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Separating Automata With Words

The following theorem says, roughly speaking, if two

DFA's accept di�erent languages, then there is a \short"

string accepted by one but not the other.

Theorem (Moore, 1956). SupposeM

1

= (Q

1

;�; �

1

; q

1

; F

1

)

and M

2

= (Q

2

;�; �

2

; q

2

; F

2

) are two deterministic �nite

automata such that L(M

1

) 6= L(M

2

). Then there exists

a string

w 2 (L(M

1

)� L(M

2

)) [ (L(M

2

)� L(M

1

))

with

jwj � card(Q

1

) + card(Q

2

)� 2:

By card(Q) we mean the cardinality of the set Q.

The bound in Moore's theorem is best possible, even

over a unary alphabet.

2



Separating Grammars with Words

There is no counterpart of Moore's theorem for context-

free grammars. We have

Proposition. There is no computable f : N ! N with

the following property: if G

1

; G

2

are context-free gram-

mars with L(G

1

) 6= L(G

2

) and ds(G

1

); ds(G

2

) � n,

then there exists w with jwj � f(n) such that

w 2 (L(G

1

)� L(G

2

)) [ (L(G

2

)� L(G

1

)):

Proof. Assume that such a function exists. Then a Turing

machine could test if L(G

1

) = L(G

2

) by �rst computing

b = f(max(ds(G

1

); ds(G

2

))) and then testing membership

of w in L(G

1

) and L(G

2

) for all jwj � b. If such a w is

found with

w 2 (L(G

1

)� L(G

2

)) [ (L(G

2

)� L(G

1

));

then accept; otherwise reject. This would give a decision

procedure for testing equality of context-free grammars,

which is well-known to be recursively unsolvable.

The above proof works if ds denotes any measure of

descriptional complexity of context-free grammars that is

computable and for which there are only a �nite number

of distinct grammars G with ds(G) � n.
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The Inverse Problem:

Separating Words with Automata

� We are given two distinct wordsw and x with jwj; jxj �

n.

� We want to �nd a \small" DFA that accepts one word

but not the other.

� Such a DFA is called a separating DFA.

� Problem �rst studied by Goral�c��k and Koubek [1986].

� They proved a separating DFA exists with O(log n)

states if jwj 6= jxj. This is best possible.

� They sketched a proof that a separating DFA exists

with o(n) states if jwj = jxj.

� This upper bound was later improved by Robson [1989]

to

O(n

2=5

(log n)

3=5

):
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The case of unequal lengths

Theorem. If jwj 6= jxj and jwj; jxj � n, then there exists

a DFA with O(log n) states accepting w but not x.

Proof. We need the following lemma:

If i; j are unequal non-negative integers � n and n � 2,

then there exists a prime number p � 4:4 log n with i 6� j

(mod p).

� Let i = jwj mod p.

� Then w 2 (�

p

)

�

�

i

and x 62 (�

p

)

�

�

i

.

� Then we can accept w and reject x by using a \cycle"

automaton with p states, one for each residue class,

with the state corresponding to i made accepting.
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The case of unequal lengths: lower bound

Theorem. Let N be an integer � 1, and let n =

lcm(1; 2; : : : ; N). Then no DFA with � N states can

separate a

n

from a

2n

.

Proof.

� Suppose M is a DFA that separates a

n

from a

2n

.

� Without loss of generality we may assume M accepts

a

n

(if not, interchange �nal and non�nal states).

� If M has � N states, then by the pumping lemma we

can write a

n

= a

i

a

j

a

n�(i+j)

with 1 � j � N .

� Then a

n+(k�1)j

2 L(M) for all k � 0.

� Now j jn, so we can take k =

n

j

+ 1 to see that a

2n

2

L(M).

The lower bound of 
(log n) in the case of unequal

lengths now follows when we observe that the prime num-

ber theorem gives n = e

N(1+o(1))

.
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The case of equal lengths

As stated above, Robson can separate equal-length strings

of length � n using O(n

2=5

(log n)

3=5

) states. The ideas

behind this proof are quite intricate. However, the idea

behind a slightly weaker bound is easier to state.

Theorem. Any two distinct strings w; x 2 (0+1)

n

can be

separated by a DFA with 2m states, where m = O(

p

n).

Proof Sketch. Given two distinct strings w; x 2 (0+1)

n

,

there exists an integer m = O(

p

n) and an integer y,

0 � y < m such that the total number of 1's at positions

congruent to y (mod m) is of di�erent parity in w and x.

