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In this talk, I'll be speaking about words.

A word is a (possibly) empty string of symbols chosen from a finite
nonempty alphabet Y.

> * is the set of all finite words.
€ is the empty word.

|x| denotes the length of the word x, and |x|, is the number of
occurrences of the symbol a in x.

k
x¥ denotes the product %xx - - - x.

w¥ is the infinite word www - - - .

If S is a set of words, then S¥ is the set of all infinite words
constructed by concatenating elements of S.



Periodicity: The Lyndon-Schiitzenberger Theorem (1962)

Theorem
Let x,y be nonempty words. Then the following three conditions

are equivalent:

(1) xy = yx;

(2) There exist a nonempty word z and integers k,{ > 0 such that

x = zk andy:ze;

(3) There exist integers i,j > 0 such that x' = yJ.
However, note that in the implication (1) = (2), an even

weaker hypothesis suffices: we only need that xy agrees with yx on
the first |x| + |y| — ged(|x], |y|) symbols.



We say an infinite sequence (f,)n>0 is periodic with period length
h > 1if f, = f,p for all n > 0. The following is a classical “folk
theorem”:

Theorem. If (f;)s>0 is an infinite sequence that is periodic with
period lengths h and k, then it is periodic with period length
ged(h, k).

Proof. By the extended Euclidean algorithm, there exist integers
r,s > 0 such that rh — sk = gcd(h, k). Then we have

fn= n+rh = fn+rh—sk = fn—l—gcd(h,k)

foralln>0. W



The Fine-Wilf Paper

» N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic
functions”

» Proc. Amer. Math. Soc. 16 (1965), 109-114.
» Submitted August 7 1963, published 1965.

» The Fine-Wilf theorem: a version of the periodicity theorem
for finite sequences.

» Answers the question: how long must the finite sequence
(fa)o<n<p be for period lengths h and k to imply a period of
length ged(h, k)?

» D = lcm(h, k) works (of course!), but Fine and Wilf proved
we can take D = h+ k — ged(h, k).
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The Fine-Wilf Theorems

Theorem 1. Let (f;)n>0 and (gn)n>0 be two periodic sequences of
period h and k, respectively. If f, = g, for h+ k — ged(h, k)
consecutive integers n, then f, = g, for all n. The result would be
false if h+ k — ged(h, k) were replaced by any smaller number.

Theorem 2. Let f(x), g(x) be continuous periodic functions of
periods « and f3, respectively, where a/3 = p/q, gcd(p, q) = 1. If
f(x) = g(x) on an interval of length .+ 5 — 3/q, then f = g.
The result would be false if & + 8 — 3/q were replaced by any
smaller number.

Theorem 3. Let f(x), g(x) be continuous periodic functions of
periods « and 3, respectively, where a//3 is irrational. If

f(x) = g(x) on an interval of length o+ 3, then f = g. The
result would be false if o + 3 were replaced by any smaller number.



Lyndon-Schutzenberger meets Fine-Wilf

Theorem
Let w and x be nonempty words. Lety € w{w, x}* and
z € x{w, x}*. Then the following conditions are equivalent:

(a) y and z agree on a prefix of length at least
lw| + |x| — ged(|wl, [x]);
(b) wx = xw;

(c)y=z

Proof.

(c) = (a): Trivial.

(b) = (c): By Lyndon-Schiitzenberger.
We'll prove (a) = (b).



Fine-Wilf: The Proof

Proof.
(a) y € w{w, x}* and z € x{w, x}* agree on a prefix of length at
least |w| + |x| — ged(|w/, |x]) = (b) wx = xw:

We prove the contrapositive. Suppose wx # xw.

Then we prove that y and z differ at a position

< [wl+ |x| — ged([wl, [x]).

The proof is by induction on |w| + |x|.

Case 1: |w| = |x| (which includes the base case |w| + |x| = 2).
Then y and z must disagree at the |w/|'th position or earlier, for

otherwise w = x and wx = xw; since
|w| < |w|+ |x] — ged(|wl], |x|) = |w]|, the result follows.
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Fine-Wilf: The Proof

Case 2: |w| < |x].

