember about Walnut

We can’t quantify over words in Walnut. We cannot say things like
“For all words w ∈ {0, 1}∗” or “There exists a word w having the property
that...”.

We can only quantify over variables taking integer values.

So when we talk about factors of infinite words, we’re not really talking
about factors, but rather occurrences of factors.

Occurrences can be specified by starting and ending positions, as in f[i ..j],
or by starting position and length, as in f[i ..i + n − 1].

Sometimes one is more natural than the other.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 4 / 41

Problem 1: The vtm sequence

The vtm sequence

21020121012021020120210121020121 · · ·

has been studied since Axel Thue defined it in 1912.

It has many equivalent definitions.

Maybe the easiest is the following: consider the Thue-Morse sequence

t = 0110100110010110 · · · ,

and count the number of 1’s between consecutive 0’s:

0 11︸︷︷︸
2

0 1︸︷︷︸
1

0 ︸︷︷︸
0

0 11︸︷︷︸
2

0 ︸︷︷︸
0

0 1︸︷︷︸
1

0 11︸︷︷︸
2

0 · · ·

The lengths of the runs of 1’s gives vtm.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 5 / 41

Problem 1: The vtm sequence

Another definition, and the one Walnut uses, is that vtm is generated by
the following DFAO (deterministic finite automaton with output).

0/2

0
1/11

1
2/00

0

3/1

1

0
1

Input is n in base 2; output of the last state reached is vtm[n].

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 6 / 41

Problem 1: The vtm sequence

Let us show that these two definitions are the same.

To do that, we need to find the position of the n’th 0 in the Thue-Morse
word t.

That’s actually pretty easy, since the Thue-Morse sequence consists of
blocks of 01 or 10, and the n’th block is determined by t[n].

So we can make an automaton that accepts a pair (n, x) if and only if x is
the position of the n’th 0, as follows:

def tm0pos "x=2*n+T[n]":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 7 / 41

Problem 1: The vtm sequence

And now we check that the number of 1’s between the n’th and (n + 1)’st
0 is vtm[n]:

eval defcheck "An,x,y ($tm0pos(n,x) & $tm0pos(n+1,y)) =>

y=x+1+VTM[n]":

And Walnut returns TRUE.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 8 / 41

Problem 1: The vtm sequence

Another definition of vtm is that it is the first difference sequence
(t[n + 1]− t[n])n≥0, but recoded as follows:

1→ 2, 0→ 1, −1→ 0.

Exercise. Create a Walnut command that verifies that this defines vtm.
You have to be a little careful since the default domain for numbers in
Walnut is N and not Z.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 9 / 41

Problem 1: The vtm sequence

The most interesting thing about the vtm sequence is that it is squarefree:
it does not contain a square (two consecutive identical blocks).

Let’s make a first-order logic formula that asserts the existence of two
consecutive identical blocks in vtm.

Let’s say the first block begins at position i , and is of length n ≥ 1. So the
second block would begin at position i + n.

Then a square means that the symbol at position i is the same as that at
i + n, i + 1 the same as at i + n + 1, and so forth, up to i + n − 1 the
same as i + 2n − 1.

So the formula would be

∃i , n ∀t (t < n) =⇒ vtm[i + t] = vtm[i + n + t].

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 10 / 41

Problem 1: The vtm sequence

So in Walnut we have

eval has_square "Ei,n At (t<n) => VTM[i+t]=VTM[i+n+t]":

and we expect to get the result FALSE. But we don’t! We get TRUE!

What did we do wrong?!?

To figure out where we went wrong, let’s make an automaton that accepts
those n for which there are two consecutive blocks of length n.

def check "Ei At (t<n) => VTM[i+t]=VTM[i+n+t]":

And when we look at the automaton check we see that it only accepts
n = 0.

That was our mistake: we needed to specify that the consecutive identical
blocks were nonempty.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 11 / 41

Problem 1: The vtm sequence

We should have written

∃i , n (n ≥ 1) ∧ ∀t (t < n) =⇒ vtm[i + t] = vtm[i + n + t].

and

eval has_square "Ei,n (n>=1) & At (t<n) =>

VTM[i+t]=VTM[i+n+t]":

and this time we do indeed get FALSE as a result. So vtm is indeed
squarefree.

