
Separating Words With Automata and Grammars

Je�rey Shallit

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1

Canada

shallit@graceland.uwaterloo.ca

http://math.uwaterloo.ca/~shallit

This is joint work with

� J. Currie (University of Winnipeg)

� H. Petersen (University of Stuttgart)

� J. M. Robson (University of Bordeaux)

An electronic copy of these slides can be found at

http://math.uwaterloo.ca/~shallit/talks.html

1

Separating Automata With Words

The following theorem says, roughly speaking, if two

DFA's accept di�erent languages, then there is a \short"

string accepted by one but not the other.

Theorem (Moore, 1956). SupposeM

1

= (Q

1

;�; �

1

; q

1

; F

1

)

and M

2

= (Q

2

;�; �

2

; q

2

; F

2

) are two deterministic �nite

automata such that L(M

1

) 6= L(M

2

). Then there exists

a string

w 2 (L(M

1

)� L(M

2

)) [(L(M

2

)� L(M

1

))

with

jwj � card(Q

1

) + card(Q

2

)� 2:

By card(Q) we mean the cardinality of the set Q.

The bound in Moore's theorem is best possible, even

over a unary alphabet.

2

Separating Grammars with Words

There is no counterpart of Moore's theorem for context-

free grammars. We have

Proposition. There is no computable f : N ! N with

the following property: if G

1

; G

2

are context-free gram-

mars with L(G

1

) 6= L(G

2

) and ds(G

1

); ds(G

2

) � n,

then there exists w with jwj � f(n) such that

w 2 (L(G

1

)� L(G

2

)) [(L(G

2

)� L(G

1

)):

Proof. Assume that such a function exists. Then a Turing

machine could test if L(G

1

) = L(G

2

) by �rst computing

b = f(max(ds(G

1

); ds(G

2

))) and then testing membership

of w in L(G

1

) and L(G

2

) for all jwj � b. If such a w is

found with

w 2 (L(G

1

)� L(G

2

)) [(L(G

2

)� L(G

1

));

then accept; otherwise reject. This would give a decision

procedure for testing equality of context-free grammars,

which is well-known to be recursively unsolvable.

The above proof works if ds denotes any measure of

descriptional complexity of context-free grammars that is

computable and for which there are only a �nite number

of distinct grammars G with ds(G) � n.

3

The Inverse Problem:

Separating Words with Automata

� We are given two distinct wordsw and x with jwj; jxj �

n.

� We want to �nd a \small" DFA that accepts one word

but not the other.

� Such a DFA is called a separating DFA.

� Problem �rst studied by Goral�c��k and Koubek [1986].

� They proved a separating DFA exists with O(log n)

states if jwj 6= jxj. This is best possible.

� They sketched a proof that a separating DFA exists

with o(n) states if jwj = jxj.

� This upper bound was later improved by Robson [1989]

to

O(n

2=5

(log n)

3=5

):

4

The case of unequal lengths

Theorem. If jwj 6= jxj and jwj; jxj � n, then there exists

a DFA with O(log n) states accepting w but not x.

Proof. We need the following lemma:

If i; j are unequal non-negative integers � n and n � 2,

then there exists a prime number p � 4:4 log n with i 6� j

(mod p).

� Let i = jwj mod p.

� Then w 2 (�

p

)

�

�

i

and x 62 (�

p

)

�

�

i

.

� Then we can accept w and reject x by using a \cycle"

automaton with p states, one for each residue class,

with the state corresponding to i made accepting.

5

The case of unequal lengths: lower bound

Theorem. Let N be an integer � 1, and let n =

lcm(1; 2; : : : ; N). Then no DFA with � N states can

separate a

n

from a

2n

.

Proof.

� Suppose M is a DFA that separates a

n

from a

2n

.

� Without loss of generality we may assume M accepts

a

n

(if not, interchange �nal and non�nal states).

� If M has � N states, then by the pumping lemma we

can write a

n

= a

i

a

j

a

n�(i+j)

with 1 � j � N .

