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Introduction
Powers in Infinite Words

Definition
Let d > 2 be an integer. A dth power is a finite word x € £* such that x
is of the form

d times

d N —
ye =Yy

for some word y € ¥*.

The English word tartar = (tar)? is an example of a square.

Definition

Let d > 2 be an integer. An abelian dth power is a finite word x € ¥*
where x = x1 - - - X4 where each x; is a permutation of any other x;.

The word reappear is an example of an abelian square.
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Introduction

Notation

Suppose n > 0 and k > 2 are integers. Let [n], € {0,1,...,k —1}*
denote the base-k representation of the integer n.

v

A subset X of N is k-automatic if there exists an automaton T such that
(i1,...,im) € X if and only if T accepts words [i1],,...,[im], in parallel.

A set X C N js k-automatic if and only if the predicate
P(ity...,im) == (i1,...,im) € X is in the theory (N,0,1, <, +, V).
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Introduction
Powers with Predicates

Fix an integer d > 2. Suppose w is a k-automatic sequence. The set

{(i,p) : w[i..i + pd — 1] is a dth power} C N?

is k-automatic.

The word wli..i + pd — 1] is a dth power if and only if each consecutive
pair of blocks, w[i + (j — 1)p..i + (j + 1)d — 1], is a square. Hence, it
suffices to prove the case d = 2.

The subword w(i..i + 2p — 1] is a square if the two halves, wl[i..i + p — 1]
and w[i + p..i +2p — 1], are equal. Ol

v
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Introduction
Convention for Occurrences of Subwords

@ Position/Period
wli..i+ pd — 1] — (i, p)

e Position/Length
w(i..i +n—1] — (i, n)

e Endpoints
wli..j] = (i,J)
@ Endpoints and midpoint

wli..j] — (i, (i +)/2,J)

If a set of occurrences is k-automatic in any of the above conventions,
then it is k-automatic for every convention.
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Introduction

Outline

Question

We can express the query “is the subword w[i..j] a dth power?” as a
predicate, and the set of all such subwords is k-automatic.

Q: Can we do the same for abelian powers?
A: No, the set of occurrences of abelian squares in a k-automatic word is
not always k-automatic.

@ Three examples where we can describe abelian powers:

o When the set of powers is trivial
o When we have a letter frequency automaton
e An ad hoc approach

@ One example where we cannot describe abelian powers.
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First Example
Trivial Set of Abelian Powers

Consider the word
q = 0112122312232330- - -

where q[i] is the number of ones in [i], modulo 4.

The infinite word q € {0, 1, 2, 3}* contains no abelian cubes.

The set of occurrences of abelian cubes in q,

{(i,n) e N:q[i..i + n—1] is an abelian cube},

is empty, and therefore k-automatic for all k > 2.
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Second Example
Abelian Squares in Thue-Morse

Recall the Thue-Morse sequence,
t = 01101001100101101001011001101001 - - -
where t[i] is the number of ones in [i], modulo 2.

It is not hard to see that t is composed of 01 blocks and 10 blocks.

@ Even length prefix = equal number of zeros and ones
@ Odd length prefix = extra zero or one, depending on last symbol

Theorem
Let |x|, denote the number of occurrences of y € ©* as a subword of
x € ¥*. There is an automaton M that shows the set

{(n, |t[0..n —1]|,) : n € N},

is 2-automatic. )

We can use M to build an automaton for abelian squares.
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Second Example
Abelian Squares in Thue-Morse

The following are equivalent:
@ t[i..i+2n— 1] is an abelian square.

o t[i..i+n—1] and t[i + n..i + 2n — 1] contain the same number of

zeros.
o [t[0..i —1]|y, |t[0..i + n—1]|,, [£[0..i +2n — 1]|, is an arithmetic
progression.

o [t[0..i — 1]|g + [t[0..i + 2n — 1]|g = 2[t[0..i + n — 1],.

We can decide whether t[i..i + 2n — 1] is an abelian square using M and
the following predicate.

(3a, b,c M(i,a) A M(i+ n,b) A M(i +2n,c) A (a+ c =2b))
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Third Example

Characteristic Word of {2K —1}%°,

Define an infinite word ¢ € {0,1}~,
¢ =11010001000000010000 - - -

where c[i] = 1 if and only if i is of the form 2k — 1.

The set
{(n,|c[0..n—1]|;) : n € N}

cannot be k-automatic because of the following theorem:

Let f: N — N be a non-decreasing function. If {(n,f(n)): n e N} is
k-automatic, then f(n) is ©(1) or ©(n).
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Third Example
Abelian squares in c

Suppose x = c[i..i + 2n — 1] is an abelian square.