Moral of the story: be careful about edge conditions (empty strings,
starting at i = 1 instead of i = 0, etc.)

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 12 / 41

Open Problem #1

Here is a problem currently nobody knows how to solve.

What is the lexicographically least squarefree string over the
alphabet {0, 1, 2}?

It starts 01020120210120102012 · · · .

Prove something (anything!) interesting about it.

For example, do the letters 0, 1, 2 occur with some limiting frequency?

Is it generated by an automaton? (almost certainly not).

Does every finite block that can be extended infinitely to the right occur in
it?

It doesn’t look like Walnut can be helpful for this problem at all.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 13 / 41

Problem 2: Avoiding the pattern xxxR in binary strings

We can’t avoid the pattern xx (two consecutive identical blocks) over the
alphabet {0, 1}.

But we can avoid the pattern xxxR , where xR denotes the reverse of x .

For example, the periodic string (01)ω = 01010101 · · · avoids xxxR .

But are there any aperiodic infinite binary strings avoiding this pattern?

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 14 / 41

Problem 2: Avoiding the pattern xxxR in binary strings

Here is an approach that often succeeds in problems like this: use
breadth-first search in the tree of all strings to identify strings with the
desired property that also can be generated by an automaton with a
relatively small number of states.

The number of states can be deduced using a heuristic variation on the
Myhill-Nerode theorem.

If we are lucky, we’ll find a small automaton, and then we can use Walnut

to prove that the sequence generated by the automaton actually has the
desired property.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 15 / 41

Problem 2: Avoiding the pattern xxxR in binary strings

When we try to do this for xxxR , one complicating issue is that
aperiodicity is a property of infinite strings, not finite prefixes!

Nevertheless, we can still use the technique by fixing some n and making
sure the word contains no blocks repeated n times.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 16 / 41

Problem 2: Avoiding the pattern xxxR in binary strings

When we do this using automata in base 2, and avoiding both xxxR and
yyyy = y4, we don’t succeed in finding any small automata that work.

But we do succeed if we use automaton based on a different way of
representing integers: the Zeckendorf representation based on Fibonacci
numbers.

Recall F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Zeckendorf’s theorem says that every integer has a unique representation
as a sum of distinct Fibonacci numbers Fi , i ≥ 2, provided that you never
use both Fi and Fi+1.

We can write such a representation in the form
∑

2≤i≤t eiFi with
ei ∈ {0, 1}.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 17 / 41

Problem 2: Avoiding the pattern xxxR in binary strings

In this case we quickly find an 8-state automaton defining a binary
sequence rf = 00100110110110010011011 · · · . This is a candidate we
need to test.

eval chkxxxr "?msd_fib ~Ei,n (n>=1) &

(At (t<n) => RF[i+t]=RF[i+n+t]) &

(At (t<n) => RF[i+t]=RF[(i+3*n)-(t+1)])"::

eval chkaperiod "?msd_fib ~Ei,n (n>=1) &

At (t>i) => RF[i+t]=RF[i+n+t]":

and both return TRUE.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 18 / 41

Problem 3: Balanced words

Roughly speaking, a word is balanced if every pair of equal-length blocks
occurring in it do not differ very much in the number of occurrences of
each letter.

More precisely, let |x |a denote the number of occurrences of the letter a in
the string x . We say a word z (finite or infinite) is balanced if all factors
x , y of z with |x | = |y | satisfy the inequality

||x |a − |y |a| ≤ 1

for all letters a.

We would like to be able to check this property with Walnut, but to do so,
it seems that we would need to be able to count the number of a’s
occurring in two different blocks and compare them.

There is no obvious way to do this with a first-order logical statement.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 19 / 41

Problem 3: Balanced words

So it seems we are at an impasse.

However, for binary words, there is a way around this!

Coven and Hedlund proved that a binary word z is not balanced if and
only if z contains two blocks of the form 0v0 and 1v1, for some (possibly
empty) word v .

