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Additive number theory

Additive number theory is the study of the additive properties of integers.

It poses simple-to-state questions that can be very hard to resolve.

Probably the most famous ex-
ample is Goldbach’s conjecture
from 1742: every even number
≥ 4 is the sum of two primes.

Goldbach letter to Euler
June 7 1742
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Additive number theory

Less well-known to the general public, but very
well-known to additive number theorists, is the
existence of an asymptotic formula that conjec-
turally predicts the number G2(n) of represen-
tations of n as the sum of two primes, due to
Hardy and Littlewood in 1923:

G2(n) ≈ 2 · Π2 ·

∏
p|n
p≥3

p − 1

p − 2

 n

(log n)2

for n even, where

Π2 =
∏
p≥3

(
1− 1

(p − 1)2

)
.

= 0.66016

is the twin-prime constant.

G. H. Hardy

J. E. Littlewood
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Additive number theory

So, given a set S , number theorists are interested in both

which numbers are representable as sums of elements of S , and

the number of such representations.

In this talk I focus on the second: the number of representations.

Let A ⊆ N = {0, 1, 2, . . .} be a subset of the natural numbers. We define

r(k ,A, n) := |{(a1, a2, . . . , ak) ∈ Ak : n = a1 + a2 + · · ·+ ak}|
r<(k ,A, n) := |{(a1, a2, . . . , ak) ∈ Ak : n = a1 + a2 + · · ·+ ak ,

a1 < a2 < · · · < ak}|
r≤(k ,A, n) := |{(a1, a2, . . . , ak) ∈ Ak : n = a1 + a2 + · · ·+ ak ,

a1 ≤ a2 ≤ · · · ≤ ak}|.

These functions were originally studied by Erdős, Turán, and co-authors
starting in the 1940’s.

Jeffrey Shallit Additive Number Theory NY NT Seminar—Apr 27 23 4 / 49



Motivation for studying r : powers of power series

r(k ,A, n) := |{(a1, a2, . . . , ak) ∈ Ak : n = a1 + a2 + · · ·+ ak}|

r(k ,A, n) has a nice interpretation in terms of the coefficients of a power
series.

Given a set A, we can define its associated characteristic sequence
(a(n))n≥0 as follows:

a(n) =

{
1, if n ∈ A;

0, otherwise.

And we can define its associated power series:

A(X ) =
∑
n≥0

a(n)X n.

Then r(k,A, n) is just the coefficient of X n in A(X )k .
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Example: Goldbach representations

Take A = {2, 3, 5, . . .} to be the prime numbers.

Then A(X ) = X 2 + X 3 + X 5 + · · · and Goldbach’s conjecture can be
restated as the coefficients of X 2n in

A(X )2 = X 4 + 2X 5 + X 6 + 2X 7 + 2X 8 + 2X 9 + 3X 10 + 2X 12 + · · ·

are all positive for n ≥ 2.

Additive number theory is filled with seemingly simple statements that can
be very hard to prove.

But there are also examples of long complicated proofs that were
superseded by very simple arguments...
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A result of Erdős and Turán

Theorem

Suppose A = {a1, a2, . . . , } is an infinite subset of N. Then (r(2,A, n))n≥0

cannot be eventually constant.

The original proof of Erdős and Turán used a big sledgehammer: the Fabry
gap theorem.

But G. A. Dirac (nephew of Eugene Wigner
and stepson of the physicist Paul Dirac) ob-
served this has a trivial proof: if n = 2ai
then the number of representations of n
must be odd, since n = ai + ai and for all
other representations, order matters, while
if n is odd then the number of representa-
tions must be even.

G. A. Dirac
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A result of Erdős, Sárközy, and Sós (1985)

Paul Erdős András Sárközy Vera Sós

Theorem

Let A be a subset of N. If (r(2,A, n))n≥0 is eventually increasing, then the
complement set N \ A is finite.

Their proof was quite complicated (8 pages) and required case analysis.

But Balasubramanian found a much simpler 1-page proof in 1987.
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Goal of the talk

My goal in this talk is to convince you that tools from logic and automata
theory can be used to prove interesting, non-trivial theorems in additive
number theory, in relatively simple ways.

This approach gives the additive number theorist new tools, and gives the
specialist in automata theory applications for their theorems.
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Automata

A deterministic finite automaton (DFA) is a very simple model of a
computer.

It consists of a finite number of states.

A finite automaton takes, as input, finite words (or strings) of symbols
chosen from a finite alphabet Σ.

Each new symbol read causes a transition: a movement from one state to
another, based on the current state and the symbol.

Some states are distinguished and called accepting or final. If, after
reading the entire input, the automaton is in a final state, then the input is
said to be accepted.
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Example of an automaton

For example, here is an automaton that accepts binary strings having no
two consecutive 1’s:

0

0

11
0

21

0,1

The initial state is state 0.

The final states are state 0 and state 1.

This automaton accepts 01001, but rejects 01101.
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Automatic sets

A set A is said to be b-automatic if there is a finite automaton that
recognizes exactly the set of base-b representations of members of A.

For example, consider the set O of odious numbers. These are the
numbers having a base-2 representation with an odd number of 1’s.

Then O is 2-automatic, and recognized by the following automaton.

0

0

11
1

0

To use it, start in state 0, read the representation of n in base 2 and follow
the arrows, accept iff you end up at state 1.
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Automata with output

We can generalize the notion of automaton by adding an output
associated with each state.

Now the output corresponding to an input is the output associated with
the last state reached.

