Using Walnut to Prove Results
About Sequences in the OEIS

Jeffrey Shallit

School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1 Canada
shallit@uwaterloo.ca
https://cs.uwaterloo.ca/"shallit/

i
1
|

Ay v

Jeffrey Shallit Walnut and the OEIS CPM 2022 1/42

|
The OEIS

The On-Line Encyclopedia of Integer Sequences (OEIS) is an enormous
database of mathematical information, containing over 357,000 integer
sequences and theorems, conjectures, and citations to papers about them.
We owe Neil Sloane a huge debt of gratitude for his work on this.

And also to all the volunteers who edit the database!

10° thanks to everyone!

Jeffrey Shallit Walnut and the OEIS CPM 2022 2 /42

N
This talk

What | will do in this talk:
@ discuss a theorem prover called Walnut that can “automatically”
prove many results about sequences in the OEIS
@ illustrate its use in proving some theorems
@ explain how you can use it in your own work

o talk about its limitations

Jeffrey Shallit Walnut and the OEIS CPM 2022 3 /42

N
What is Walnut?

o Free software, written in Java.

@ Originally designed by Hamoon Mousavi.

o Additions and changes by Aseem Raj Baranwal, Laindon C. Burnett,
Kai Hsiang Yang, and Anatoly Zavyalov.

@ Available at https://cs.uwaterloo.ca/~shallit/walnut.html.

@ Rigorously proves theorems about the natural numbers and sequences.

@ Has been used in 60 papers in the literature, to prove dozens of

theorems (and even correct some incorrect ones in the literature!)

Jeffrey Shallit Walnut and the OEIS CPM 2022 4 /42

https://cs.uwaterloo.ca/~shallit/walnut.html

N
What can Walnut do?

It can rigorously prove theorems about sequences.

e But not all sequences! Just a special class called (generalized)
automatic sequences.

o Examples of sequences in this class include the Thue-Morse sequence,
the Rudin-Shapiro sequence, the infinite Fibonacci word, the infinite
Tribonacci word, Sturmian words, paperfolding words, etc.

@ But not all theorems! You have to state the theorem in first-order

logic, and you can only do things like add, subtract, and compare
integers, and index into the sequence.

e You can also use the existential (3) and universal (V) quantifiers.

o However, you can’t do multiplication by variables, or division, square
root, arbitrary real numbers, primes, etc.

e You can multiply or divide by a constant, however.

Jeffrey Shallit Walnut and the OEIS CPM 2022 5/ 42

B
Other limitations

The running time and space require-
ments of Walnut in the worst-case
are extraordinarily high, so sometimes
Walnut proofs fail because it runs out
of space or would take years to com-
plete the proof.

London Mathematical Society
Lecture Note Series

Even so, you can do a lot with it.

Self-promotion: | wrote a book, en-
titled The Logical Approach to Auto-
matic Sequences: Exploring Combina-
torics on Words with Walnut, which
has just been published by Cambridge
University Press.

CAMBRIDGE

Jeffrey Shallit Walnut and the OEIS

A very simple example: odd plus odd gives even

Let's use Walnut to prove this theorem:
Theorem. The sum of two odd natural numbers is even.

The first thing you need to do is to translate the theorem into a more
precise formulation in the language of first-order logic.

So we will need to define what it means to be “odd” and “even”.

Jeffrey Shallit Walnut and the OEIS CPM 2022 7/ 42

A very simple example: odd plus odd gives even

Here are those definitions:

odd(n) :==3k n=2k+1
even(n) := 3k n = 2k.

Here 3 is the symbol for “there exists”.
Next, we restate the desired theorem in first-order logic:
Vm, n (odd(m) A odd(n)) = even(m+ n).

Here V is the symbol for “for all”, A is the symbol for “and”, = s the
symbol for implication.

Now we simply translate these into a form Walnut can understand.