Now that is first-order expressible!

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 20 / 41

Problem 3: Balanced words

We can check if the block z[i ..i + n] is unbalanced as follows:

∃k, l ,m m ≥ 1 ∧ k ≥ i ∧ l ≥ i ∧ k + m ≤ i + n ∧
l + m ≤ i + n ∧ z[k] = z[k + m] ∧ z[l] = z[l + m] ∧
z[k] 6= z[l] ∧ ∀t (t ≥ 1 ∧ t < m) =⇒ z[k + t] = z[l + t].

Let’s use this idea to verify that the Fibonacci word f is balanced:

def unbalanced "?msd_fib Ek,l,m m>=1 & k>=i & l>=i &

k+m<=i+n & l+m<=i+n & F[k]=F[k+m] & F[l]=F[l+m] &

F[k]!=F[l] & At (t>=1 & t<m) => F[k+t]=F[l+t]":

eval balanced "?msd_fib ~Ei,n (n>=1) & $unbalanced(i,n)":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 21 / 41

Open Problem #2

Is there a similar first-order criterion for balanced blocks over larger
alphabets?

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 22 / 41

Problem 4: Bordered and unbordered words

A word is bordered if it begins and ends with the same word in a nontrivial
way (we exclude the empty word, and we exclude the word itself).
Otherwise it is unbordered .

For example, the Dutch word verstuivers is bordered, as it begins and
ends with vers.

Currie and Saari studied the unbordered factors of the Thue-Morse word t.
They proved the presence of an unbordered factor of t for all lengths
n 6≡ 1 (mod 6).

This is a sufficient condition, but not a necessary one, as

t[39..69] = 0011010010110100110010110100101

is an unbordered factor of length 31.

So it is natural to ask for which lengths n there is an unbordered factor of
length n of t.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 23 / 41

Problem 4: Bordered and unbordered words

This is exactly the kind of thing Walnut can answer with ease.

Let us define a Walnut formula for the factor t[i ..i + n − 1] having a
border of length m:

def bordtm "At (t<m) => T[i+t]=T[(i+n+t)-m]":

does T[i..i+n-1] have border of length m

def bordered "Em m>=1 & m<n & $bordtm(i,m,n)":

is T[i..i+n-1] bordered?

def unbordered "Ei ~$bordered(i,n)":

is there an unbordered factor of length n?

This gives the following automaton...

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 24 / 41

Problem 4: Bordered and unbordered words

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

As you can see from the resulting automaton, we now get

Theorem. There is an unbordered factor of length n if and only if
(n)2 6∈ 1(01∗0)∗10∗1.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 25 / 41

Problem 5: Shevelev’s pseudoperiodicity problem

Shevelev called a sequence (an)n≥0 k-pseudoperiodic if there is a set of k
positive integers S = {p1, p2, . . . , pk} such that
ai ∈ {ai+p1 , ai+p2 , . . . , ai+pk} for all i ≥ 0. The set S is called a
pseudoperiod.

He proved that t is not 2-pseudoperiodic, but it is 3-pseudoperiodic.

He proposed, as an open problem, to characterize all the triples
0 < a < b < c such that {a, b, c} is a pseudoperiod for t.

We can do this in Walnut as follows:

def triple "(a>=1) & (a<b) & (b<c) &

Ai (T[i]=T[i+a] | T[i]=T[i+b] | T[i]=T[i+c])":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 26 / 41

Problem 5: Shevelev’s pseudoperiodicity problem

The resulting automaton has 53 states and completely answers Shevelev’s
question.

Determining it was a major calculation in Walnut, requiring 1949 seconds
of CPU time and 18 GB of RAM. The largest intermediate automaton had
2,952,594 states.

So it is not that surprising that Shevelev could not find a simple
characterization of these triples!

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 27 / 41

Open Problem #3

Characterize all the 3-pseudoperiods of the Tribonacci sequence.

This is in principle doable with Walnut, but currently it seems far out of
reach in terms of the number of states needed for intermediate automata.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 28 / 41

Problem 6: Rich words

A result of Droubay, Justin, and Pirillo says that a word of length at most
n contains at most n distinct palindromic factors (not counting the empty
word). A word achieving this maximum is said to be rich.

