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Words

In this talk, I’ll be speaking about words.

A word is a (possibly) empty string of symbols chosen from a finite
nonempty alphabet Σ.

Σ∗ is the set of all finite words.

ε is the empty word.

|x | denotes the length of the word x , and |x |a is the number of
occurrences of the symbol a in x .

xk denotes the product

k︷ ︸︸ ︷
xxx · · · x .

wω is the infinite word www · · · .

If S is a set of words, then Sω is the set of all infinite words
constructed by concatenating elements of S .
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Periodicity: The Lyndon-Schützenberger Theorem (1962)

Theorem
Let x , y be nonempty words. Then the following three conditions
are equivalent:

(1) xy = yx;

(2) There exist a nonempty word z and integers k , ` > 0 such that
x = zk and y = z`;

(3) There exist integers i , j > 0 such that x i = y j .

However, note that in the implication (1) =⇒ (2), an even
weaker hypothesis suffices: we only need that xy agrees with yx on
the first |x |+ |y | − gcd(|x |, |y |) symbols.
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Periodicity

We say an infinite sequence (fn)n≥0 is periodic with period length
h ≥ 1 if fn = fn+h for all n ≥ 0. The following is a classical “folk
theorem”:

Theorem. If (fn)n≥0 is an infinite sequence that is periodic with
period lengths h and k, then it is periodic with period length
gcd(h, k).

Proof. By the extended Euclidean algorithm, there exist integers
r , s ≥ 0 such that rh − sk = gcd(h, k). Then we have

fn = fn+rh = fn+rh−sk = fn+gcd(h,k)

for all n ≥ 0.
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The Fine-Wilf Paper

I N. J. Fine and H. S. Wilf, “Uniqueness theorems for periodic
functions”

I Proc. Amer. Math. Soc. 16 (1965), 109–114.

I Submitted August 7 1963, published 1965.

I The Fine-Wilf theorem: a version of the periodicity theorem
for finite sequences.

I Answers the question: how long must the finite sequence
(fn)0≤n<D be for period lengths h and k to imply a period of
length gcd(h, k)?

I D = lcm(h, k) works (of course!), but Fine and Wilf proved
we can take D = h + k − gcd(h, k).
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Citation history

Figure : Citations of Fine-Wilf, according to Web of Science
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More recent citation history

Figure : Citations of Fine-Wilf, according to Web of Science
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The Fine-Wilf Theorems

Theorem 1. Let (fn)n≥0 and (gn)n≥0 be two periodic sequences of
period h and k , respectively. If fn = gn for h + k − gcd(h, k)
consecutive integers n, then fn = gn for all n. The result would be
false if h + k − gcd(h, k) were replaced by any smaller number.

Theorem 2. Let f (x), g(x) be continuous periodic functions of
periods α and β, respectively, where α/β = p/q, gcd(p, q) = 1. If
f (x) = g(x) on an interval of length α + β − β/q, then f = g .
The result would be false if α + β − β/q were replaced by any
smaller number.

Theorem 3. Let f (x), g(x) be continuous periodic functions of
periods α and β, respectively, where α/β is irrational. If
f (x) = g(x) on an interval of length α + β, then f = g . The
result would be false if α+ β were replaced by any smaller number.
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Lyndon-Schützenberger meets Fine-Wilf

Theorem
Let w and x be nonempty words. Let y ∈ w{w , x}ω and
z ∈ x{w , x}ω. Then the following conditions are equivalent:

(a) y and z agree on a prefix of length at least
|w |+ |x | − gcd(|w |, |x |);

(b) wx = xw;

(c) y = z.

Proof.

(c) =⇒ (a): Trivial.

(b) =⇒ (c): By Lyndon-Schützenberger.

We’ll prove (a) =⇒ (b).
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Fine-Wilf: The Proof

Proof.
(a) y ∈ w{w , x}ω and z ∈ x{w , x}ω agree on a prefix of length at
least |w |+ |x | − gcd(|w |, |x |) =⇒ (b) wx = xw :

We prove the contrapositive. Suppose wx 6= xw .

Then we prove that y and z differ at a position
≤ |w |+ |x | − gcd(|w |, |x |).

The proof is by induction on |w |+ |x |.

Case 1: |w | = |x | (which includes the base case |w |+ |x | = 2).
Then y and z must disagree at the |w |’th position or earlier, for
otherwise w = x and wx = xw ; since
|w | ≤ |w |+ |x | − gcd(|w |, |x |) = |w |, the result follows.
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Fine-Wilf: The Proof

Case 2: |w | < |x |.

