The Separating Words Problem

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~shallit

An Advertisement

Published by Cambridge University Press! Order your copy today!

The Simplest Computational Problem?

Imagine a stupid computing device with very limited powers...

What is the simplest computational problem you could ask it to solve?

The Simplest Computational Problem?

- not the addition of two numbers
- not sorting
- it's telling two inputs apart distinguishing them

Our Computational Model: the DFA

Our computational model is the **deterministic finite automaton**, or DFA.

It consists of

- Q, a finite nonempty set of states
- $ightharpoonup q_0$, an initial state
- F, a set of final states
- lacktriangleright δ , a transition function that tells you how inputs move the machine from one state to another

An example of a DFA

- initial state has sourceless incoming arrow
- final states are denoted by double circles
- a word is accepted if it labels a path from the initial state to a final state; otherwise it is rejected

DFA versus NFA

An automaton is **deterministic** if, for each state and input symbol, there is only one possible state that can be entered next. We call this a DFA.

Otherwise it is **nondeterministic**. We call this an NFA.

Example of an NFA

This NFA accepts all words having a 1 in a position that is 4 spots from the right end.

Motivation

We want to know how many states suffice to tell one length-n input from another.

On average, it's easy — but how about in the worst case?

Motivation: a classical problem from the early days of automata theory:

Given two automata, how big a word do we need to distinguish them?

Motivation

More precisely, given two DFA's M_1 and M_2 , with m and n states, respectively, with $L(M_1) \neq L(M_2)$, what is a good bound on the length of the shortest word accepted by one but not the other?

- ▶ The cross-product construction gives an upper bound of mn 1 (make a DFA for $L(M_1) \cap \overline{L(M_2)}$)
- ▶ But an upper bound of m + n 2 follows from the usual algorithm for minimizing automata
- ► Furthermore, this bound is best possible.
- For NFA's the bound is exponential in m and n

Separating Words with Automata

Our problem is the inverse problem: given two distinct *words*, how big an automaton do we need to separate them?

That is, given two words w and x of length $\leq n$, what is the smallest number of states in any DFA that accepts one word, but not the other?

Call this number sep(w, x).

Separation

A machine M separates the word w from the word x if M accepts w and rejects x, or vice versa.

For example, the machine below separates 0010 from 1000.

However, no 2-state DFA can separate these two words. So sep(1000,0010)=3.

Separating Words of Different Length

Easy case: if the two words are of different lengths, both $\leq n$, we can separate them with a DFA of size $O(\log n)$.

For by the prime number theorem, if $k \neq m$, and $k, m \leq n$ then there is a prime $p = O(\log n)$ such that $k \not\equiv m \pmod p$.

So we can accept one word and reject the other by using a cycle mod p, and the appropriate residue class.

Separating Words of Different Length

Example: suppose |w| = 22 and |x| = 52. Then $|w| \equiv 1 \pmod{7}$ and $|x| \equiv 3 \pmod{7}$. So we can accept w and reject x with a DFA that uses a cycle of size 7, as follows:

Separating Words with Different Prefix

For the remainder of the talk, then, we only consider the case where |w| = |x|.

We can separate w from x using d+O(1) states if they differ in some position d from the start, since we can build a DFA to accept words with a particular prefix of length d.

Separating Words with Different Prefix

For example, to separate

01010011101100110000

from

010011111010111100101

we can build a DFA to recognize words that begin with 0101:

(Transitions to a dead state omitted.)

Separating Words With Different Suffix

Similarly, we can separate w from x using d + O(1) states if they differ in some position d from the end.

The idea is to build a pattern-recognizer for the suffix of w of length d, ending in an accepting state if the suffix is recognized.

Separating Words With Different Suffix

For example, to separate

11111010011001010101

from

11111011010010101101

we can build a DFA to recognize those words that end in 0101:

Separating Words With Differing Number of 1's

Can we separate two words having differing numbers of 1's?

Yes. By the prime number theorem, if |w|, |x| = n, and w and x have k and m 1's, respectively, then there is a prime $p = O(\log n)$ such that $k \not\equiv m \pmod n$.

So we can separate w from x just by counting the number of 1's, modulo p.