Jeffrey Shallit Walnut and the OEIS CPM 2022 8 /42

A very simple example: odd plus odd gives even

[Walnut]$ def odd "Ek n=2*k+1";
[Walnut]$ def even "Ek n=2*k";

[Walnut]$ eval thm "Am,n ($odd(m) & $odd(n)) => $even(m+n)":
(odd(m))&odd(n))) :2 states - 3ms
((odd(m))&odd(n)))=>even((m+n)))):1 states - 2ms

(Am, n ((odd(m))&odd(n)))=>even((m+n))))):1 states - 1ms
Total computation time: 33ms.

TRUE
The theorem is now proved.

But the real power of Walnut is only apparent when you use it to deal
with infinite sequences.

Jeffrey Shallit Walnut and the OEIS CPM 2022 9 /42

A more serious example

Let’s do a more serious example.
OEIS for “Fibonacci conjecture”

handle.

In preparing for this talk, | searched the
and | quickly found one that Walnut can

A260311 Difference sequence of A260317.
1,1, 1,1,1,2,2,1,2,1,2,3,2,32,3,3,2,3,3,2,3,5,3,2,3,5,3, 2,3,
5,3,5 3,2,3 5, 3,5 3,2,3,5,3,5,5,3,5,3,2,3,5,3, 5 5,3, 5,3, 2, 3,
5 3,5 5,35, 3,5,5,3,5,3,2,3,5,3,5,5, 3,5, 3,5,5, 3, 5, 3 (list; graph; refs;
listen; history; text; internal format}
OFFSET 1,6
COMMENTS Conjecture: a(n) is a Fibonacci number (A000045) for every n.
A260317 Numbers not of the form v(m) + v(n), where v = A001950 (upper Wythoff numbers) and 1 <= m

1, 2, 3, 4, 5, 6, 8, 10,

<=n-1,forn>=2.

11, 13, 14, 16, 19, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 50,

53, 55, 58, 63, 66, 68, 71, 76, 79, 84, 87, 89, 92, 97, 100, 105, 108, 110, 113, 118, 121,
126, 131, 134, 139, 142, 144, 147, 152, 155, 160, 165, 168, 173, 176, 178, 181 (list; graph; refs;
listen; history; text; internal format)
OFFSET 1,2
COMMENTS It appears that the difference sequence consists entirely of Fibonacci
numbers (A000045); see A260311.
A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi?2), where phi = (1+sqrt(5))/2. 24
(Formerly M1332 N0509)
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60,
62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115,
117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157 (list; graph; refs;
listen; history; text; internal format)
CPM 2022

Jeffrey Shallit Walnut and the OEIS

10 / 42

Solving the conjecture

First, we need something for the upper Wythoff sequence: this is the map
n— [¢%n),
where = (1 ++/5)/2 is the golden ratio.

Luckily, | already had some Walnut code for this. (I'll explain how | got it,
later).

In Walnut, though, the only functions that we can handle directly have
finite range.

So instead we use a subterfuge: we define a function of two arguments, n
and x, such that the result is TRUE if and only if x = [©?n].

In Walnut the assertion that x = |©?n| is then expressed as follows:
phi2n(n, x).
CPM 2022 11/ 42

Solving the conjecture

Next, we need code for the OEIS sequence A260317.

Its description in the OEIS says

“Numbers not of the form v(m) + v(n), where v = A001950 (upper
Wythoff numbers) and 1 < m<n—1forn>2".

How shall we write this as a first-order statement?

Let's see: we want something that that says s2uw(z) is true iff z belongs
to A260317.

Jeffrey Shallit Walnut and the OEIS CPM 2022 12 / 42

https://oeis.org/A260317
https://oeis.org/A001950
https://oeis.org/A260317

Solving the conjecture

In other words s2uw(z) is true iff there do not exist m, n, x, y such that
Z=X+Yy

where phi2n(m,x)

and phi2n(n,y)

and1<m
m<n-1
n>2.