� Then a

n+(k�1)j

2 L(M) for all k � 0.

� Now j jn, so we can take k =

n

j

+ 1 to see that a

2n

2

L(M).

The lower bound of
(log n) in the case of unequal

lengths now follows when we observe that the prime num-

ber theorem gives n = e

N(1+o(1))

.

6

The case of equal lengths

As stated above, Robson can separate equal-length strings

of length � n using O(n

2=5

(log n)

3=5

) states. The ideas

behind this proof are quite intricate. However, the idea

behind a slightly weaker bound is easier to state.

Theorem. Any two distinct strings w; x 2 (0+1)

n

can be

separated by a DFA with 2m states, where m = O(

p

n).

Proof Sketch. Given two distinct strings w; x 2 (0+1)

n

,

there exists an integer m = O(

p

n) and an integer y,

0 � y < m such that the total number of 1's at positions

congruent to y (mod m) is of di�erent parity in w and x.

We can now use a mod-m counter combined with a

mod-2 counter (and hence 2m states) to separate w and

x.

7

Separating words with grammars:

De�nition of description size

Let G = (V;�; P; S) be a context-free grammar. We

de�ne the description size of G to be

ds(G) = 1 + card(V) + card(�) +

X

(A;�)2P

(j�j + 3):

Roughly speaking, this is the number of symbols needed

to write down a description of G.

8

Separating words with grammars: unequal lengths

Theorem. Suppose w; x 2 �

�

with jwj; jxj � n and

jwj 6= jxj. Let k = card(�). Then there exists a CFG

G that separates w from x with description size ds(G) =

O(k + log log n).

Proof. As in the case with automata, it su�ces to show

how to generate (�

p

)

�

�

i

where jwj 6� jxj (mod p) and

jwj � i (mod p). We can do this using O(k + log

2

p)

productions using the \binary method".

For example, suppose p = 19, i = 6. Then we can

generate ((0 + 1)

19

)

�

(0 + 1)

6

as follows:

S ! CA

6

C ! � j A

19

C

B ! 0 j 1

A

19

! BA

18

A

18

! A

9

A

9

A

9

! BA

8

A

8

! A

4

A

4

A

4

! A

2

A

2

A

2

! BB

A

6

! A

3

A

3

A

3

! BA

2

9

Separating words with grammars: equal lengths

Theorem. Suppose w; x 2 �

�

with jwj; jxj � n and

jwj = jxj. Let k = card(�). Then there exists a CFG

G that separates w from x with description size ds(G) =

O(k + log n).

Proof.

� If w 6= x and jwj = jxj then there must exist a position

j, 1 � j � n in which a = w

j

6= x

j

= b for a; b 2 �.

� Then w 2 �

j�1

a�

n�j

and x 62 �

j�1

a�

n�j

.

� Using the binary technique as before, we get a grammar

with description size O(k + log n).

10

Lower bounds: separating collections

Let S be a �nite set. We call a �nite collection

U = fU

1

; U

2

; : : : ; U

j

g

of subsets of S a separating collection if for all x; y 2 S

with x 6= y, there exists a set C

xy

2 U such that

card(C

xy

\ fx; yg) = 1:

11

Lower bounds: a useful lemma

Separating Lemma. Suppose S is a �nite set of cardi-

nality m � 1. If U = fU

1

; U

2

; : : : ; U

j

g is a separating

collection for S, then card(U) � dlog

2

me. Furthermore,

this bound is best possible.

Proof. For each x 2 S consider the set of indices of

members of U to which x belongs, that is,

V

x

= fi : x 2 U

i

g:

Then we claim that all the sets V

x

are distinct; for if not

we would have V

x

= V

y

for some y 6= x, and then every

set in U containing x would also contain y. Hence U is

not a separating collection. It follows that 2

card(U)

� m,

and hence card(U) � log

2

m. Since the cardinality of a

set must be an integer, we obtain card(U) � dlog

2

me.

We now show the bound is best possible. Without loss

of generality, we may assume S = f0; 1; 2; : : : ; m � 1g.