Separating Words with Differing Number of Patterns

Similarly, we can separate two length-n words w, x using $O(d \log n)$ states if there is a pattern of length d occurring a differing number of times in w and x.

Separation of Very Similar Words

The *Hamming distance* between w and x is the number of positions where they differ.

If the Hamming distance between w and x is small, say < d, we can separate two length-n words using $O(d \log n)$ states.

The idea is as follows:

Let i_1, i_2, \ldots, i_d be the positions where x and y differ.

Separation of Very Similar Words

Now consider $N = (i_2 - i_1)(i_3 - i_1) \cdots (i_d - i_1)$. Then $N < n^{d-1}$.

So N is not divisible by some prime $p = O(\log N) = O(d \log n)$.

So $i_j \not\equiv i_1 \pmod{p}$ for $2 \leq j \leq d$.

Now count the number, modulo 2, of 1's occurring in positions congruent to $i_1 \pmod{p}$.

These positions do not include any of i_2, i_2, \dots, i_d , by the way we chose p, and the two words agree in all other positions.

So x contains exactly one more 1 in these positions than w does, and hence we can separate the two words using $O(d \log n)$ states.

The Separation Number

Let

$$S(n) := \max_{\substack{|w|=|x|=n\\w\neq x}} \operatorname{sep}(w,x),$$

the smallest number of states required to separate any two words of length n.

- ▶ The separation problem was first studied by Goralcik and Koubek 1986, who proved S(n) = o(n).
- In 1989 Robson obtained the best known upper bound: $S(n) = O(n^{2/5}(\log n)^{3/5}).$

Dependence on Alphabet Size

For equal-length words, S(n) doesn't depend on alphabet size (provided it is at least 2).

To see this, let $S_k(n)$ be the maximum number of states needed to separate two length-n words over an alphabet of size k.

Suppose x, y are distinct words of length n over an alphabet Σ of size k > 2.

Then x and y must differ in some position, say for $a \neq b$,

$$x = x' a x''$$

$$y = y' b y''.$$

Dependence on Alphabet Size

$$x = x' a x''$$

$$y = y' b y''.$$

Map a to 0, b to 1 and assign all other letters arbitrarily to either 0 or 1.

This gives two new distinct binary words X and Y of the same length.

If X and Y can be separated by an m-state DFA, then so can x and y, by renaming transitions to be over Σ instead of 0 and 1.

Thus $S_k(n) \leq S_2(n)$. But clearly $S_2(n) \leq S_k(n)$, since every binary word can be considered as a word over a larger alphabet. So $S_k(n) = S_2(n)$.

Robson's Upper Bound

Robson's upper bound of $O(n^{2/5}(\log n)^{3/5})$ is hard to explain. But he also proved:

Theorem (Robson, 1996). We can separate words by computing the parity of the number of 1's occurring in positions congruent to $i \pmod{j}$, for $i, j = O(\sqrt{n})$.

This gives the bound $S(n) = O(n^{1/2})$.

Open Problem 1: Improve Robson's bound of $O(n^{2/5}(\log n)^{3/5})$ on S(n).

Lower Bounds

- ▶ Claim: $S(n) = \Omega(\log n)$.
- ▶ To see this, consider the two words

$$0^{t-1+\mathrm{lcm}(1,2,\dots,t)}1^{t-1}\quad\text{and}\quad 0^{t-1}1^{t-1+\mathrm{lcm}(1,2,\dots,t)}.$$

Proof in pictures:

Lower Bounds

So no *t*-state machine can distinguish these words.

Now $lcm(1, 2, ..., t) = e^{t+o(t)}$ by the prime number theorem, and the lower bound $S(n) = \Omega(\log n)$ follows.

Separating Words With Automata

Some data:

n	S(n)	n	S(n)
1	2	10	4
1 2 3	2 2 2	11	4
	2	12	4
4	3	13	4
4 5 6	3 3 3	14	4
	3	15	4
7 8	3	16	4
	3 3 3	17	4
9	3	18	5

Separating a Word from Its Reverse

Maybe it's easier to separate a word w from its reverse w^R , than the general case of two words.

However, no better upper bound is known.