The shortest non-rich binary word is 00101100.

Once again at first glance there seems to be no obvious way to express
this definition in first-order logic, because it seems to require counting the
number of distinct palindromic factors.

However, in this case there is an alternative characterization of rich words:
a word w is rich if every nonempty prefix p of w has a nonempty
palindromic suffix s that occurs only once in p. That is first-order
expressible.

Let’s build up some Walnut formulas for it step-by-step, for the Fibonacci
word f.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 29 / 41

Problem 6: Rich words

First we need a formula asserting that f[j ..k] is a palindrome.

def palf "?msd_fib At (t+j<=k) => F[j+t]=F[k-t]":

Next we need a formula that asserts that a particular block f[i ..j] occurs
inside another block f[m..n], say starting at some position k.

def occursf "?msd_fib Ek k>=m & k+j<=i+n &

At (t+i<=j) => F[i+t]=F[k+t]":

Now we assert that every nonempty prefix p = f[i ..k] of f[i ..i + n − 1] has
some nonempty palindromic suffix s = f[j ..k] that occurs nowhere else.

def richf "?msd_fib Ak (k>=i & k<i+n) => Ej j>=i &

j<=k & $palf(j,k) & ~$occursf(j,k,i,k-1)":

eval isfibrich "?msd_fib Ai,n $richf(i,n)":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 30 / 41

Problem 6: Rich words

Now that we have this, we can easily carry out the same thing for any
automatic word, such as Thue-Morse:

def palt "At (t+j<=k) => T[j+t]=T[k-t]":

def occurst "Ek k>=m & k+j<=i+n &

At (t+i<=j) => T[i+t]=T[k+t]":

def richt "Ak (k>=i & k<i+n) => Ej j>=i & j<=k &

$palt(j,k) & ~$occurst(j,k,i,k-1)":

As it turns out, no factor of t of length > 16 is rich.

eval tmp1 "Ei $richt(i,16)":

eval tmp2 "Ei,n $richt(i,n) & n>16":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 31 / 41

Problem 6: Rich words

On the other hand, the period-doubling word

pd = 10111010 · · ·

is rich. We can show this by demonstrating that every factor is rich:

def palpd "At (t+j<=k) => PD[j+t]=PD[k-t]":

def occurspd "Ek k>=m & k+j<=i+n &

At (t+i<=j) => PD[i+t]=PD[k+t]":

def richpd "Ak (k>=i & k<i+n) => Ej j>=i & j<=k &

$palpd(j,k) & ~$occurspd(j,k,i,k-1)"

eval testpd "Ai,n $richpd(i,n)":

which returns TRUE.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 32 / 41

Problem 7: Antipowers

An k’th power in a word consists of k consecutive identical blocks.

Fici et al. defined a notion of k-antipower, which is k consecutive blocks,
no two of which are equal. For example, orange is a 3-antipower, but
banana is not.

We can define a first-order formula for z[i ..i + 3n− 1] being a 3-antipower,
as follows:

faceq(i , j , n) := ∀t (t < n) =⇒ z[i + t] = z[j + t]

anti3(i , n) := ¬ faceq(i , i + n, n) ∧ ¬ faceq(i , i + 2n, n)

∧ ¬ faceq(i + n, i + 2n, n).

and similar for other kinds of antipowers. Notice that to check a
k-antipower seems to require k(k − 1)/2 clauses.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 33 / 41

Problem 7: Antipowers

The Cantor sequence ca = 101000101 · · · is defined as follows:

ca[n] :=

{
1, if (n)3 contains no 1’s;

0, otherwise.