We can now use a mod-m counter combined with a

mod-2 counter (and hence 2m states) to separate w and

x.
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Separating words with grammars:

De�nition of description size

Let G = (V;�; P; S) be a context-free grammar. We

de�ne the description size of G to be

ds(G) = 1 + card(V ) + card(�) +

X

(A;�)2P

(j�j + 3):

Roughly speaking, this is the number of symbols needed

to write down a description of G.
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Separating words with grammars: unequal lengths

Theorem. Suppose w; x 2 �

�

with jwj; jxj � n and

jwj 6= jxj. Let k = card(�). Then there exists a CFG

G that separates w from x with description size ds(G) =

O(k + log log n).

Proof. As in the case with automata, it su�ces to show

how to generate (�

p

)

�

�

i

where jwj 6� jxj (mod p) and

jwj � i (mod p). We can do this using O(k + log

2

p)

productions using the \binary method".

For example, suppose p = 19, i = 6. Then we can

generate ((0 + 1)

19

)

�

(0 + 1)

6

as follows:

S ! CA

6

C ! � j A

19

C

B ! 0 j 1

A

19

! BA

18

A

18

! A

9

A

9

A

9

! BA

8

A

8

! A

4

A

4

A

4

! A

2

A

2

A

2

! BB

A

6

! A

3

A

3

A

3

! BA

2
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Separating words with grammars: equal lengths

Theorem. Suppose w; x 2 �

�

with jwj; jxj � n and

jwj = jxj. Let k = card(�). Then there exists a CFG

G that separates w from x with description size ds(G) =

O(k + log n).

Proof.

� If w 6= x and jwj = jxj then there must exist a position

j, 1 � j � n in which a = w

j

6= x

j

= b for a; b 2 �.

� Then w 2 �

j�1

a�

n�j

and x 62 �

j�1

a�

n�j

.

� Using the binary technique as before, we get a grammar

with description size O(k + log n).
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Lower bounds: separating collections

Let S be a �nite set. We call a �nite collection

U = fU

1

; U

2

; : : : ; U

j

g

of subsets of S a separating collection if for all x; y 2 S

with x 6= y, there exists a set C

xy

2 U such that

card(C

xy

\ fx; yg) = 1:
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Lower bounds: a useful lemma

Separating Lemma. Suppose S is a �nite set of cardi-

nality m � 1. If U = fU

1

; U

2

; : : : ; U

j

g is a separating

collection for S, then card(U) � dlog

2

me. Furthermore,

this bound is best possible.

Proof. For each x 2 S consider the set of indices of

members of U to which x belongs, that is,

V

x

= fi : x 2 U

i

g:

Then we claim that all the sets V

x

are distinct; for if not

we would have V

x

= V

y

for some y 6= x, and then every

set in U containing x would also contain y. Hence U is

not a separating collection. It follows that 2

card(U)

� m,

and hence card(U) � log

2

m. Since the cardinality of a

set must be an integer, we obtain card(U) � dlog

2

me.

We now show the bound is best possible. Without loss

of generality, we may assume S = f0; 1; 2; : : : ; m � 1g.

Then de�ne

U

i

= fr 2 S : the i'th least signi�cant bit

of the binary expansion of r is 1g

for 0 � i < dlog

2

me, and set U = fU

i

: 0 � i <

dlog

2

meg. It works.
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Lower bounds

Theorem. Let k = card(�) be �xed. For all n � 1

there exists a pair of distinct words w; x 2 �

n

requiring

a context-free grammar of description size 
(

logn

log logn

) to

separate them.

Proof.

� Wlog � = f1; 2; : : : ; kg.

� Let G = (V;�; P; S) be a CFG separating w from x.

� Wlog V = fA

1

; A

2

; : : : ; A

r

g and A

1

= S.

� encodeG as a string s over the alphabet V [ � [ f#g

as follows: if

P = fB

1

! �

1

; B

2

! �

2

; : : : ; B

t

! �

t

g

then

s = B

1

#�

1

#B

2

#�

2

# � � �#B

t

#�

t

#:

� Then

jsj =

X

1�i�t

(j�

i

j + 3) � ds(G);

and each position in s can take on at most j�j+ jV j+

1 � ds(G) di�erent values.

� Suppose ds(G) � d.
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� There are at most d

d

di�erent strings encoding such

a grammar, and hence at most d

d

di�erent grammars

with description size � d.

� Hence there are at most d

d

di�erent languages gener-

ated by CFG's with description size � d.

� Let U be the collection of all these languages. Now

apply the Separating Lemma.

� There are k

n

distinct words of length n.

� If U is a separating collection for the set of words of

length � n, then we have

d

d

� card(U) � log

2

k

n

:

� It follows that

d log d � log n + log log

2

k:

� Hence for �xed k we have d = 
(

logn

log logn

).
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Lower bound for unequal lengths

Theorem. Let k = card(�) be �xed. For all n � 1 there

exists a pair of words w; x with jwj 6= jxj and jwj; jxj �

n requiring a context-free grammar with description size


(

log log n

log log log n

) to separate them.