We still have a lower bound of $\Omega(\log n)$ for this problem:

Consider separating

$$w = 0^{t-1} 10^{t-1 + \operatorname{lcm}(1, 2, \dots t)}$$

from

$$w^R = 0^{t-1 + lcm(1,2,...t)} 10^{t-1}.$$

Then no DFA with $\leq t$ states can separate w from w^R .

Reverses of Two Words

- $Must sep(w^R, x^R) = sep(w, x)?$
- ▶ No, for w = 1000, x = 0010, we have

$$sep(w,x)=3$$

but

$$\operatorname{sep}(w^R, x^R) = 2.$$

Open Problem 2: Is

$$\left| \operatorname{sep}(x,w) - \operatorname{sep}(x^R,w^R) \right|$$

unbounded?

Separating a Word from Its Conjugates

- ► Two words w, w' are conjugates if one is a cyclic shift of the other.
- For example, the English words enlist and listen are conjugates
- Is the separating words problem any easier if restricted to pairs of conjugates?
- ▶ There is still a lower bound of $\Omega(\log n)$ for this problem, as given by

$$w = 0^{t-1} 10^{t-1 + \operatorname{lcm}(1, 2, \dots t)} 1$$

and

$$w' = 0^{t-1 + lcm(1,2,...t)} 10^{t-1} 1.$$

Separation by NFA's

- ▶ We can define nsep(w, x) in analogy with sep: the number of states in the smallest NFA accepting w but rejecting x.
- Now there is an asymmetry in the inputs: nsep(w, x) need not equal nsep(x, w).
- ▶ For example, the following 2-state NFA accepts w = 000100 and rejects x = 010000, so $nsep(w, x) \le 2$.

▶ But there is no 2-state NFA accepting x and rejecting w, so $nsep(x, w) \ge 3$.

Separation by NFA's

- ▶ Do NFA's give more power?
- Yes,

$$sep(0001, 0111) = 3$$

but

$$nsep(0001, 0111) = 2.$$

More Variations on Separating Words

ls

unbounded?

Yes.

Consider once again the words

$$w = 0^{t-1 + \text{lcm}(1,2,\dots,t)} 1^{t-1}$$
 and $x = 0^{t-1} 1^{t-1 + \text{lcm}(1,2,\dots,t)}$

where $t = n^2 - 3n + 2$, $n \ge 4$.

We know from before that any DFA separating these words must have at least $t + 1 = n^2 - 3n + 3$ states.

Now consider the following NFA M:

The language accepted by this NFA is $\{0^a: a \in A\}1^*$, where A is the set of all integers representable by a non-negative integer linear combination of n and n-1.

But $t-1=n^2-3n+1\not\in A$ (compute mod n-1 and mod n).

On the other hand, every integer $\geq t$ is in A. Hence $w=0^{t-1+\mathrm{lcm}(1,2,\ldots,t)}1^{t-1}$ is accepted by M but $x=0^{t-1}1^{t-1+\mathrm{lcm}(1,2,\ldots,t)}$ is not.

M has $2n = \Theta(\sqrt{t})$ states, so $\operatorname{sep}(x, w)/\operatorname{nsep}(x, w) \geq \sqrt{t} = \Omega(\sqrt{\log|x|})$, which is unbounded.

Lower Bound for Nondeterministic Separation

Theorem. No NFA of n states can separate

$$0^{n^2}1^{n^2+\text{lcm}(1,2,...,n)}$$

from

$$0^{n^2 + \mathrm{lcm}(1,2,...,n)} 1^{n^2}.$$

Proof. We use the same argument as for DFA's, and the fact (Chrobak) that any unary n-state NFA can be simulated by a DFA with with a "tail" of at most n^2 states and a cycle of size dividing $lcm(1,2,\ldots,n)$.

This gives a lower bound of $\Omega(\log n)$ on nondeterministic separation.

Nondeterministic Separation of Reversed Words

A result of Sarah Eisenstat (MIT), May 2010:

Theorem. We have $nsep(w, x) = nsep(w^R, x^R)$.

Proof. Let M be an NFA with the smallest number of states accepting w and rejecting x. Now make a new NFA M' with initial state equal to any one element of $\delta(q_0,w)$ and final state q_0 , and all other transitions of M reversed. Then M' accepts w^R . But M' rejects x^R . For if it accepted x^R then M would also accept x, which it doesn't.