Then de�ne

U

i

= fr 2 S : the i'th least signi�cant bit

of the binary expansion of r is 1g

for 0 � i < dlog

2

me, and set U = fU

i

: 0 � i <

dlog

2

meg. It works.

12

Lower bounds

Theorem. Let k = card(�) be �xed. For all n � 1

there exists a pair of distinct words w; x 2 �

n

requiring

a context-free grammar of description size
(

logn

log logn

) to

separate them.

Proof.

� Wlog � = f1; 2; : : : ; kg.

� Let G = (V;�; P; S) be a CFG separating w from x.

� Wlog V = fA

1

; A

2

; : : : ; A

r

g and A

1

= S.

� encodeG as a string s over the alphabet V [� [f#g

as follows: if

P = fB

1

! �

1

; B

2

! �

2

; : : : ; B

t

! �

t

g

then

s = B

1

#�

1

#B

2

#�

2

� � �#B

t

#�

t

#:

� Then

jsj =

X

1�i�t

(j�

i

j + 3) � ds(G);

and each position in s can take on at most j�j+ jV j+

1 � ds(G) di�erent values.

� Suppose ds(G) � d.

13

� There are at most d

d

di�erent strings encoding such

a grammar, and hence at most d

d

di�erent grammars

with description size � d.

� Hence there are at most d

d

di�erent languages gener-

ated by CFG's with description size � d.

� Let U be the collection of all these languages. Now

apply the Separating Lemma.

� There are k

n

distinct words of length n.

� If U is a separating collection for the set of words of

length � n, then we have

d

d

� card(U) � log

2

k

n

:

� It follows that

d log d � log n + log log

2

k:

� Hence for �xed k we have d =
(

logn

log logn

).

14

Lower bound for unequal lengths

Theorem. Let k = card(�) be �xed. For all n � 1 there

exists a pair of words w; x with jwj 6= jxj and jwj; jxj �

n requiring a context-free grammar with description size

(

log log n

log log log n

) to separate them.

Proof.

� Suppose G is a context-free grammar separating w and

x, where jwj 6= jxj.

� Wlog we may assume k = 1.

� There are n + 1 strings in 0

�

of length � n.

� Applying the Separating Lemma as before, we �nd that

d

d

� log

2

(n + 1)

� Hence d =
(

log logn

log log log n

).

15

The Separating Lemma Alone

Can't Give Better Lower Bounds

The lower bound technique using the separating lemma

cannot improve the lower bounds without a signi�cant new

idea. This is because there are d

(d)

distinct languages

generable by context-free grammars with description size

� d | even over a unary alphabet.

Theorem. Any subset S � f�; 0; 0

2

; : : : ; 0

n�2

n

�1

g can be

generated using a grammar with description size O(2

n

).

Hence 2

n�2

n

= (2

n

)

2

n

di�erent languages can be generated

by grammars with description size O(2

n

).

Proof Sketch.

� The idea is to use a \four Russians" style approach.

� Take a subset

S � f�; 0; 0

2

; : : : ; 0

n�2

n

�1

g:

� Then write S as the disjoint union of 2

n

pieces S

j

, each

containing the strings in S of length between jn and

(j + 1)n, for 0 � j < 2

n

.

� Let S

j

= W

j

0

jn

, so that

S

j

� A = f�; 0; 0

2

; : : : ; 0

n�1

g:

16

� Now we need to generate all nonempty subsets of A

and all strings 0

jn

, 0 � j < 2

n

, with O(2

n

) description

size.

� In both cases we can do this incrementally.

� Each new subset is produced by adding one new mem-

ber to a subset produced by a previous variable.

� Each new 0

jn

is produced by concatenating a variable

that produces 0

j

with one that produces 0

j(n�1)

.

� The total description size is O(2

n

).

17

A matching lower bound for unequal lengths

We now prove a matching lower bound of O(log log n)

in the case of unequal lengths.

� We assume that the grammars in the section are in

\binary normal form"; that is, that every production

is of the form A ! BC, or A ! B, or A ! a, or

A! �.

� We can convert every grammar to one in binary normal

form with only a linear increase in description size.