So we just write this as a first-order statement:

def s2uw "?msd_fib “Em,n,x,y z=x+y & $phi2n(m,x)
& $phi2n(n,y) & 1<=m & m<=n-1 & n>=2":

Here ~ is logical NOT.

Jeffrey Shallit Walnut and the OEIS CPM 2022 13 / 42

Solving the conjecture

Now we need the gaps g between successive values of A260317.

To do that we say that there exist t, v such that

t<v

and s2uw(t) holds

and s2uw(v) holds

but for all u between t and v, the assertion s2uw(u) does not hold,
and the gap size g = v — t.

def gap "7msd_fib Et,v t<v & $s2uw(t) & $s2uw(v) &
(Au (u>t & u<v) => “$s2uw(u)) & g=v-t":

The result is an assertion gap(g) which is true if and only if g belongs to
A260311.

Jeffrey Shallit Walnut and the OEIS CPM 2022 14 / 42

https://oeis.org/A260317
https://oeis.org/A260311

Solving the conjecture

Finally, we assert that every gap is a Fibonacci number:

reg isfib msd_fib "O0*10x%":
eval thm "?msd_fib Ax $gap(x) => $isfib(x)":

and here is what we get:

[Walnut]$ eval thm "?msd_fib Ax $gap(x) => $isfib(x)":
(gap(x))=>isfib(x))):2 states - 44ms

(A x (gap(x))=>isfib(x)))):1 states - 1lims
Total computation time: 96ms.

TRUE

And the theorem is proved!

Jeffrey Shallit Walnut and the OEIS CPM 2022 15 / 42

-
Going further

In fact, we get even more. How is gap stored? It is a finite automaton
that accepts the Fibonacci representation of those g that are elements of
A260311. Namely:

By examining that automaton, we actually obtain something more:

Theorem. The only possible gaps are 1,2,3,5.

Jeffrey Shallit Walnut and the OEIS CPM 2022 16 / 42

https://oeis.org/A260311

-
How did we get phi2n?

We obtained the automaton for phi2n using a theorem in a paper of Don
Reble in the OEIS!

Theorem. We have |ng?| = x + 2, where x is the number obtained by
taking the Fibonacci representation of n — 1 and concatenating two zeros
on the end.

For the proof, see https://oeis.org/A007895/a007895.pdf.

Jeffrey Shallit Walnut and the OEIS CPM 2022 17 / 42

https://oeis.org/A007895/a007895.pdf

How does it work?

Internally, assertions such as gap and s2uw are stored as finite automata.

A finite automaton is a simple model of a computer. There are two
variations that we use: an automaton with output (DFAO), that can
compute a function of its input, and an automaton (DFA) as
accepter/rejecter of its input.

With each logical formula f, we associate a DFA. The DFA has one or
more inputs; these are the variables of the formula. The DFA accepts
exactly those natural number values of the variables that make the formula
f true.

Jeffrey Shallit Walnut and the OEIS CPM 2022 18 / 42

How does it work?

In automaton diagrams, states are represented by circles or ovals.

A DFA starts in a start state (denoted by a headless arrow coming into the
state).

It processes the symbols of the input one-by-one, following the arrow
labeled with the symbol.

If, after processing the whole input, it is in a final state (denoted by double
circle), the input is accepted. Otherwise it is rejected.

By contrast, a DFAO returns an output specified in the state last reached
when processing the input.

Jeffrey Shallit Walnut and the OEIS CPM 2022 19 / 42

The automaton for phi2n

Here is the DFA for phiZ2n.

For example, phi2n(10,26) is true. Check with input
[0, 1]{0, 0][1, 0][0, 1][0, 0][1, O][0, O].

Jeffrey Shallit Walnut and the OEIS CPM 2022 20 / 42

How does it work?

Walnut compiles a logical formula into the appropriate automaton. Each
logical and arithmetic operation corresponds to some well-studied
automaton transformation that can be carried out.

Some of these operations only increase the automaton size by a small
amount. For example, AND and OR only multiply the sizes of the two
automata.

Other operations, like V, can blow up the size of the automata
exponentially.