@ There is a single 1 in the range c[j..2j] for any ;.

@ The factor c[i + n..i +2n — 1] contains at most one 1, and therefore
so does c[i..i + n — 1].

o If c[i + n..i +2n — 1] does not contain a 1, then x = 02". There is an
automaton to check if c[i..i +2n — 1] = 02" using predicates.

(Vi G <i)V(ii+n=1<j)V(c[j]=0))

@ Otherwise, each half of x, c[i..i+n—1] and c[i + n..i +2n — 1],
contains exactly one 1. This can also be expressed with predicates.
(3k (c[k] = 1)A

(iI<k)AN(k<i+n=1)A
MiU<i)Vv(ii+n—1<j)v
(clil=0)V(=k)))

@ The set of occurrences of abelian squares in c is 2-automatic.
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Paperfolding Word

The paperfolding word,
p:=110110011100100- - -

is the result of iterating the map f(w) = wilw®, where WR denotes the
reverse complement of w.

fle)=1
f(1) = 110
£(110) = 1101100
f(1101100) =110110011100100

Show that the occurrences of abelian squares in p are not 2-automatic.
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Symbol Freq. in Paperfolding Word

Definition

Define a function A: N — Z where A(i) = |p[1..i]|; — [p[1..1]|.

The value A(/i) turns out to be more convenient than |p[1..i]|, or
Ip[1..i]|;, but we can still use it to check for abelian squares.

A subword p[i + 1..i + 2p] is an abelian square if and only if
A(i)+ A(i +2p) = 2A(i + p).

Luke Schaeffer (Waterloo) Abelian Powers June 11, 2013 13 /21



Final Example
Useful result about A

Let i be a natural number. Suppose u is a binary representation for i with
at least one leading zero. Then

A(i) = |uloy + |ulyg -

We cannot construct an automaton for the set
{(n,A(n)) : n € N}

because when [n], = (10)* the theorem gives A(n) = 2k = O(log n).
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Final Example
Main Result
The set of occurrences of abelian squares in p is not 2-automatic.

Suppose for a contradiction that the set

{(i,j, k) : p[i.-k] is an abelian square and i + k = 2j}.

is 2-automatic. Let M be the automaton accepting the set in binary.
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Final Example
Proof Cont'd

Consider (i, j, k) such that

[i], = (0000)™(0010)"
[/], = (0100)™(0110)"
[k], = (1000)™(1010)"
for m,n € N. Clearly i + k = 2j for all m,n > 0 and
A(i)=2n
A(j)=2m+2n
A(k) =2m + 4n.

We can show that (i, j, k) corresponds to an abelian square if and only if

2m+6n = A(i) + A(k) = 2A() =4m+ 4n
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Final Example
Proof Cont'd

Proof.
Therefore, the automaton should accept (i, j, k) if and only if m = n. The
automaton has finitely many states, so there exist m, m’ such that M is in

the same state after reading

0000\ ™ /00oo\™
0100 | or [ 0100
1000 1000

From that state, the automaton accepts on input

n

0010
0110
1010

Ol

if and only if n = m, but also if and only if n = m’. Contradiction.
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Final Example
Logical Expressibility

Recall the following theorem.

A set X C N js k-automatic if and only if the predicate
P(ity...,im) == (i1,...,im) € X is in the theory (N,0,1, <, +, V).

Since the set of occurrences of abelian squares in p is not 2-automatic, we
cannot express it in the theory (N,0,1, <, +, V3).
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Final Example

Cobham’'s Theorem

Let k, ¢ be multiplicatively dependent integers. Suppose w € X is a
k-automatic sequence. Then w is ¢-automatic.

v

Theorem (Cobham)
Let w € X be an aperiodic sequence. If w is both k-automatic and
{-automatic, then k and ¢ are multiplicatively dependent.

The set of occurrences of abelian squares in p is not k-automatic for any
k> 2.
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Final Example
Proof of the Corollary

Suppose the occurrences of abelian squares in p is k-automatic for some
k> 2.

@ On the one hand, if k is multiplicatively dependent with 2 then the
set of occurrences is 2-automatic, contradicting our main result.
Therefore k and ¢ are not multiplicatively dependent.

@ On the other hand, the set of occurrences of abelian squares of length
2 in p is k-automatic.

e There is an abelian square of length 2 starting at position i if and only
if p[i] = p[i + 1], or equivalently, if p[i + 1] — p[i] =0 (mod 2).

o We can recover p from the first differences, p[i + 1] — p[i] =0
(mod 2), and it is k-automatic.

o Apply Cobham's theorem to p, therefore k and 2 are multiplicatively
dependent.

Ol

v
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Final Example

The End

Thank Youl
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