

Fifty Years of Fine and Wilf

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
shallit@cs.uwaterloo.ca
https://www.cs.uwaterloo.ca/~shallit

Words

In this talk, I'll be speaking about words.

A word is a (possibly) empty string of symbols chosen from a finite nonempty alphabet Σ .

 Σ^* is the set of all finite words.

 $\boldsymbol{\epsilon}$ is the empty word.

|x| denotes the length of the word x, and $|x|_a$ is the number of occurrences of the symbol a in x.

 x^k denotes the product $\overbrace{xxx\cdots x}^k$.

 w^{ω} is the infinite word $www \cdots$.

If S is a set of words, then S^{ω} is the set of all infinite words constructed by concatenating elements of S.

Periodicity: The Lyndon-Schützenberger Theorem (1962)

Theorem

Let x, y be nonempty words. Then the following three conditions are equivalent:

- (1) xy = yx;
- (2) There exist a nonempty word z and integers $k, \ell > 0$ such that $x = z^k$ and $y = z^\ell$;
- (3) There exist integers i, j > 0 such that $x^i = y^j$.

However, note that in the implication (1) \Longrightarrow (2), an even weaker hypothesis suffices: we only need that xy agrees with yx on the first $|x| + |y| - \gcd(|x|, |y|)$ symbols.

Periodicity

We say an infinite sequence $(f_n)_{n\geq 0}$ is *periodic with period length* $h\geq 1$ if $f_n=f_{n+h}$ for all $n\geq 0$. The following is a classical "folk theorem":

Theorem. If $(f_n)_{n\geq 0}$ is an infinite sequence that is periodic with period lengths h and k, then it is periodic with period length $\gcd(h,k)$.

Proof. By the extended Euclidean algorithm, there exist integers $r, s \ge 0$ such that $rh - sk = \gcd(h, k)$. Then we have

$$f_n = f_{n+rh} = f_{n+rh-sk} = f_{n+\gcd(h,k)}$$

for all $n \ge 0$.

The Fine-Wilf Paper

- N. J. Fine and H. S. Wilf, "Uniqueness theorems for periodic functions"
- ▶ Proc. Amer. Math. Soc. **16** (1965), 109–114.
- Submitted August 7 1963, published 1965.
- ► The Fine-Wilf theorem: a version of the periodicity theorem for finite sequences.
- ▶ Answers the question: how long must the finite sequence $(f_n)_{0 \le n < D}$ be for period lengths h and k to imply a period of length gcd(h, k)?
- ▶ D = lcm(h, k) works (of course!), but Fine and Wilf proved we can take D = h + k gcd(h, k).

Citation history

Figure : Citations of Fine-Wilf, according to Web of Science

More recent citation history

Figure : Citations of Fine-Wilf, according to Web of Science

The Fine-Wilf Theorems

Theorem 1. Let $(f_n)_{n\geq 0}$ and $(g_n)_{n\geq 0}$ be two periodic sequences of period h and k, respectively. If $f_n=g_n$ for $h+k-\gcd(h,k)$ consecutive integers n, then $f_n=g_n$ for all n. The result would be false if $h+k-\gcd(h,k)$ were replaced by any smaller number.

Theorem 2. Let f(x), g(x) be continuous periodic functions of periods α and β , respectively, where $\alpha/\beta = p/q$, $\gcd(p,q) = 1$. If f(x) = g(x) on an interval of length $\alpha + \beta - \beta/q$, then f = g. The result would be false if $\alpha + \beta - \beta/q$ were replaced by any smaller number.

Theorem 3. Let f(x), g(x) be continuous periodic functions of periods α and β , respectively, where α/β is irrational. If f(x) = g(x) on an interval of length $\alpha + \beta$, then f = g. The result would be false if $\alpha + \beta$ were replaced by any smaller number.

Lyndon-Schützenberger meets Fine-Wilf

Theorem

Let w and x be nonempty words. Let $\mathbf{y} \in w\{w, x\}^{\omega}$ and $\mathbf{z} \in x\{w, x\}^{\omega}$. Then the following conditions are equivalent:

- (a) **y** and **z** agree on a prefix of length at least $|w| + |x| \gcd(|w|, |x|)$;
- (b) wx = xw;
- (c) y = z.

Proof.

- (c) \implies (a): Trivial.
- (b) ⇒ (c): By Lyndon-Schützenberger.
- We'll prove (a) \Longrightarrow (b).

Fine-Wilf: The Proof

Proof.