� Fix a grammar G = (V; T; P; S). A word a

i

is called a

pumping word if there exist a variable A and integers

i

1

; i

2

� 0 such that i = i

1

+ i

2

and A

�

=)

G

a

i

1

Aa

i

2

.

� A cutting operation or cut can be performed on a

parse tree T if there exist two occurrences of the same

variable A at nodes N

1

and N

2

, with N

2

a descendant

of N

1

.

� The cut is performed by replacing the subtree rooted

at N

1

by that rooted at N

2

, obtaining a new tree T

0

.

� If the yield of T is w, and the yield of T

0

is w

0

, then

we say w

0

is obtained by cutting from w.

� If w = a

j

and w

0

= a

k

, then a

j�k

is a pumping word.

� A pasting operation is the result of undoing a cut.

18

� We say w is obtained by pasting from w

0

.

� We say a cut is basic if there is no other possible cut,

possibly involving other variables, within the subtree

rooted at N

1

.

� A pumping word is called basic if it is cut out by some

basic cut.

� If a cut is possible, then a basic cut is also possible.

� Assume G = (V; T; P; S) is in binary normal form,

with s := card(V) and m := 2

s

.

Lemma 1. If a parse tree T has yield x with jxj � m,

then it is possible to perform a cut in it.

Proof.

� Like the proof of the pumping lemma.

� Since jxj � 2

s

, we have jxj > 2

s�1

.

� Since every node of the parse tree has outdegree � 2,

there is a path from the root of T to a leaf of length

� s + 1.

� Such a path has � s + 2 nodes, all of which but the

last are labeled with variables.

� Hence some variable occurs twice on this path.

19

Lemma 2. Every basic pumping word is of length < 2m.

Proof.

� Let a

i

be a word with i � 2m, and consider an arbitrary

cut operation which cuts out a

i

.

� Consider the subtree T

1

rooted at node N

1

of the cut.

� The yield of T

1

is of length � 2m.

� Since G is in binary normal form, the node N

1

has at

most two children.

� Thus N

1

has a child which is the root of a subtree T

2

with yield of length � m.

� By Lemma 1, it is possible to perform a cut in T

2

.

� Hence the cut at N

1

is not basic.

� Since we considered an arbitrary cut, a

i

is not cut out

by any basic cut and hence a

i

is not a basic pumping

word.

20

Lemma 3. Given a derivation S

�

=) w, there is a word

w

0

with jw

0

j < 2ms, obtained from w by a sequence of

zero or more basic cuts, such that w

0

has a derivation in

G using all the variables used in the derivation of w.

Proof.

� Let T be the parse tree corresponding to the given

derivation S

�

=) w.

� Consider reducing T to a tree T

00

with yield w

00

by

a sequence of basic cuts c

1

; c

2

; : : : ; c

j

, such that no

further cuts are possible in T

00

.

� By Lemma 1 we have jw

00

j < m.

� Suppose that the basic cuts which removed the last

occurrence of some variable are c

n

1

; : : : ; c

n

k

, in that

order.

� Then we can perform pasting operations to T

0

, revers-

ing the e�ects of cuts c

n

k

; : : : ; c

n

1

, and obtaining a

parse tree T

0

with yield w

0

.

� Then all the other pasting operations corresponding

to the remaining c

i

can be performed in any order to

obtain a tree with yield w.

� Since w has been obtained from w

0

by pasting basic

pumping words, w

0

can be obtained from w by basic

cuts.

21

� Then, since k � s� 1, we have

jw

0

j < jw

00

j + 2m(s� 1) < m + 2m(s� 1) < 2ms:

We now �x one such sequence of basic cuts, and de�ne

r(w) to be the word w

0

obtained from w by this sequence

of basic cuts.

Theorem. Let G = (V; T; P; S) be a context-free gram-

mar in binary normal form with s = card(V). De�ne

m = 2

s

, m

0

= lcm(1; 2; : : : ; 2m), and M = 4m

2

m

0

.

Then G does not separate a

2M

from a

3M

.