If w is not a prefix of x, then y and z disagree on the |w|'th
position or earlier, and again |w| < |w| + |x| — gcd(|w/, |x]).

So w is a proper prefix of x.
Write x = wt for some nonempty word t.

Now any common divisor of |w| and |x| must also divide
|x| — |w| = |t|, and similarly any common divisor of both |w| and
|t| must also divide |w|+ |t| = |x|. So gcd(|w|,|x|) = ged(|w], |t]).
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Fine-Wilf: The Proof

Now wt # tw, for otherwise we have wx = wwt = witw = xw, a
contradiction.

Theny =ww--- and z=wt---. By induction (since

|wt| < |wx|), w—ly and w'z disagree at position

|w| + |t| — ged(|w], [t]) or earlier.

Hence y and z disagree at position

21w + |t] — ged(|wl, £) = w| + x| — ged(|wl, x]) or earlier.
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Finite Sturmian words

The proof also implies a way to get words that optimally “almost
commute”, in the sense that xw and wx should agree on as long a
segment as possible.

Theorem

For each m,n > 1 there exist binary words x, w of length m, n,
respectively, such that xw and wx agree on a prefix of length

m + n — ged(m, n) — 1 but differ at position m 4+ n — ged(m, n).

These words are the finite Sturmian words.

Indeed, our proof even provides an algorithm for computing these
words:

(o 0"11), ifh=k;
S(h, k) =< (x,w), if h > k and S(k, h) = (w,x) ;
(w, wt), if h < kand S(h,k —h) = (w,t) .
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Since 1965

Since 1965, research on Fine-Wilf has been in three areas:

» applications (esp. to string-searching algorithms such as
Knuth-Morris-Pratt)

» generalizations (esp. to more than 2 numbers; partial words)

» variations (e.g., to abelian periods; to inequalities)
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Fine-Wilf and String Searching

The famous linear-time string searching algorithm of
Knuth-Morris-Pratt finds all occurrences of a pattern p in a text t
in time bounded by O(|p| + |t]).

It compares the pattern to a portion of the text beginning at
position i, and, when a mismatch is found, shifts the pattern to
the right based on the position of the mismatch.

The worst-case in their algorithm comes from “almost-periodic”
words, where long sequences of matching characters occur without
a complete match.

It turns out that such words are precisely the maximal
“counterexamples” in the Fine-Wilf theorem (the Sturmian pairs).
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Multiple Periods

Many authors have worked on generalizations to multiple periods:
Castelli, Justin, Mignosi, Restivo, Holub, Simpson & Tijdeman,
Constantinescu & llie, Tijdeman & Zamboni, ...

For example, Castelli, Mignosi, and Restivo (1999) proved that for
three periods p; < po < p3 the appropriate bound is

1
§(p1 + p2 + p3 — 2gcd(p1, p2, p3) + h(p1, p2, p3))

where h is a function related to the Euclidean algorithm on three
inputs.
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Partial words

Partial words: words together with “don’t care” symbols called
“holes”. Holes match each other and all other symbols.

Theorem

There exists a computable function L(h, p, q) such that if a word
w with h holes with periods p and q is of length > L(h, p,q), then
w also has period gcd(p, q).

Berstel and Boasson (1999) proved we can take L(1,p,q) = p+q.

Shur and Konovalova (2004) proved we can take
L(2,p,q) =2p + q — gcd(p, q).

Many results by Blanchet-Sadri and co-authors.
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Variations on Fine & Wilf

Fine & Wilf works for equalities. How about inequalities?

For example, suppose f = (f,)n>0, 8 = (gn)n>0 are two periodic
sequences of period h and k, respectively. Suppose f, < g, for a
prefix of length D. We want to conclude that f, < g, everywhere.