This means that if there are t quantifier alternations, then the resulting
automaton could be, in the worst case, of size something like

22...2"

2

Jeffrey Shallit Walnut and the OEIS CPM 2022 21/ 42

How are numbers represented?

Numbers in Walnut are represented in some numeration system.

Typically, the numeration system has to be geared to the problem in some
way.

Walnut can handle
@ base-k representation for any fixed k > 2

o Fibonacci representation (aka Zeckendorf representation), where
numbers are represented as sums of Fibonacci numbers

Tribonacci representation
Pell representation

Ostrowski representation

base-(—k) representation

Jeffrey Shallit Walnut and the OEIS CPM 2022 22 / 42

What kind of sequences can Walnut prove results about?

Walnut can prove first-order logical statements about automatic
sequences.

These are sequences that are expressible as the outputs of DFAQO'’s where
the input is one of the 6 types of numeration system listed above.

In particular, Walnut can handle words that are images (under a coding)
of a fixed-point of a k-uniform morphism.

Jeffrey Shallit Walnut and the OEIS CPM 2022 23 /42

Another example

Let us use Walnut to solve a previously-unsolved problem of Vladimir
Shevelev.

He observed that for the Thue-Morse sequence
t = totitr - = 0110100110010110 - - -

there do not exist integers 0 < i < j such that

th € {tn+i7 tn+_j}
for all n.

Here t(n) is the number of 1's, computed mod 2, in the binary
representation of n.

We can prove this with Walnut as follows:
eval shevl "Ei,j 0<i & i<j & An (T[n]=T[n+il] IT[n]=T[n+jl)":

Jeffrey Shallit Walnut and the OEIS CPM 2022 24 / 42

Another example

However, there do exist integers 0 < i < j < k such that

tn € {tntis tat), tosk}
for all n.
Shevelev asked to characterize these valid triples (i,], k).
We can solve this problem by finding an automaton that accepts all valid

triples, as follows:

def shev2 "0<i & i<j & j<k &
An (T[n]l=T[n+i] IT[n]=T[n+j]|T[n]=T[n+k])":

This was a big computation in Walnut! It used 6432 seconds of CPU time
and 18 Gigs of RAM. The largest intermediate automaton had 2952594
states.

Jeffrey Shallit Walnut and the OEIS CPM 2022 25/ 42

Another example

The resulting automaton shev2 has 53 states, and encodes all the valid
triples (i, k).

With it we can easily determine if a given triple has the desired property.
We can also use it to prove various results of Shevelev, such as

Theorem. All triples of the form (a,a+2/,a+2%) fora>1,0<j < k,
are valid.

Jeffrey Shallit Walnut and the OEIS CPM 2022 26 / 42

Proving conjectures by guessing the automaton

Walnut can sometimes prove conjectures obtained by guessing!
The idea is to “guess’ an automaton for a sequence using heuristics.

Once the automaton is guessed, we then rigorously verify that it is correct
using Walnut.

Let us work through an example.

Jeffrey Shallit Walnut and the OEIS CPM 2022 27 / 42

Proving conjectures by guessing the automaton

Consider OEIS sequence A140100:

A140100 Start with Y(0)=0, X(1)=1, Y(1)=2. For n> 1, choose least positive integers Y(n) > X(n) such that 25
neither Y(n) nor X(n) appear in {Y(k), 1 <=k <n} or {X(k), 1 <=k <n} and such that Y(n) -
X(n) does not appear in {Y (k) - X(k), 1 <=k <n} or {Y(k) + X(k), 1 <=k < n}; sequence gives
X(n) (for Y(n) see A140101).
i, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 35, 37,
38, 40, 41, 43, 44, 46, 47, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 71, 72,
74, 15, 77, 78, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106

Julien Cassaigne conjectured that for all k the sum X(k) + Y(k) equals
either X(Y'(k)) or Y(X(k)).

Our goal is to prove this conjecture.