Open Questions about Nondeterministic Separation

Open Problem 3: Find better bounds on nsep(w, x) for |w| = |x| = n, as a function of n.

Open Problem 4: Find better bounds on sep(w, x)/nsep(w, x).

Permutation Automata

Instead of arbitrary automata, we could restrict our attention to automata where each letter induces a permutation of the states ("permutation automata").

For an n-state automaton, the action of each letter can be viewed as an element of S_n , the symmetric group on n elements.

Turning the problem around, then, we could ask: what is the shortest pair of distinct equal-length binary words w, x, such that for all morphisms $\sigma: \{0,1\}^* \to S_n$ we have $\sigma(w) = \sigma(x)$?

You might suspect that the answer is lcm(1, 2, ..., n).

But for n = 4, here is a shorter pair (of length 11): 00000011011 and 11011000000.

A Problem in Groups

Now if $\sigma(w) = \sigma(x)$ for all σ , then (if we define $\sigma(x^{-1}) = \sigma(x)^{-1}$) $\sigma(wx^{-1}) =$ the identity permutation for all σ .

Call any nonempty word y over the letters $0, 1, 0^{-1}, 1^{-1}$ an identical relation if $\sigma(y) =$ the identity for all morphisms σ .

We say y is *nontrivial* if y contains no occurrences of 00^{-1} and 11^{-1} .

What is the length ℓ of the shortest nontrivial identical relation over S_n ?

Recently Gimadeev and Vyalyi proved $\ell = 2^{O(\sqrt{n} \log n)}$.

Separation by Context-Free Grammars

- ▶ Given two words w, x, what's the smallest CFG generating w but not x?
- Size of grammar is measured by number of productions
- Problem: right-hand sides can be arbitrarily complicated
- ▶ Solution: Use CFG's in Chomsky normal form (CNF), where all productions are of the form $A \rightarrow BC$ or $A \rightarrow a$.

Separation by Context-Free Grammars

In 1999 Currie, Petersen, Robson and JOS proved:

- ▶ If $|w| \neq |x|$ then there is a CFG in CNF with $O(\log \log n)$ productions separating w from x. Furthermore, this bound is optimal.
- ▶ Idea: again, if w and x are of different lengths, both $\le n$, there is a prime $p = O(\log n)$ such that $i = |w| \not\equiv |x| \pmod{p}$.
- We can generate Σ^p in $O(\log p)$ productions in a CFG.
- ▶ So we can generate $(\Sigma^p)^*\Sigma^i$ in $O(\log \log n)$ productions.
- ▶ There is a matching lower bound.

More on Context-Free Separation

- ▶ If |w| = |x| there is a CFG in CNF with $O(\log n)$ productions separating w from x.
- ▶ There is a lower bound of $\Omega(\frac{\log n}{\log \log n})$.
- Upper bound is similar to before
- For the lower bound, we use a counting argument.

Open Problem 5: Find matching upper and lower bounds in the case |w| = |x|.

Dessert: Another Kind of Separation

Suppose you have regular languages R_1 , R_2 with $R_1 \subseteq R_2$ and $R_2 - R_1$ infinite.

Then it is easy to see that there is a regular language R_3 such that $R_1 \subseteq R_3 \subseteq R_2$ such that $R_2 - R_3$ and $R_3 - R_1$ are both infinite.

This is a kind of topological separation property.

Another Kind of Separation

In 1980, Bucher asked:

Open Problem 6: Is the same true for context-free languages?

That is, given context-free languages L_1, L_2 with $L_1 \subseteq L_2$ and $L_2 - L_1$ infinite, need there be a context-free language L_3 such that $L_1 \subseteq L_3 \subseteq L_2$ such that $L_2 - L_3$ and $L_3 - L_1$ are both infinite?

For Further Reading

- ▶ J. M. Robson, Separating words with machines and groups, *RAIRO Info. Theor. Appl.* **30** (1996), 81–86.
- ▶ J. Currie, H. Petersen, J. M. Robson, and J. Shallit, Separating words with small grammars, *J. Autom. Lang. Combin.* **4** (1999), 101–110.