Here the correct bound is D = lcm(h, k). Example: take

— (1h—12)w
g = (21

Then f, < g, for 0 < n < lem(h, k) — 1, but the inequality fails at
n=lem(h, k) — 1.

So we need some additional hypothesis.
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Variations on Fine & Wilf

Theorem. Let f = (f,)n>0, 8 = (gn)n>0 be two periodic sequences
of real numbers, of period lengths h and k, respectively, such that

> fiz0 (1)

0<i<h
and
> g <o (2)
0<j<k
Let d = ged(h, k).
(a) If
fh<g, for0<n<h+k-—d (3)

then f, = g, for all n > 0.

(b) The conclusion (a) would be false if in the hypothesis
h + k — d were replaced by any smaller integer.
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Sketch of Proof, Part (a)

Define
Pz) = 1zt +2" = ("= 1)/(z 1)
Q(z) = 14+z+ 421 =(F-1)/(z-1);
R(z) = (2¥-1)/(z/~1); d=gcd(h,k)
S(z) = (" —1)/(z* - 1),

By hypothesis P o f > 0, where by o we mean take the dot product
of the coefficients of P with consecutive overlapping windows of f.
Then Ro(Pof) > 0. But then RPof > 0.
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Sketch of Proof, Part (a)

Similarly, the hypothesis

> =0

0<j<k
means Q o (—g) > 0.
Then SQ o (—g) > 0.
But RP = SQ, so
> e(fi—g)=0. (4)
0<i<h+k—d

where R(2)P(2) = Yo<ichik—a &7

It can be shown that the ¢; are strictly positive, so since f, < g,
for0<n<h+k—d wegetf,=g,for0<n<h+k—d.

By the Fine & Wilf theorem, f, =g, forn>0. MW
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Maximal Counter-Examples

Maximal counter-examples in (b) can be deduced as the first
differences of the maximal counter-examples to Fine & Wilf (the

Sturmian pairs).

For example, for h =5, k = 8 we have w = (—1,1,-1,0,1) and
x=(0,1,-1,0,1,~1,1,~1). Then

n] 0 1] 2 [3[4[5][6] 7 |8]o[10]11]12
fo |—1|1|-1|0|1|-1]1]-1 “1) 1 -1
gn| 0 |1|—-1[0|[1|-1[1|[—-1|0[1|—-1]0 1

o
—
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Another variation

Suppose we have two periodic sequences of integers, say (f,)n>0 of
period h and (g,)n>0 of period k. For how many consecutive terms
can f, + g, strictly decrease?

The answer, once again, is

h+ k — ged(h, k).

Here is an example achieving h+ k — 1 for h=5k =8:

n ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12
f(n) |0 -—16 8 —8 -—-24 0 -16 8 -8 -—24 0 —-16 8
g(n) |0 15 -10 5 20 -5 10 -15 0 15 -10 5 20
f+g |0 -1 -2 -3 -4 -5 —6 -7 -8 -9 —-10 -—-11 28
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A morphism is a map h from X* to A* such that

h(xy) = h(x)h(y)

for all words x, y.

It follows that h can be uniquely specified by providing its image
on each letter of ¥.

For example, let

h(0) = r
h(l) = em
h(2) = b
h(3) = er

Then
h(011233) = rememberer.
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Iterated morphisms

If X = A we can iterate h. We write
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Iterated Morphisms

Iterated morphisms appear in many different areas (often under the
name L-systems), including

» models of plant growth in mathematical biology
» computer graphics

» infinite words avoiding certain patterns
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An Example from Biology

For example, consider the map ¢ defined by

v(ar) = ab, ¢(a) = bar
o(by) = a (b)) =a

Iterating ¢ on a, gives

¢ (ar) = a
‘Pl(ar) = ayb,
¢*(ar) = basa,
©*(a;) = ajabrab,

Here the a's represent fat cells and the b's represent thin cells.

This models the development of the blue-green bacterium

Anabaena catenula.
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Iterated Morphisms and Computer Graphics

Szilard and Quinton [1979] observed that many interesting
pictures, including approximations to fractals, could be coded using
iterated morphisms.