Proof.

� Suppose G is a context-free grammar separating w and

x, where jwj 6= jxj.

� Wlog we may assume k = 1.

� There are n + 1 strings in 0

�

of length � n.

� Applying the Separating Lemma as before, we �nd that

d

d

� log

2

(n + 1)

� Hence d = 
(

log logn

log log log n

).
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The Separating Lemma Alone

Can't Give Better Lower Bounds

The lower bound technique using the separating lemma

cannot improve the lower bounds without a signi�cant new

idea. This is because there are d


(d)

distinct languages

generable by context-free grammars with description size

� d | even over a unary alphabet.

Theorem. Any subset S � f�; 0; 0

2

; : : : ; 0

n�2

n

�1

g can be

generated using a grammar with description size O(2

n

).

Hence 2

n�2

n

= (2

n

)

2

n

di�erent languages can be generated

by grammars with description size O(2

n

).

Proof Sketch.

� The idea is to use a \four Russians" style approach.

� Take a subset

S � f�; 0; 0

2

; : : : ; 0

n�2

n

�1

g:

� Then write S as the disjoint union of 2

n

pieces S

j

, each

containing the strings in S of length between jn and

(j + 1)n, for 0 � j < 2

n

.

� Let S

j

= W

j

0

jn

, so that

S

j

� A = f�; 0; 0

2

; : : : ; 0

n�1

g:
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� Now we need to generate all nonempty subsets of A

and all strings 0

jn

, 0 � j < 2

n

, with O(2

n

) description

size.

� In both cases we can do this incrementally.

� Each new subset is produced by adding one new mem-

ber to a subset produced by a previous variable.

� Each new 0

jn

is produced by concatenating a variable

that produces 0

j

with one that produces 0

j(n�1)

.

� The total description size is O(2

n

).
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A matching lower bound for unequal lengths

We now prove a matching lower bound of O(log log n)

in the case of unequal lengths.

� We assume that the grammars in the section are in

\binary normal form"; that is, that every production

is of the form A ! BC, or A ! B, or A ! a, or

A! �.

� We can convert every grammar to one in binary normal

form with only a linear increase in description size.

� Fix a grammar G = (V; T; P; S). A word a

i

is called a

pumping word if there exist a variable A and integers

i

1

; i

2

� 0 such that i = i

1

+ i

2

and A

�

=)

G

a

i

1

Aa

i

2

.

� A cutting operation or cut can be performed on a

parse tree T if there exist two occurrences of the same

variable A at nodes N

1

and N

2

, with N

2

a descendant

of N

1

.

� The cut is performed by replacing the subtree rooted

at N

1

by that rooted at N

2

, obtaining a new tree T

0

.

� If the yield of T is w, and the yield of T

0

is w

0

, then

we say w

0

is obtained by cutting from w.

� If w = a

j

and w

0

= a

k

, then a

j�k

is a pumping word.

� A pasting operation is the result of undoing a cut.
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� We say w is obtained by pasting from w

0

.

� We say a cut is basic if there is no other possible cut,

possibly involving other variables, within the subtree

rooted at N

1

.

� A pumping word is called basic if it is cut out by some

basic cut.

� If a cut is possible, then a basic cut is also possible.

� Assume G = (V; T; P; S) is in binary normal form,

with s := card(V ) and m := 2

s

.

Lemma 1. If a parse tree T has yield x with jxj � m,

then it is possible to perform a cut in it.

Proof.

� Like the proof of the pumping lemma.

� Since jxj � 2

s

, we have jxj > 2

s�1

.

� Since every node of the parse tree has outdegree � 2,

there is a path from the root of T to a leaf of length

� s + 1.

� Such a path has � s + 2 nodes, all of which but the

last are labeled with variables.

� Hence some variable occurs twice on this path.
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Lemma 2. Every basic pumping word is of length < 2m.

Proof.

� Let a

i

be a word with i � 2m, and consider an arbitrary

cut operation which cuts out a

i

.

� Consider the subtree T

1

rooted at node N

1

of the cut.

� The yield of T

1

is of length � 2m.

� Since G is in binary normal form, the node N

1

has at

most two children.

� Thus N

1

has a child which is the root of a subtree T

2

with yield of length � m.

� By Lemma 1, it is possible to perform a cut in T

2

.

� Hence the cut at N

1

is not basic.