If w is not a prefix of x , then y and z disagree on the |w |’th
position or earlier, and again |w | ≤ |w |+ |x | − gcd(|w |, |x |).

So w is a proper prefix of x .

Write x = wt for some nonempty word t.

Now any common divisor of |w | and |x | must also divide
|x | − |w | = |t|, and similarly any common divisor of both |w | and
|t| must also divide |w |+ |t| = |x |. So gcd(|w |, |x |) = gcd(|w |, |t|).
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Fine-Wilf: The Proof

Now wt 6= tw , for otherwise we have wx = wwt = wtw = xw , a
contradiction.

Then y = ww · · · and z = wt · · · . By induction (since
|wt| < |wx |), w−1y and w−1z disagree at position
|w |+ |t| − gcd(|w |, |t|) or earlier.

Hence y and z disagree at position
2|w |+ |t| − gcd(|w |, |t|) = |w |+ |x | − gcd(|w |, |x |) or earlier.
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Finite Sturmian words

The proof also implies a way to get words that optimally “almost
commute”, in the sense that xw and wx should agree on as long a
segment as possible.

Theorem
For each m, n ≥ 1 there exist binary words x, w of length m, n,
respectively, such that xw and wx agree on a prefix of length
m + n − gcd(m, n)− 1 but differ at position m + n − gcd(m, n).

These words are the finite Sturmian words.

Indeed, our proof even provides an algorithm for computing these
words:

S(h, k) =


(0h, 0h−11), if h = k ;

(x ,w), if h > k and S(k, h) = (w , x) ;

(w ,wt), if h < k and S(h, k − h) = (w , t) .
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Since 1965

Since 1965, research on Fine-Wilf has been in three areas:

I applications (esp. to string-searching algorithms such as
Knuth-Morris-Pratt)

I generalizations (esp. to more than 2 numbers; partial words)

I variations (e.g., to abelian periods; to inequalities)
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Fine-Wilf and String Searching

The famous linear-time string searching algorithm of
Knuth-Morris-Pratt finds all occurrences of a pattern p in a text t
in time bounded by O(|p|+ |t|).

It compares the pattern to a portion of the text beginning at
position i , and, when a mismatch is found, shifts the pattern to
the right based on the position of the mismatch.

The worst-case in their algorithm comes from “almost-periodic”
words, where long sequences of matching characters occur without
a complete match.

It turns out that such words are precisely the maximal
“counterexamples” in the Fine-Wilf theorem (the Sturmian pairs).
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Multiple Periods

Many authors have worked on generalizations to multiple periods:
Castelli, Justin, Mignosi, Restivo, Holub, Simpson & Tijdeman,
Constantinescu & Ilie, Tijdeman & Zamboni, ...

For example, Castelli, Mignosi, and Restivo (1999) proved that for
three periods p1 ≤ p2 ≤ p3 the appropriate bound is

1

2
(p1 + p2 + p3 − 2 gcd(p1, p2, p3) + h(p1, p2, p3))

where h is a function related to the Euclidean algorithm on three
inputs.
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Partial words

Partial words: words together with “don’t care” symbols called
“holes”. Holes match each other and all other symbols.

Theorem
There exists a computable function L(h, p, q) such that if a word
w with h holes with periods p and q is of length ≥ L(h, p, q), then
w also has period gcd(p, q).

Berstel and Boasson (1999) proved we can take L(1, p, q) = p + q.

Shur and Konovalova (2004) proved we can take
L(2, p, q) = 2p + q − gcd(p, q).

Many results by Blanchet-Sadri and co-authors.
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Variations on Fine & Wilf

Fine & Wilf works for equalities. How about inequalities?

For example, suppose f = (fn)n≥0, g = (gn)n≥0 are two periodic
sequences of period h and k, respectively. Suppose fn ≤ gn for a
prefix of length D. We want to conclude that fn ≤ gn everywhere.

Here the correct bound is D = lcm(h, k). Example: take

f = (1h−12)ω

g = (2k−11)ω

Then fn ≤ gn for 0 ≤ n < lcm(h, k)− 1, but the inequality fails at
n = lcm(h, k)− 1.

So we need some additional hypothesis.
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Variations on Fine & Wilf

Theorem. Let f = (fn)n≥0, g = (gn)n≥0 be two periodic sequences
of real numbers, of period lengths h and k , respectively, such that∑

0≤i<h

fi ≥ 0 (1)

and ∑
0≤j<k

gj ≤ 0. (2)

Let d = gcd(h, k).