(a) $\mathbf{y} \in w\{w, x\}^{\omega}$ and $\mathbf{z} \in x\{w, x\}^{\omega}$ agree on a prefix of length at least $|w| + |x| - \gcd(|w|, |x|) \Longrightarrow$ (b) wx = xw:

We prove the contrapositive. Suppose $wx \neq xw$.

Then we prove that \mathbf{y} and \mathbf{z} differ at a position $\leq |w| + |x| - \gcd(|w|, |x|)$.

The proof is by induction on |w| + |x|.

Case 1: |w| = |x| (which includes the base case |w| + |x| = 2). Then **y** and **z** must disagree at the |w|'th position or earlier, for otherwise w = x and wx = xw; since $|w| \le |w| + |x| - \gcd(|w|, |x|) = |w|$, the result follows.

Fine-Wilf: The Proof

Case 2: |w| < |x|.

If w is not a prefix of x, then \mathbf{y} and \mathbf{z} disagree on the |w|'th position or earlier, and again $|w| \leq |w| + |x| - \gcd(|w|, |x|)$.

So w is a proper prefix of x.

Write x = wt for some nonempty word t.

Now any common divisor of |w| and |x| must also divide |x|-|w|=|t|, and similarly any common divisor of both |w| and |t| must also divide |w|+|t|=|x|. So $\gcd(|w|,|x|)=\gcd(|w|,|t|)$.

Fine-Wilf: The Proof

Now $wt \neq tw$, for otherwise we have wx = wwt = wtw = xw, a contradiction.

Then $\mathbf{y} = ww \cdots$ and $\mathbf{z} = wt \cdots$. By induction (since |wt| < |wx|), $w^{-1}\mathbf{y}$ and $w^{-1}\mathbf{z}$ disagree at position $|w| + |t| - \gcd(|w|, |t|)$ or earlier.

Hence \boldsymbol{y} and \boldsymbol{z} disagree at position

$$2|w| + |t| - \gcd(|w|, |t|) = |w| + |x| - \gcd(|w|, |x|)$$
 or earlier.

Finite Sturmian words

The proof also implies a way to get words that optimally "almost commute", in the sense that xw and wx should agree on as long a segment as possible.

Theorem

For each $m, n \ge 1$ there exist binary words x, w of length m, n, respectively, such that xw and wx agree on a prefix of length $m + n - \gcd(m, n) - 1$ but differ at position $m + n - \gcd(m, n)$.

These words are the finite Sturmian words.

Indeed, our proof even provides an algorithm for computing these words:

$$S(h,k) = \begin{cases} (0^h, 0^{h-1}1), & \text{if } h = k ;\\ (x, w), & \text{if } h > k \text{ and } S(k, h) = (w, x) ;\\ (w, wt), & \text{if } h < k \text{ and } S(h, k - h) = (w, t) . \end{cases}$$

Since 1965

Since 1965, research on Fine-Wilf has been in three areas:

- applications (esp. to string-searching algorithms such as Knuth-Morris-Pratt)
- ▶ generalizations (esp. to more than 2 numbers; partial words)
- variations (e.g., to abelian periods; to inequalities)

Fine-Wilf and String Searching

The famous linear-time string searching algorithm of Knuth-Morris-Pratt finds all occurrences of a pattern p in a text t in time bounded by O(|p| + |t|).

It compares the pattern to a portion of the text beginning at position i, and, when a mismatch is found, shifts the pattern to the right based on the position of the mismatch.

The worst-case in their algorithm comes from "almost-periodic" words, where long sequences of matching characters occur without a complete match.

It turns out that such words are precisely the maximal "counterexamples" in the Fine-Wilf theorem (the Sturmian pairs).

Multiple Periods

Many authors have worked on generalizations to multiple periods: Castelli, Justin, Mignosi, Restivo, Holub, Simpson & Tijdeman, Constantinescu & Ilie, Tijdeman & Zamboni, ...

For example, Castelli, Mignosi, and Restivo (1999) proved that for three periods $p_1 \le p_2 \le p_3$ the appropriate bound is

$$\frac{1}{2}(p_1+p_2+p_3-2\gcd(p_1,p_2,p_3)+h(p_1,p_2,p_3))$$

where h is a function related to the Euclidean algorithm on three inputs.

Partial words

Partial words: words together with "don't care" symbols called "holes". Holes match each other and all other symbols.

Theorem

There exists a computable function L(h, p, q) such that if a word w with h holes with periods p and q is of length $\geq L(h, p, q)$, then w also has period gcd(p, q).