Fici et al. proved that the Cantor sequence contains no 11-antipowers. We
can optimally improve this to “contains no 10-antipowers”. This would
seem to require 45 clauses, but actually we can get by with fewer:

def cfaceq "?msd_3 At t<n => CA[i+t]=CA[j+t]":

eval cno10 "?msd_3 Ai,n n>=1 => (

$cfaceq(i+0*n,i+1*n,n) | $cfaceq(i+0*n,i+5*n,n) |

$cfaceq(i+2*n,i+3*n,n) | $cfaceq(i+2*n,i+8*n,n) |

$cfaceq(i+3*n,i+4*n,n) | $cfaceq(i+3*n,i+7*n,n) |

$cfaceq(i+3*n,i+9*n,n) | $cfaceq(i+4*n,i+5*n,n) |

$cfaceq(i+4*n,i+9*n,n) | $cfaceq(i+5*n,i+6*n,n) |

$cfaceq(i+5*n,i+8*n,n) | $cfaceq(i+6*n,i+7*n,n) |

$cfaceq(i+7*n,i+8*n,n) | $cfaceq(i+8*n,i+9*n,n))":

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 34 / 41

Problem 8: What kinds of properties can Walnut check?

So far all of the problems we have looked at have the same general form.

We are given some property of a finite word (being a square, or being rich,
or balanced, etc.)

We want to know which factors of a particular infinite word (like f or t)
have this property.

We would like to know what kinds of properties we can check with Walnut.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 35 / 41

Problem 8: What kinds of properties can Walnut check?

There are some properties that we know with certainty we cannot check,
in general.

For example, being an abelian square: two consecutive blocks where one is
a permutation of the other.

We can prove this is not specifiable in the first-order logic that Walnut
uses, because Luke Schaeffer found a specific example of an infinite word
generated by an automaton (the paperfolding word) where the positions of
the abelian squares do not form a regular language.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 36 / 41

Problem 8: What kinds of properties can Walnut check?

But there are other even simpler properties that are not checkable, such as
“containing an even number of 1’s”.

It seems remarkable that we cannot specify such a simple property in
Walnut’s logical language.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 37 / 41

Open problem: characterize the class FO[+]

The FO[+] definable languages are those languages L for which
membership in L is definable in Walnut’s logical language, namely,
〈N,+,Vk〉, where Vk(n) is the highest power of k dividing n.

It would be nice to have some more “constructive” definition of the
language class FO[+], one that would immediately let you figure out
whether L ∈ FO[+].

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 38 / 41

Problem 8: What kinds of properties can Walnut check?

Even so, for the property “having an even number of 1’s”, there is a way
to check factors of an infinite word with Walnut!

The idea is to use a finite-state transducer. This is an automaton that
takes an infinite word x as input and produces an infinite word as output,
by making transitions between states and outputting on each transition.

So we just make a simple finite-state transducer that records the parity of
the number of 1’s seen so far, transduce any given word using it, and get a
new automaton that computes a new infinite word y that is the running
sum (mod 2) of the number of 1’s of the original word.

Then to determine if any block x[i ..i + n − 1] has an even number of 1’s,
we just compute the difference in parity between y[i] and y[i + n].

Thus, even if a language is not in FO[+] there could be a way to check a
property with Walnut.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 39 / 41

Tips on writing Walnut formulas

Sometimes the obvious way of writing a predicate is not the best.
For example, for

def tribsquarelen "?msd_trib n>0 &

Ei At (t<n) => TR[i+t]=TR[i+n+t]":

required 893 seconds of CPU time and 85 gigabytes of RAM, with the
largest intermediate automaton having 13,159,141 states. while

def tribsquarelen2 "?msd_trib n>0 & Ei Aj (j>=i & j<i+n) =>

TR[j]=TR[j+n]":

terminates in less than one second, with largest intermediate automaton
having 1742 states.

In general, one should try to minimize the number of different variables
used, especially when used as indexes to automatic sequences.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 40 / 41

Tips on writing Walnut formulas

Also, sometimes it doesn’t pay to be general.

Remember that we defined a Walnut automaton occursf(i , j ,m, n) for
the property that the block f[i ..j] appeared somewhere within the block
f[m..n].

But then later on we only used it for the case (j , k , i , k − 1).

Therefore we could have gotten rid of n entirely by defining it to be k − 1.

The more general automaton needs 297 states; the more specific one
needs only 63 states.

Jeffrey Shallit Walnut and Sequence Properties November 7 2024 41 / 41