(a) If
fn ≤ gn for 0 ≤ n < h + k − d (3)

then fn = gn for all n ≥ 0.

(b) The conclusion (a) would be false if in the hypothesis
h + k − d were replaced by any smaller integer.
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Sketch of Proof, Part (a)

Define

P(z) = 1 + z + · · ·+ zh−1 = (zh − 1)/(z − 1);

Q(z) = 1 + z + · · ·+ zk−1 = (zk − 1)/(z − 1);

R(z) = (zk − 1)/(zd − 1); d = gcd(h, k)

S(z) = (zh − 1)/(zd − 1).

By hypothesis P ◦ f ≥ 0, where by ◦ we mean take the dot product
of the coefficients of P with consecutive overlapping windows of f.
Then R ◦ (P ◦ f) ≥ 0. But then RP ◦ f ≥ 0.
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Sketch of Proof, Part (a)

Similarly, the hypothesis ∑
0≤j<k

gj ≤ 0

means Q ◦ (−g) ≥ 0.
Then SQ ◦ (−g) ≥ 0.
But RP = SQ, so ∑

0≤i<h+k−d
ei (fi − gi ) ≥ 0. (4)

where R(z)P(z) =
∑

0≤i<h+k−d eiz
i .

It can be shown that the ei are strictly positive, so since fn ≤ gn
for 0 ≤ n < h + k − d , we get fn = gn for 0 ≤ n < h + k − d .

By the Fine & Wilf theorem, fn = gn for n ≥ 0.
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Maximal Counter-Examples

Maximal counter-examples in (b) can be deduced as the first
differences of the maximal counter-examples to Fine & Wilf (the
Sturmian pairs).

For example, for h = 5, k = 8 we have w = (−1, 1,−1, 0, 1) and
x = (0, 1,−1, 0, 1,−1, 1,−1). Then

n 0 1 2 3 4 5 6 7 8 9 10 11 12

fn −1 1 −1 0 1 −1 1 −1 0 1 −1 1 −1

gn 0 1 −1 0 1 −1 1 −1 0 1 −1 0 1
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Another variation

Suppose we have two periodic sequences of integers, say (fn)n≥0 of
period h and (gn)n≥0 of period k . For how many consecutive terms
can fn + gn strictly decrease?

The answer, once again, is

h + k − gcd(h, k).

Here is an example achieving h + k − 1 for h = 5, k = 8:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
f (n) 0 −16 8 −8 −24 0 −16 8 −8 −24 0 −16 8
g(n) 0 15 −10 5 20 −5 10 −15 0 15 −10 5 20
f + g 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 28

23 / 51



Morphisms

A morphism is a map h from Σ∗ to ∆∗ such that

h(xy) = h(x)h(y)

for all words x , y .

It follows that h can be uniquely specified by providing its image
on each letter of Σ.

For example, let

h(0) = r

h(1) = em

h(2) = b

h(3) = er

Then
h(011233) = rememberer.
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Iterated morphisms

If Σ = ∆ we can iterate h. We write

h2(x) for h(h(x)),

h3(x) for h(h(h(x))),

etc.
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Iterated Morphisms

Iterated morphisms appear in many different areas (often under the
name L-systems), including

I models of plant growth in mathematical biology

I computer graphics

I infinite words avoiding certain patterns
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An Example from Biology

For example, consider the map ϕ defined by

ϕ(ar ) = albr ϕ(al) = blar

ϕ(br ) = ar ϕ(bl) = al

Iterating ϕ on ar gives

ϕ0(ar ) = ar

ϕ1(ar ) = albr

ϕ2(ar ) = blarar

ϕ3(ar ) = alalbralbr

...

Here the a’s represent fat cells and the b’s represent thin cells.

This models the development of the blue-green bacterium
Anabaena catenula.
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Iterated Morphisms and Computer Graphics

Szilard and Quinton [1979] observed that many interesting
pictures, including approximations to fractals, could be coded using
iterated morphisms.

A beautiful book by Prusinkiewicz and Lindenmayer provides many
examples.
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Iterated Morphisms and Computer Graphics

Example: code a picture using “turtle graphics” where R codes a
move followed by a right turn, L codes a move followed by a left
turn, and S codes a move straight ahead with no turn.