A beautiful book by Prusinkiewicz and Lindenmayer provides many
examples.
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Iterated Morphisms and Computer Graphics

Example: code a picture using “turtle graphics” where R codes a
move followed by a right turn, L codes a move followed by a left
turn, and S codes a move straight ahead with no turn.

Consider the map g defined as follows:

g(R) = RLLSRRLR
g(L) = RLLSRRLL
g(S) = RLLSRRLS

By iterating g on RRRR we get
g°(R) = RRRR
g'(R) = RLLSRRLRRLLSRRLRRLLS ---

These words code successive approximations to a von Koch fractal

curve.
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Figure : Four iterations in the construction of the von Koch curve
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The Matrix Associated with a Morphism

Given a morphism ¢ : ¥* — ¥* for some finite set
Y ={a1,a,...,aq}, we define the incidence matrix M = M(p) as
follows:
M = (mij<ij<d

where m; j is the number of occurrences of a; in ¢(aj), i.e.,
mij = |(aj)la;-
Example. Consider the morphism ¢ defined by

@ :a— ab, b — cc c — bb.

Then

=

RS

N

Il
o o M
o= ®
N O o o
OoON O O
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The Matrix Associated with a Morphism

The matrix M(¢) is useful because of the following proposition.

Proposition. We have

(W)l |w|ay
|‘P(V.V)|a2 — M(p) ‘W.|a2
lp(w)lag W lag

Proof. We have
[p(w)la = Z (a5, |W|aJ

1<j<d
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The Matrix Associated with a Morphism

Corollary.

0" (W)lay |wlay
0" (W)l wla,

[#"(W)lay Wlay
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The Matrix Associated with a Morphism

Hence we find

Corollary.

"W =[1 1 1 -+ 1]M(g)"
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The Length Sequence of an Iterated Morphism

We can now ask questions about the sequence of lengths
X[, [h(x)], [RP(x)], -

These questions were very popular in mathematical biology
(L-systems) in the 1980’s.

For example, here is a classical result:

Theorem. Suppose h: Z* — X* is a morphism, and suppose
there exist a word w € ¥* and a constant ¢ such that

¢ =w| = [h(w)| = = [h"(w)]

where n = |X|. Then ¢ = |h’(w)| for all i > 0.
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Proof of the Theorem

It suffices to show |h"T1(w)| = ¢, because then the theorem
follows by induction on n.

Let M be the incidence matrix of h. By the Cayley-Hamilton

theorem,
M" = cogM® + -+ + ¢, M"1

for some constants ¢p, ¢1,...,Ch_1.

Define f; = |h'(w)| and let
v=[[wla [wla - [wla,
Then for 0 </ < n we have
fiii—fi = [11---1](M™T = M)y
[11---1]M'(M—I)v
= [11---1M"V =0,
where v/ := (M — I)v.
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Proof of the Theorem

Now

fop1—fn = [11---1]M"V
= [11---1(co+- -+ M)

= > gt MV
0<i<n

= 0,

since each summand is 0.

Hence fop1=f,. ®
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Another Question

We might also ask, how long can the sequence of lengths
2
x|, [hGL (A (X)) -
strictly decrease?
This question arose naturally in a paper with Wang characterizing

the two-sided infinite fixed points of morphisms, i.e., those
two-sided infinite words w such that h(w) = w.
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The Length Sequence of an Iterated Morphism

If ¥ has n elements, we can easily find a decreasing sequence of
length n. For example, for n = 5, define h as follows:

Then we have

bcde
cde
de
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The Length Sequence of an Iterated Morphism

So

labcde| > |h(abcde)| > |h?(abcde)| > |h*(abcde))|
> |h*(abcde)| > |h°(abcde)| = 0.
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The Decreasing Length Conjecture

Conjecture. If h: X* — X*, and X has n elements, then
w| > [h(w)] > - > |H(w)]
implies that k < n.