Berstel and Boasson (1999) proved we can take L(1, p, q) = p + q.

Shur and Konovalova (2004) proved we can take $L(2, p, q) = 2p + q - \gcd(p, q)$.

Many results by Blanchet-Sadri and co-authors.

Variations on Fine & Wilf

Fine & Wilf works for equalities. How about inequalities?

For example, suppose $\mathbf{f} = (f_n)_{n \geq 0}$, $\mathbf{g} = (g_n)_{n \geq 0}$ are two periodic sequences of period h and k, respectively. Suppose $f_n \leq g_n$ for a prefix of length D. We want to conclude that $f_n \leq g_n$ everywhere.

Here the correct bound is D = lcm(h, k). Example: take

$$f = (1^{h-1}2)^{\omega}$$

 $g = (2^{k-1}1)^{\omega}$

Then $f_n \le g_n$ for $0 \le n < \text{lcm}(h, k) - 1$, but the inequality fails at n = lcm(h, k) - 1.

So we need some additional hypothesis.

Variations on Fine & Wilf

Theorem. Let $\mathbf{f} = (f_n)_{n \geq 0}$, $\mathbf{g} = (g_n)_{n \geq 0}$ be two periodic sequences of real numbers, of period lengths h and k, respectively, such that

$$\sum_{0 \le i < h} f_i \ge 0 \tag{1}$$

and

$$\sum_{0 \le i \le k} g_j \le 0. \tag{2}$$

Let $d = \gcd(h, k)$.

(a) If

$$f_n \le g_n \quad \text{for } 0 \le n < h + k - d$$
 (3)

then $f_n = g_n$ for all $n \ge 0$.

(b) The conclusion (a) would be false if in the hypothesis h+k-d were replaced by any smaller integer.

Sketch of Proof, Part (a)

Define

$$P(z) = 1 + z + \dots + z^{h-1} = (z^h - 1)/(z - 1);$$

$$Q(z) = 1 + z + \dots + z^{k-1} = (z^k - 1)/(z - 1);$$

$$R(z) = (z^k - 1)/(z^d - 1); \quad d = \gcd(h, k)$$

$$S(z) = (z^h - 1)/(z^d - 1).$$

By hypothesis $P \circ \mathbf{f} \geq 0$, where by \circ we mean take the dot product of the coefficients of P with consecutive overlapping windows of \mathbf{f} . Then $R \circ (P \circ \mathbf{f}) \geq 0$. But then $RP \circ \mathbf{f} \geq 0$.

Sketch of Proof, Part (a)

Similarly, the hypothesis

$$\sum_{0 \le j \le k} g_j \le 0$$

means $Q \circ (-\mathbf{g}) \geq 0$.

Then $SQ \circ (-\mathbf{g}) \geq 0$.

But RP = SQ, so

$$\sum_{0 \le i \le h+k-d} e_i(f_i - g_i) \ge 0.$$
 (4)

where $R(z)P(z) = \sum_{0 \le i < h+k-d} e_i z^i$.

It can be shown that the e_i are strictly positive, so since $f_n \le g_n$ for $0 \le n < h + k - d$, we get $f_n = g_n$ for $0 \le n < h + k - d$.

By the Fine & Wilf theorem, $f_n = g_n$ for $n \ge 0$.

Maximal Counter-Examples

Maximal counter-examples in (b) can be deduced as the *first differences* of the maximal counter-examples to Fine & Wilf (the Sturmian pairs).

For example, for h=5, k=8 we have w=(-1,1,-1,0,1) and x=(0,1,-1,0,1,-1,1,-1). Then

n	0	1	2	3	4	5	6	7	8	9	10	11	12
f_n	-1	1	-1	0	1	-1	1	-1	0	1	-1	1	-1
gn	0	1	-1	0	1	-1	1	-1	0	1	-1	0	1

Another variation

Suppose we have two periodic sequences of integers, say $(f_n)_{n\geq 0}$ of period h and $(g_n)_{n\geq 0}$ of period k. For how many consecutive terms can f_n+g_n strictly decrease?

The answer, once again, is

$$h+k-\gcd(h,k)$$
.

Here is an example achieving h + k - 1 for h = 5, k = 8:

			2										
f(n)	0	-16	8	-8	-24	0	-16	8	-8	-24	0	-16	8
g(n)	0	15	-10	5	20	-5	10	-15	0	15	-10	5	20
f(n) g(n) f + g	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	28

Morphisms

A morphism is a map h from Σ^* to Δ^* such that

$$h(xy) = h(x)h(y)$$

for all words x, y.