Consider the map g defined as follows:

g(R) = RLLSRRLR

g(L) = RLLSRRLL

g(S) = RLLSRRLS

By iterating g on RRRR we get

g0(R) = RRRR

g1(R) = RLLSRRLRRLLSRRLRRLLS · · ·

These words code successive approximations to a von Koch fractal
curve.
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Figure : Four iterations in the construction of the von Koch curve
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The Matrix Associated with a Morphism

Given a morphism ϕ : Σ∗ → Σ∗ for some finite set
Σ = {a1, a2, . . . , ad}, we define the incidence matrix M = M(ϕ) as
follows:

M = (mi ,j)1≤i ,j≤d

where mi ,j is the number of occurrences of ai in ϕ(aj), i.e.,
mi ,j = |ϕ(aj)|ai .

Example. Consider the morphism ϕ defined by

ϕ : a→ ab, b→ cc c→ bb.

Then

M(ϕ) =


a b c

a 1 0 0
b 1 0 2
c 0 2 0


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The Matrix Associated with a Morphism

The matrix M(ϕ) is useful because of the following proposition.

Proposition. We have
|ϕ(w)|a1
|ϕ(w)|a2

...
|ϕ(w)|ad

 = M(ϕ)


|w |a1
|w |a2

...
|w |ad

 .

Proof. We have

|ϕ(w)|ai =
∑

1≤j≤d
|ϕ(aj)|ai |w |aj .
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The Matrix Associated with a Morphism

Corollary. 
|ϕn(w)|a1
|ϕn(w)|a2

...
|ϕn(w)|ad

 = (M(ϕ))n


|w |a1
|w |a2

...
|w |ad



33 / 51



The Matrix Associated with a Morphism

Hence we find

Corollary.

|ϕn(w)| =
[

1 1 1 · · · 1
]

M(ϕ)n


|w |a1
|w |a2

...
|w |ad

 .
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The Length Sequence of an Iterated Morphism

We can now ask questions about the sequence of lengths

|x |, |h(x)|, |h2(x)|, . . .

These questions were very popular in mathematical biology
(L-systems) in the 1980’s.

For example, here is a classical result:

Theorem. Suppose h : Σ∗ → Σ∗ is a morphism, and suppose
there exist a word w ∈ Σ∗ and a constant c such that

c = |w | = |h(w)| = · · · = |hn(w)|,

where n = |Σ|. Then c = |hi (w)| for all i ≥ 0.
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Proof of the Theorem

It suffices to show |hn+1(w)| = c, because then the theorem
follows by induction on n.

Let M be the incidence matrix of h. By the Cayley-Hamilton
theorem,

Mn = c0M0 + · · ·+ cn−1Mn−1

for some constants c0, c1, . . . , cn−1.

Define fi = |hi (w)| and let

v = [|w |a1 |w |a2 · · · |w |an ]T .

Then for 0 ≤ i < n we have

fi+1 − fi = [1 1 · · · 1](M i+1 −M i )v

= [1 1 · · · 1]M i (M − I )v

= [1 1 · · · 1]M iv ′ = 0,

where v ′ := (M − I )v .
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Proof of the Theorem

Now

fn+1 − fn = [1 1 · · · 1]Mnv ′

= [1 1 · · · 1](c0 + · · ·+ cn−1Mn−1)v ′

=
∑

0≤i<n

ci [1 1 · · · 1]M iv ′

= 0,

since each summand is 0.

Hence fn+1 = fn.
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Another Question

We might also ask, how long can the sequence of lengths

|x |, |h(x)|, |h2(x)|, . . .

strictly decrease?

This question arose naturally in a paper with Wang characterizing
the two-sided infinite fixed points of morphisms, i.e., those
two-sided infinite words w such that h(w) = w.
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The Length Sequence of an Iterated Morphism

If Σ has n elements, we can easily find a decreasing sequence of
length n. For example, for n = 5, define h as follows:

h(a) = b

h(b) = c

h(c) = d

h(d) = e

h(e) = εThen we have

h(abcde) = bcde

h2(abcde) = cde

h3(abcde) = de

h4(abcde) = e

h5(abcde) = ε
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The Length Sequence of an Iterated Morphism

So

|abcde| > |h(abcde)| > |h2(abcde)| > |h3(abcde)|
> |h4(abcde)| > |h5(abcde)| = 0.
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The Decreasing Length Conjecture

Conjecture. If h : Σ∗ → Σ∗, and Σ has n elements, then

|w | > |h(w)| > · · · > |hk(w)|

implies that k ≤ n.