Another way to state the Decreasing Length Conjecture is the
following:

Conjecture. Let M be an n x n matrix with non-negative integer
entries. Let v be a column vector of non-negative integers, and let
u be the row vector [111 --- 1]. If

uv > uMv > uM?v > - > uMky

then k < n.
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Path Algebra

There is a nice correspondence between directed graphs and
non-negative matrices, as follows:

If G is a directed graph on n vertices, we can construct a
non-negative matrix

M(G) = (m; j)i<ij<n
as follows: let

1, if there is a directed edge from
mjj = vertex i to vertex j in G;

0, otherwise.

Then the number of distinct walks of length n from vertex i to
vertex j in G is just the i, 'th entry of M".
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Path Algebra

Similarly, given a non-negative n x n matrix M = (m; j)i<i j<n we
may form its associated graph G(M) on n vertices, where we put a
directed edge from vertex i to vertex j iff m; ; > 0.
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A Useful Lemma

Lemma. Let r > 1 be an integer, and suppose there exist r
sequences of real numbers b; = (bj(n))n>0, 1 <i<r, and r
positive integers hy, ho, ..., h,, such that the following conditions
hold:

(a) bi(n+ h;) > bi(n) for 1 <i<randn>0;

(b) There exists an integer D > 1 such that
Doi<icr bi(n) >3 i, bi(n+1) for 0 < n < D.

Then D< hi+hy+---+h —r.
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A Useful Lemma

Remark. When r = 2 and gcd(hy, hp) = 1, then it can be shown
that the bound in this Lemma is tight.

For example, for h; =5, h, = 8 we find

n | o 1 2 3 4 5 6 7 8 9 10 11 12

B1(n) 0 —16 8 -8 —24 0 —16 8§ -8 —24 0 —-16 8
by(n) 0 15 —10 5 20 -5 10 —15 0 15 —10 5 20
bi(n)+by(n) |O -1 -2 -3 —4 -5 —6 -7 -8 —9 —10 —11 28
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Proof of the Decreasing Length Conjecture

Theorem. Suppose M is an n X n matrix with non-negative
integer entries. If there exist a row vector u and a column vector v
with non-negative integer entries such that

uv > uMv > uM?v > - > uMKy,

then k < n. Also k = n only if M" = Q.
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Proof.

>

Let M be the matrix in the statement of the theorem and G
its associated graph.

Let u= (uy,to,...,uy) and v = (vi,va,...,vy) .
Let V be the set of vertices in G.

Consider some maximal set of vertices forming disjoint cycles
{Cl, C2, ey Cr} in G.

Then V can be written as the disjoint union
V=Gu GuU. .--U-._C UuWw,

where W is the set of vertices which do not lie in any of the
disjoint cycles.
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Any directed walk in G of length |W/| or greater must
intersect some cycle C;, for otherwise the walk would contain
a cycle disjoint from G, Gy, ..., C,.

Associate each walk of length > |W/| with the first cycle ; it
intersects.

Define P,-Sj, to be the number of directed walks of length s
from vertex i to vertex j associated with cycle /.

Also define
T/ = Z u,-\/jP,-Js-,.

1<ij<n
Then for any s > |W| we have

uM®v = Z T7. (5)

1<I<r
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Then
TP < TISHC/\

since any walk of length s associated with cycle C; can be
extended to a walk of length s + |G| by traversing the cycle
C, once.

From the inequality uM®v > uM*t1y for 0 < s < k — 1 and
Eq. (5) we have

T > T+
/

1<I<r 1<I<r

for |W| <s < k.

Now for 1 < < r and j > 0 define b;(j) = T:‘|W|+j and
hi = |Gl

Then the conditions of the previous Lemma are satisfied.
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» We conclude that

k=W <|G|+]|G|+---+]|C[—r.

» Moreover
|G|+ Gl + -+ |G|+ [W]=|V|=n

and so k< n-—r.

» Finally kK = n implies that r = 0, so G is acyclic and M" = 0.

So the Decreasing Length Conjecture is proved.
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