It follows that h can be uniquely specified by providing its image on each letter of Σ .

For example, let

$$h(0) = r$$

 $h(1) = em$
 $h(2) = b$
 $h(3) = er$

Then

$$h(011233) = \text{rememberer}.$$

Iterated morphisms

If $\Sigma = \Delta$ we can iterate h. We write

$$h^2(x)$$
 for $h(h(x))$,
 $h^3(x)$ for $h(h(h(x)))$,
etc.

Iterated Morphisms

Iterated morphisms appear in many different areas (often under the name L-systems), including

- models of plant growth in mathematical biology
- computer graphics
- infinite words avoiding certain patterns

An Example from Biology

For example, consider the map arphi defined by

$$\varphi(a_r) = a_l b_r \quad \varphi(a_l) = b_l a_r
\varphi(b_r) = a_r \quad \varphi(b_l) = a_l$$

Iterating φ on a_r gives

$$\varphi^{0}(a_{r}) = a_{r}$$

$$\varphi^{1}(a_{r}) = a_{l}b_{r}$$

$$\varphi^{2}(a_{r}) = b_{l}a_{r}a_{r}$$

$$\varphi^{3}(a_{r}) = a_{l}a_{l}b_{r}a_{l}b_{r}$$

$$\vdots$$

Here the a's represent fat cells and the b's represent thin cells.

This models the development of the blue-green bacterium

Anabaena catenula.

Iterated Morphisms and Computer Graphics

Szilard and Quinton [1979] observed that many interesting pictures, including approximations to fractals, could be coded using iterated morphisms.

A beautiful book by Prusinkiewicz and Lindenmayer provides many examples.

Iterated Morphisms and Computer Graphics

Example: code a picture using "turtle graphics" where R codes a move followed by a right turn, L codes a move followed by a left turn, and S codes a move straight ahead with no turn.

Consider the map g defined as follows:

$$g(R) = RLLSRRLR$$

 $g(L) = RLLSRRLL$
 $g(S) = RLLSRRLS$

By iterating g on RRRR we get

$$g^{0}(R) = RRRR$$

 $g^{1}(R) = RLLSRRLRRLLSRRLRRLLS \cdots$

These words code successive approximations to a von Koch fractal curve.

Figure: Four iterations in the construction of the von Koch curve

Given a morphism $\varphi: \Sigma^* \to \Sigma^*$ for some finite set $\Sigma = \{a_1, a_2, \dots, a_d\}$, we define the *incidence matrix* $M = M(\varphi)$ as follows:

$$M=(m_{i,j})_{1\leq i,j\leq d}$$

where $m_{i,j}$ is the number of occurrences of a_i in $\varphi(a_j)$, i.e., $m_{i,j} = |\varphi(a_j)|_{a_i}$.

Example. Consider the morphism φ defined by

$$\varphi: \mathtt{a} \to \mathtt{a}\mathtt{b}, \qquad \mathtt{b} \to \mathtt{c}\mathtt{c} \qquad \mathtt{c} \to \mathtt{b}\mathtt{b}.$$

Then

$$M(\varphi) = \begin{array}{ccc} a & b & c \\ a & 1 & 0 & 0 \\ b & 1 & 0 & 2 \\ c & 0 & 2 & 0 \end{array}$$

The matrix $M(\varphi)$ is useful because of the following proposition.

Proposition. We have

$$\begin{bmatrix} |\varphi(w)|_{a_1} \\ |\varphi(w)|_{a_2} \\ \vdots \\ |\varphi(w)|_{a_d} \end{bmatrix} = M(\varphi) \begin{bmatrix} |w|_{a_1} \\ |w|_{a_2} \\ \vdots \\ |w|_{a_d} \end{bmatrix}.$$

Proof. We have

$$|\varphi(w)|_{a_i} = \sum_{1 \leq i \leq d} |\varphi(a_j)|_{a_i} |w|_{a_j}.$$

Corollary.

$$\begin{bmatrix} |\varphi^n(w)|_{a_1} \\ |\varphi^n(w)|_{a_2} \\ \vdots \\ |\varphi^n(w)|_{a_d} \end{bmatrix} = (M(\varphi))^n \begin{bmatrix} |w|_{a_1} \\ |w|_{a_2} \\ \vdots \\ |w|_{a_d} \end{bmatrix}$$

Hence we find

Corollary.

$$|\varphi^n(w)| = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix} M(\varphi)^n \begin{vmatrix} |w|_{a_1} \\ |w|_{a_2} \\ \vdots \\ |w|_{a_d} \end{vmatrix}.$$

The Length Sequence of an Iterated Morphism

We can now ask questions about the sequence of lengths

$$|x|, |h(x)|, |h^2(x)|, \dots$$

These questions were very popular in mathematical biology (L-systems) in the 1980's.