� Since we considered an arbitrary cut, a

i

is not cut out

by any basic cut and hence a

i

is not a basic pumping

word.
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Lemma 3. Given a derivation S

�

=) w, there is a word

w

0

with jw

0

j < 2ms, obtained from w by a sequence of

zero or more basic cuts, such that w

0

has a derivation in

G using all the variables used in the derivation of w.

Proof.

� Let T be the parse tree corresponding to the given

derivation S

�

=) w.

� Consider reducing T to a tree T

00

with yield w

00

by

a sequence of basic cuts c

1

; c

2

; : : : ; c

j

, such that no

further cuts are possible in T

00

.

� By Lemma 1 we have jw

00

j < m.

� Suppose that the basic cuts which removed the last

occurrence of some variable are c

n

1

; : : : ; c

n

k

, in that

order.

� Then we can perform pasting operations to T

0

, revers-

ing the e�ects of cuts c

n

k

; : : : ; c

n

1

, and obtaining a

parse tree T

0

with yield w

0

.

� Then all the other pasting operations corresponding

to the remaining c

i

can be performed in any order to

obtain a tree with yield w.

� Since w has been obtained from w

0

by pasting basic

pumping words, w

0

can be obtained from w by basic

cuts.
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� Then, since k � s� 1, we have

jw

0

j < jw

00

j + 2m(s� 1) < m + 2m(s� 1) < 2ms:

We now �x one such sequence of basic cuts, and de�ne

r(w) to be the word w

0

obtained from w by this sequence

of basic cuts.

Theorem. Let G = (V; T; P; S) be a context-free gram-

mar in binary normal form with s = card(V ). De�ne

m = 2

s

, m

0

= lcm(1; 2; : : : ; 2m), and M = 4m

2

m

0

.

Then G does not separate a

2M

from a

3M

.

Proof. We show a

2M

2 L(G) i� a

3M

2 L(G).

=):

� Suppose w = a

2M

2 L(G), and consider a parse tree

T for a

2M

.

� Since jwj = 2M � m, we can perform a pasting oper-

ation on T , which increases the length of the resulting

yield by i, where a

i

is a basic pumping word.

� By Lemma 2 we have i < 2m, and so i jm

0

.

� But m

0

jM , so we can perform this pasting operation

M

i

times to get a derivation of a

3M

.
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(=:

� Consider the setB = fa

b

1

; a

b

2

; : : : ; a

b

j

g of all nonempty

basic pumping words, where b

1

� b

2

� � � � � b

j

.

� De�ne g := gcd

x2B

jxj.

� Now if t is an integer linear combination of the b

i

, then

g j t.

� By a well-known result if u � (b

1

=g � 1)(b

j

=g � 1),

then gu is a non-negative integer linear combination of

the b

i

.

� Since b

i

< 2m for 1 � i � j, it follows that if i �

4m

2

, then a

i

2 B

�

i� g j i.

� Now suppose w = a

3M

2 L(G).

� Wlog assume that every variable in V is used in the

derivation of w; for if not, we could replace V by V

0

,

where V

0

consists only of those variables appearing in

the derivation of w.

� Consider the word a

x

= r(a

3M

), where r is the function

de�ned after Lemma 3.

� Since a

x

was obtained from a

3M

by a sequence of basic

cuts, we must have a

3M�x

2 B

�

.

� By Lemma 3, we have x < 2ms < M .

� Hence 3M � x > 2M � x > M � 4m

2

.
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� Since g jM , it follows that a

2M�x

2 B

�

.

� By Lemma 3, the parse tree for a

x

uses all variables of

V , so we can perform any sequence of paste operations.

� Thus we can perform pasting operations that add 2M�

x a's to a

x

, obtaining a

2M

, and so a

2M

2 L(G).
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Corollary. Let k = card(�) be �xed. For all n � 1 there

exist words w; x with jwj 6= jxj and jwj; jxj � n requiring

a context-free grammar with description size 
(log log n)

to separate them.

Proof.

� Let G be a context-free grammar with description size

d.

� We may convert G to an equivalent grammar G

0

in

binary normal form with description size� �d for some

constant �.

� By the previous theorem, G

0

(and hence G) fails to

separate a

2M

from a

3M

.

� But m = 2

s

� 2

�d

.

� Also, m

0

= lcm(1; 2; : : : ; 2m) � e

2:08m

by a well-

known estimate.

� It follows that 3M � 12 � 2

2�d

� e

2:08�2

�d

, and so d =


(log log n), where n = 3M .
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Open Problems

1. Improve Robson's bound ofO(n

2=5

(log n)

3=5

) states for

separating same-length words of length � n with a

DFA.

2. Find better bounds for separating with an NFA.

3. Close the gap between the upper bound of O(log n)

and the lower bound of 


�

log n

log logn

�

for separation by

grammars.
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