Jeffrey Shallit Walnut and the OEIS CPM 2022 28 / 42

https://oeis.org/A140100

Proving conjectures by guessing the automaton

The definition of the sequences X (k) and Y(k) are as follows:

Start with X(0) =0, Y(0) =0, X(1) =1, Y(1) = 2.

For n > 1, choose the least positive integers Y(n) > X(n) such that
neither Y'(n) nor X(n) appear in {Y(k) : 1 < k < n} or

{X(k) : 1 < k < n} and such that Y(n) — X(n) does not appear in
{Y(k) = X(k) : 1< k<n}or{Y(k)+ X(k) : 1<k<n}.

Jeffrey Shallit Walnut and the OEIS CPM 2022 29 / 42

Proving conjectures by guessing the automaton

There is no known foolproof way to take a definition like this and directly
turn it into an automaton computing the sequence.

However, in this case, we can “guess’ an automaton for it as follows.

First, we decide on an appropriate numeration system. In this case, it is
already known that this sequence is related to the Tribonacci numbers (see
the OEIS description), so it is reasonable that we should use the
Tribonacci numeration system.

Jeffrey Shallit Walnut and the OEIS CPM 2022 30/ 42

Proving conjectures by guessing the automaton

We then represent pairs (n, x) in the Tribonacci numeration system,
padding the shorter sequence with leading zeros, if needed.

A pair is valid if x = X(n).

Say two strings y and z are equivalent if (yw is valid iff zw is valid), for all
w of length </, for some fixed i. We used i = 6.

Do a breadth-first search on the set of all possible strings, identifying the

(finitely many) equivalence classes. One can then construct an automaton
out of these equivalence classes.

Jeffrey Shallit Walnut and the OEIS CPM 2022 31/ 42

Proving conjectures by guessing the automaton

When we do this, we find a Tribonacci automaton of 27 states for X(n)
and 30 states for Y(n). This is our guess.

Now comes the important part: we use Walnut to verify that our guess is
correct.

We can do this using mathematical induction. We say that a triple
(n,x,y) is good if all of the following conditions hold:

Qy>x

Q@ x¢{X(k):1<k<n}

Q@ yé{X(k):1<k<n}

Q x&{Y(k): 1< k<n}

Q@ yé{Y(k):1<k<n}

Q y—x&{Y(k)—X(k) : 1< k<n}
Q@ y—x&{Y(k)+ X(k): 1< k<n}

CPM 2022 32 /42

Proving conjectures by guessing the automaton

To carry out the induction proof we must show three things:
@ The triple (n, X(n), Y(n)) is good for all n > 1;
@ If (n,x,y) is good then x > X(n);
@ If (n,X(n),y) is good then y > Y(n).

The latter two conditions ensure that each value of X(n) and Y(n) chosen
iteratively is indeed the minimal possible value among good candidates.

Jeffrey Shallit Walnut and the OEIS CPM 2022 33 /42

Proving conjectures by guessing the automaton

This verification can be carried out by the following Walnut code.

def good "?msd_trib y>x &
("Ek k<n & $xaut(k,x)) &
("Ek k<n & $xaut(k,y)) &
("Ek k<n & $yaut(k,x)) &
("Ek k<n & $yaut(k,y)) &
("Ek,a,b k<n & $xaut(k,a) & $yaut(k,b) & y-x=b-a) &
("Ek,a,b k<n & $xaut(k,a) & $yaut(k,b) & y-x=b+a)":
eval checkl "7msd_trib An,x,y (n>=1 & $xaut(n,x) & $yaut(n,y)) =>
$good(n,x,y)":
eval check2 "7msd_trib An,x,y (n>=1 & $good(n,x,y)) =>
(Ez $xaut(n,z) & x>=z)":
eval check3 "7msd_trib An,x,y (n>=1 & $xaut(n,x) & $good(n,x,y)) =>
(Ez $yaut(n,z) & y>=z)":

and the last three commands all return TRUE.