For example, here is a classical result:

Theorem. Suppose $h: \Sigma^* \to \Sigma^*$ is a morphism, and suppose there exist a word $w \in \Sigma^*$ and a constant c such that

$$c=|w|=|h(w)|=\cdots=|h^n(w)|,$$

where $n = |\Sigma|$. Then $c = |h^i(w)|$ for all $i \ge 0$.

Proof of the Theorem

It suffices to show $|h^{n+1}(w)| = c$, because then the theorem follows by induction on n.

Let M be the incidence matrix of h. By the Cayley-Hamilton theorem,

$$M^n = c_0 M^0 + \cdots + c_{n-1} M^{n-1}$$

for some constants $c_0, c_1, \ldots, c_{n-1}$.

Define $f_i = |h^i(w)|$ and let

$$V = [|W|_{a_1} |W|_{a_2} \cdots |W|_{a_n}]^T.$$

Then for $0 \le i < n$ we have

$$f_{i+1} - f_i = [1 \ 1 \cdots 1](M^{i+1} - M^i)v$$

= $[1 \ 1 \cdots 1]M^i(M - I)v$
= $[1 \ 1 \cdots 1]M^iv' = 0$,

where v' := (M - I)v.

Proof of the Theorem

Now

$$f_{n+1} - f_n = [1 \ 1 \cdots 1] M^n v'$$

$$= [1 \ 1 \cdots 1] (c_0 + \cdots + c_{n-1} M^{n-1}) v'$$

$$= \sum_{0 \le i < n} c_i [1 \ 1 \cdots 1] M^i v'$$

$$= 0,$$

since each summand is 0.

Hence
$$f_{n+1} = f_n$$
.

Another Question

We might also ask, how long can the sequence of lengths

$$|x|, |h(x)|, |h^2(x)|, \dots$$

strictly decrease?

This question arose naturally in a paper with Wang characterizing the two-sided infinite fixed points of morphisms, i.e., those two-sided infinite words \mathbf{w} such that $h(\mathbf{w}) = \mathbf{w}$.

The Length Sequence of an Iterated Morphism

If Σ has n elements, we can easily find a decreasing sequence of length n. For example, for n=5, define h as follows:

$$h(a) = b$$
 $h(b) = c$
 $h(c) = d$
 $h(d) = e$
 $h(e) = \epsilon$

Then we have

$$h(abcde) = bcde$$

 $h^2(abcde) = cde$
 $h^3(abcde) = de$
 $h^4(abcde) = e$
 $h^5(abcde) = \epsilon$

The Length Sequence of an Iterated Morphism

So

$$\begin{split} |\texttt{abcde}| &> |h(\texttt{abcde})| > |h^2(\texttt{abcde})| > |h^3(\texttt{abcde})| \\ &> |h^4(\texttt{abcde})| > |h^5(\texttt{abcde})| = 0. \end{split}$$

The Decreasing Length Conjecture

Conjecture. If $h: \Sigma^* \to \Sigma^*$, and Σ has n elements, then

$$|w|>|h(w)|>\cdots>|h^k(w)|$$

implies that $k \leq n$.

Another way to state the Decreasing Length Conjecture is the following:

Conjecture. Let M be an $n \times n$ matrix with non-negative integer entries. Let v be a column vector of non-negative integers, and let u be the row vector $[1 \ 1 \ 1 \ \cdots \ 1]$. If

$$uv > uMv > uM^2v > \cdots > uM^kv$$

then $k \leq n$.

Path Algebra

There is a nice correspondence between directed graphs and non-negative matrices, as follows:

If G is a directed graph on n vertices, we can construct a non-negative matrix

$$M(G)=(m_{i,j})_{1\leq i,j\leq n}$$

as follows: let

$$m_{i,j} = egin{cases} 1, & ext{if there is a directed edge from} \ & ext{vertex } i ext{ to vertex } j ext{ in } G; \ 0, & ext{otherwise.} \end{cases}$$

Then the number of distinct walks of length n from vertex i to vertex j in G is just the i,j'th entry of M^n .