Another way to state the Decreasing Length Conjecture is the
following:

Conjecture. Let M be an n × n matrix with non-negative integer
entries. Let v be a column vector of non-negative integers, and let
u be the row vector [1 1 1 · · · 1]. If

uv > uMv > uM2v > · · · > uMkv

then k ≤ n.
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Path Algebra

There is a nice correspondence between directed graphs and
non-negative matrices, as follows:

If G is a directed graph on n vertices, we can construct a
non-negative matrix

M(G ) = (mi ,j)1≤i ,j≤n

as follows: let

mi ,j =


1, if there is a directed edge from

vertex i to vertex j in G ;

0, otherwise.

Then the number of distinct walks of length n from vertex i to
vertex j in G is just the i , j ’th entry of Mn.
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Path Algebra

Similarly, given a non-negative n × n matrix M = (mi ,j)1≤i ,j≤n we
may form its associated graph G (M) on n vertices, where we put a
directed edge from vertex i to vertex j iff mi ,j > 0.
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A Useful Lemma

Lemma. Let r ≥ 1 be an integer, and suppose there exist r
sequences of real numbers bi = (bi (n))n≥0, 1 ≤ i ≤ r , and r
positive integers h1, h2, . . . , hr , such that the following conditions
hold:

(a) bi (n + hi ) ≥ bi (n) for 1 ≤ i ≤ r and n ≥ 0;

(b) There exists an integer D ≥ 1 such that∑
1≤i≤r bi (n) >

∑
1≤i≤r bi (n + 1) for 0 ≤ n < D.

Then D ≤ h1 + h2 + · · ·+ hr − r .
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A Useful Lemma

Remark. When r = 2 and gcd(h1, h2) = 1, then it can be shown
that the bound in this Lemma is tight.

For example, for h1 = 5, h2 = 8 we find

n 0 1 2 3 4 5 6 7 8 9 10 11 12
b1(n) 0 −16 8 −8 −24 0 −16 8 −8 −24 0 −16 8
b2(n) 0 15 −10 5 20 −5 10 −15 0 15 −10 5 20

b1(n) + b2(n) 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 28
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Proof of the Decreasing Length Conjecture

Theorem. Suppose M is an n × n matrix with non-negative
integer entries. If there exist a row vector u and a column vector v
with non-negative integer entries such that

uv > uMv > uM2v > · · · > uMkv ,

then k ≤ n. Also k = n only if Mn = 0.
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Proof.

I Let M be the matrix in the statement of the theorem and G
its associated graph.

I Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)T .

I Let V be the set of vertices in G .

I Consider some maximal set of vertices forming disjoint cycles
{C1,C2, . . . ,Cr} in G .

I Then V can be written as the disjoint union

V = C1 ∪ C2 ∪ · · · ∪ Cr ∪ W ,

where W is the set of vertices which do not lie in any of the
disjoint cycles.
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I Any directed walk in G of length |W | or greater must
intersect some cycle Ci , for otherwise the walk would contain
a cycle disjoint from C1,C2, . . . ,Cr .

I Associate each walk of length ≥ |W | with the first cycle Ci it
intersects.

I Define Ps
i ,j ,l to be the number of directed walks of length s

from vertex i to vertex j associated with cycle l .

I Also define
T s
l :=

∑
1≤i ,j≤n

uivjP
s
ijl .

I Then for any s ≥ |W | we have

uMsv =
∑

1≤l≤r
T s
l . (5)
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I Then
T s
l ≤ T

s+|Cl |
l ,

since any walk of length s associated with cycle Cl can be
extended to a walk of length s + |Cl | by traversing the cycle
Cl once.

I From the inequality uMsv > uMs+1v for 0 ≤ s ≤ k − 1 and
Eq. (5) we have ∑

1≤l≤r
T s
l >

∑
1≤l≤r

T s+1
l

for |W | ≤ s < k .

I Now for 1 ≤ i ≤ r and j ≥ 0 define bi (j) = T
|W |+j
i and

hi = |Ci |.
I Then the conditions of the previous Lemma are satisfied.
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I We conclude that

k − |W | ≤ |C1|+ |C2|+ · · ·+ |Cr | − r .

I Moreover

|C1|+ |C2|+ · · ·+ |Cr |+ |W | = |V | = n

and so k ≤ n − r .

I Finally k = n implies that r = 0, so G is acyclic and Mn = 0.

So the Decreasing Length Conjecture is proved.
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