Proof. We show a

2M

2 L(G) i� a

3M

2 L(G).

=):

� Suppose w = a

2M

2 L(G), and consider a parse tree

T for a

2M

.

� Since jwj = 2M � m, we can perform a pasting oper-

ation on T , which increases the length of the resulting

yield by i, where a

i

is a basic pumping word.

� By Lemma 2 we have i < 2m, and so i jm

0

.

� But m

0

jM , so we can perform this pasting operation

M

i

times to get a derivation of a

3M

.

22

(=:

� Consider the setB = fa

b

1

; a

b

2

; : : : ; a

b

j

g of all nonempty

basic pumping words, where b

1

� b

2

� � � � � b

j

.

� De�ne g := gcd

x2B

jxj.

� Now if t is an integer linear combination of the b

i

, then

g j t.

� By a well-known result if u � (b

1

=g � 1)(b

j

=g � 1),

then gu is a non-negative integer linear combination of

the b

i

.

� Since b

i

< 2m for 1 � i � j, it follows that if i �

4m

2

, then a

i

2 B

�

i� g j i.

� Now suppose w = a

3M

2 L(G).

� Wlog assume that every variable in V is used in the

derivation of w; for if not, we could replace V by V

0

,

where V

0

consists only of those variables appearing in

the derivation of w.

� Consider the word a

x

= r(a

3M

), where r is the function

de�ned after Lemma 3.

� Since a

x

was obtained from a

3M

by a sequence of basic

cuts, we must have a

3M�x

2 B

�

.

� By Lemma 3, we have x < 2ms < M .

� Hence 3M � x > 2M � x > M � 4m

2

.

23

� Since g jM , it follows that a

2M�x

2 B

�

.

� By Lemma 3, the parse tree for a

x

uses all variables of

V , so we can perform any sequence of paste operations.

� Thus we can perform pasting operations that add 2M�

x a's to a

x

, obtaining a

2M

, and so a

2M

2 L(G).

24

Corollary. Let k = card(�) be �xed. For all n � 1 there

exist words w; x with jwj 6= jxj and jwj; jxj � n requiring

a context-free grammar with description size
(log log n)

to separate them.

Proof.

� Let G be a context-free grammar with description size

d.

� We may convert G to an equivalent grammar G

0

in

binary normal form with description size� �d for some

constant �.

� By the previous theorem, G

0

(and hence G) fails to

separate a

2M

from a

3M

.

� But m = 2

s

� 2

�d

.

� Also, m

0

= lcm(1; 2; : : : ; 2m) � e

2:08m

by a well-

known estimate.

� It follows that 3M � 12 � 2

2�d

� e

2:08�2

�d

, and so d =

(log log n), where n = 3M .

25

Open Problems

1. Improve Robson's bound ofO(n

2=5

(log n)

3=5

) states for

separating same-length words of length � n with a

DFA.

2. Find better bounds for separating with an NFA.

3. Close the gap between the upper bound of O(log n)

and the lower bound of

�

log n

log logn

�

for separation by

grammars.

26

For Further Reading

1. P. Goral�c��k and V. Koubek. On discerning words by

automata. In L. Kott, editor, Proc. 13th Int'l Conf.

on Automata, Languages, and Programming (ICALP),

Vol. 226 of Lecture Notes in Computer Science, pp.

116{122. Springer-Verlag, 1986.

2. J. Gruska. On the size of context-free grammars. Ky-

bernetika 8 (1972), 213{218.

3. E. F. Moore. Gedanken-experiments on sequential ma-

chines. In C. E. Shannon and J. McCarthy, editors,

Automata Studies, Vol. 34 of Annals of Mathemat-

ics Studies, pp. 129{153. Princeton University Press,

Princeton, 1956.

4. J. M. Robson. Separating strings with small automata.

Inform. Process. Lett. 30 (1989), 209{214.

5. J. M. Robson. Separating words with machines and

groups. RAIRO Inform. Th�eor. App. 30 (1996), 81{

86.

An electronic copy of these slides can be found at

http://math.uwaterloo.ca/~shallit/talks.html

27