Path Algebra

Similarly, given a non-negative $n \times n$ matrix $M = (m_{i,j})_{1 \le i,j \le n}$ we may form its associated graph G(M) on n vertices, where we put a directed edge from vertex i to vertex j iff $m_{i,j} > 0$.

A Useful Lemma

Lemma. Let $r \ge 1$ be an integer, and suppose there exist r sequences of real numbers $\mathbf{b}_i = (b_i(n))_{n \ge 0}, \ 1 \le i \le r$, and r positive integers h_1, h_2, \ldots, h_r , such that the following conditions hold:

(a)
$$b_i(n+h_i) \geq b_i(n)$$
 for $1 \leq i \leq r$ and $n \geq 0$;

(b) There exists an integer $D \ge 1$ such that $\sum_{1 \le i \le r} b_i(n) > \sum_{1 \le i \le r} b_i(n+1)$ for $0 \le n < D$.

Then $D \le h_1 + h_2 + \cdots + h_r - r$.

A Useful Lemma

Remark. When r = 2 and $gcd(h_1, h_2) = 1$, then it can be shown that the bound in this Lemma is tight.

For example, for $h_1 = 5$, $h_2 = 8$ we find

Proof of the Decreasing Length Conjecture

Theorem. Suppose M is an $n \times n$ matrix with non-negative integer entries. If there exist a row vector u and a column vector v with non-negative integer entries such that

$$uv > uMv > uM^2v > \cdots > uM^kv$$
,

then $k \le n$. Also k = n only if $M^n = 0$.

Proof.

- ▶ Let M be the matrix in the statement of the theorem and G its associated graph.
- ▶ Let $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)^T$.
- ▶ Let V be the set of vertices in G.
- ▶ Consider some maximal set of vertices forming disjoint cycles $\{C_1, C_2, ..., C_r\}$ in G.
- ▶ Then V can be written as the disjoint union

$$V = C_1 \cup C_2 \cup \cdots \cup C_r \cup W,$$

where W is the set of vertices which do not lie in any of the disjoint cycles.

- ▶ Any directed walk in G of length |W| or greater must intersect some cycle C_i , for otherwise the walk would contain a cycle disjoint from C_1, C_2, \ldots, C_r .
- ▶ Associate each walk of length $\geq |W|$ with the first cycle C_i it intersects.
- ▶ Define $P_{i,j,l}^s$ to be the number of directed walks of length s from vertex i to vertex j associated with cycle l.
- Also define

$$T_l^s := \sum_{1 \le i,j \le n} u_i v_j P_{ijl}^s.$$

▶ Then for any $s \ge |W|$ we have

$$uM^{s}v = \sum_{1 \le l \le r} T_{l}^{s}. \tag{5}$$

► Then

$$T_I^s \leq T_I^{s+|C_I|},$$

since any walk of length s associated with cycle C_I can be extended to a walk of length $s + |C_I|$ by traversing the cycle C_I once.

From the inequality $uM^sv>uM^{s+1}v$ for $0\leq s\leq k-1$ and Eq. (5) we have

$$\sum_{1 \leq l \leq r} T_l^s > \sum_{1 \leq l \leq r} T_l^{s+1}$$

for $|W| \le s < k$.

- Now for $1 \le i \le r$ and $j \ge 0$ define $b_i(j) = T_i^{|W|+j}$ and $h_i = |C_i|$.
- ▶ Then the conditions of the previous Lemma are satisfied.

We conclude that

$$k-|W| \leq |C_1|+|C_2|+\cdots+|C_r|-r.$$

Moreover

$$|C_1| + |C_2| + \cdots + |C_r| + |W| = |V| = n$$
 and so $k < n - r$.

Finally k = n implies that r = 0, so G is acyclic and $M^n = 0$. So the Decreasing Length Conjecture is proved.

For Further Reading

- 1. N. J. Fine and H. S. Wilf, Uniqueness theorems for periodic functions, *Proc. Amer. Math. Soc.* **16** (1965), 109–114.
- 2. J. Shallit and M.-w. Wang, On two-sided infinite fixed points of morphisms, *Theoret. Comput. Sci.* **270** (2002), 659–675.
- 3. S. Cautis, F. Mignosi, J. Shallit, M.-w. Wang, S. Yazdani, Periodicity, morphisms, and matrices, *Theoret. Comput. Sci.* **295** (2003), 107–121.