Jeffrey Shallit Walnut and the OEIS CPM 2022 34 /42

Proving conjectures by guessing the automaton

Now that we've verified the automaton, we're ready to prove Cassaigne’s
conjecture.

Theorem. For all k the sum X(k) + Y (k) equals either X(Y(k)) or
Y (X(k)).

eval julienl "7msd_trib An,x,y,xy,yx ($xaut(n,x) &
$yaut(n,y) & $xaut(y,xy) & $yaut(x,yx)) =>
(xy=x+y | yx=x+y)":

And Walnut returns TRUE. The conjecture is proved.

Jeffrey Shallit Walnut and the OEIS CPM 2022 35/ 42

|
Other capabilities of Walnut

Walnut can also count things. In some cases it can find what is known as
a linear representation for a function.

A linear representation for a function f : N — N is a triple of the form
(v,v,w), where

@ visal x r matrix,
@ 7(a) is an r x r matrix for all a
@ wis an r x 1 matrix

and f(n) = vy(x)w for all representations x of n. Here the representations
can be base k, Fibonacci, Tribonacci, etc.

Jeffrey Shallit Walnut and the OEIS CPM 2022 36 / 42

Other capabilities of Walnut

Linear representations can often be used to prove theorems about f(n)
and its growth rate.

For example, let's evaluate p(n), the number of distinct length-n blocks
appearing in the Thue-Morse sequence t.

def equalblock "At (t<n) => T[i+t]=T[j+t]":
def novelblock "Ak (k<i) => “$equalblock(i,k,n)":
def countblock n "$novelblock(i,n)":

Jeffrey Shallit Walnut and the OEIS CPM 2022 37/ 42

|
Other capabilities of Walnut

Walnut outputs a linear representation in a form that Maple can
understand:

11000000

00001000

HESH:

v=[11001000] ~(0)=|00000000

00100100

00000010

00000020
00110000 1
00000110 0
FEREER: %
¥(1) = 060000011 W= 1o
00200000 0
00000110 0
00000200 0

With this representation we can quickly compute p(n), the number of
distinct length-n blocks in t, very efficiently.

Jeffrey Shallit Walnut and the OEIS CPM 2022 38 /42

|
Other capabilities of Walnut

Furthermore, we can compute the exact value of p(2%) as follows:

We have
p(24) = v 2(1) - 7(0)* - w,
and the minimal polynomial of v(0) is X?(X — 1)(X — 2).

This means that p(2%) = a + b - 2k for some constants a, b and k > 2.

We can now use the linear representation to compute p(2X) for k = 2,3
and solve for a, b. We have p(4) = 10 and p(8) = 22.

Hence a = —2, b= 3. So p(2¥) =3 -2k — 2 for k > 2.

Jeffrey Shallit Walnut and the OEIS CPM 2022 39 /42

Common mistakes when using Walnut

@ Watch out for edge cases. Sometimes a theorem is true for all n > 1
but fails for n = 0.

@ Don't use logical assertions with variables in the wrong order. The
order of arguments in a multi-variable assertion is alphabetical order
of the variable names used to define it.

@ Since the domain of variables is understood to be N, the natural
numbers, subexpressions that give negative numbers can cause
incorrect results. All subexpressions must be non-negative.

Jeffrey Shallit Walnut and the OEIS CPM 2022 40 / 42

-
Tips for using Walnut

@ There are often different ways to translate the same logical statement
into Walnut. Some can take much longer to translate than others.

@ There are often multiple characterizations of the same property. Some
may be first-order expressible, some may not.

@ Sometimes being more general takes much more time and space than
being specific.

Jeffrey Shallit Walnut and the OEIS CPM 2022 41/ 42

N
A final word

Walnut is free and downloadable from
https://cs.uwaterloo.ca/~shallit/walnut.html.

If you use it to solve a problem, please let me know about it!

Jeffrey Shallit Walnut and the OEIS CPM 2022 42 / 42

https://cs.uwaterloo.ca/~shallit/walnut.html