For example, here is an automaton that computes n mod 3, if the input
represents n in base 2.

0/0

0

1/11
1

2/20
0

1

A sequence is said to be b-automatic if it is computed by an automaton
with inputs represented in base b.
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Walnut

Walnut is a free software tool, originally created by Hamoon Mousavi,
that can prove or disprove assertions about automatic sequences.

One only has to state the claim in first-order logic, and then Walnut will
prove or disprove it.

In some cases, its time and space usage can be extraordinary, so it’s
possible that some assertions can’t be handled in practice.

Nevertheless, it has been used to prove results in 70 papers in the
literature already.
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Result of Lambek and Moser

Let E = {0, 3, 5, 6, 9, 10, . . .} be the evil numbers
(number of 1-bits in the binary representation of n
is even) and O = {1, 2, 4, 7, 8, 11, . . .} be the odious
numbers (number of 1-bits is odd).

Lambek and Moser (1959) proved the following the-
orem:

r<(2, E , n) = r<(2,O, n)

for n ≥ 0.

An example of the theorem: the representations of 9
as sums of E are (0, 9) and (3, 6). The representa-
tions as sums of O are (1, 8) and (2, 7).

This theorem was later proved again by Dombi
(2002), Lev (2004), and others.

Joachim “Jim”
Lambek

Leo Moser
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Detour: linear representations

A linear representation for a sequence (f (n))n≥0 is a triple (v , γ,w), where

v is a t-element row vector;

γ is a t × t-matrix-valued morphism;

w is a t-element column vector

and
f (n) = v γ(x)w

whenever x is the base-b representation of n.

Here γ(x) = γ(a1) · · · γ(ai ) if x = a1 · · · ai .

The integer t is called the rank of the representation.
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Example of a linear representation

Here is a linear representation for the Stern sequence a(n), defined by
a(2n) = a(n) and a(2n + 1) = a(n) + a(n + 1), with initial values a(0) = 0
and a(1) = 1:

vT =
[

1
0

]
; γ(0) =

[
1 0
1 1

]
; γ(1) =

[
0 1
−1 2

]
; w =

[
0
1

]
.

For example, let’s compute a(27). Express 27 in base 2 as 11011. Then

a(27) = vγ(11011)w = vγ(1)γ(1)γ(0)γ(1)γ(1)w

=
[

1
0

] [−5 8
−7 11

] [
0
1

]
= 8.
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Computing linear representations

Theorem

Let A ⊆ N be a b-automatic set (i.e., an
automaton recognizes representations of A in base
b).

Then r(k,A, n) (resp., r<(k ,A, n); r≤(k ,A, n))
has a linear representation that can be computed
directly from the automaton for A.

Proof.

By a theorem of Büchi-Bruyère, it suffices to write
first-order logical formulas for r(k ,A, n) (resp.,
r<(k ,A, n); r≤(k,A, n)). But these are given by
the definitions of these functions.

J. Richard Büchi

Véronique Bruyère
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Comparing linear representations

If we have a linear representation (vf , γf ,wf ) for f (n) and a linear
representation (vg , γg ,wg ) for g(n), we can form a linear representation
(v , γ,w) for the linear combination αf (n) + βg(n) by using block
matrices, as follows:

v = [αvf βvg ]

γ(a) =

[
γf (a) 0
0 γg (a)

]

w =

[
wf

wg

]
.
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Comparing linear representations

Furthermore, if we have a linear representa-
tion (v , γ,w) there is an algorithm, due to
Schützenberger, for finding an equivalent lin-
ear representation of minimum rank.

Putting these two ideas together, we have the
following theorem: M.-P. Schützenberger

Theorem

Given a linear representation (vf , γf ,wf ) for f (n) and a linear
representation (vg , γg ,wg ) for g(n), it is decidable if f (n) = g(n) for all n.

Proof.

Form the linear representation for f (n)− g(n), and then minimize it. Then
f (n) = g(n) for all n iff the linear representation is of rank 0 computing
the 0 function.
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Lambek and Moser: proof via Walnut

To prove the Lambek-Moser result that

r<(2, E , n) = r<(2,O, n)

for n ≥ 0, we just need to find a linear representation for both sides and
then use the theorem on the previous slide.

This can be done using the Walnut software package as follows:

def evil_sum n "T[i]=@0 & T[j]=@0 & i<j & n=i+j":

def odious_sum n "T[i]=@1 & T[j]=@1 & i<j & n=i+j":

Here T[i] is Walnut’s way of writing the Thue-Morse sequence, ti , the
parity of the number of 1-bits of i .

These create two linear representations of rank 8, and we can use the ideas
above to demonstrate they compute the same function.
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Another result for the evil and odious numbers

That was the result for r<. How about r?

Theorem

We have
r(2, E , n)− r(2,O, n) = [n even] · (−1)tn ,

where [P] is Iverson notation, evaluating to 1 if P is true and 0 otherwise.

Proof.

(Sketch.) Form linear representations for both sides. For the right side,
use the fact that (−1)i = 1− 2i for i ∈ {0, 1}.
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Chen and Wang result

Define the analogues of the evil and odious numbers, where we consider
the parity of the number of 0-bits in the binary representation of n, instead
of the number of 1-bits:

E ′ := {1, 3, 4, 7, 9, 10, 12, . . .}
O′ := {0, 2, 5, 6, 8, 11, 13, . . .}

Chen and Wang (2003) proved

r≤(2, E ′, n) = r≤(2,O′, n)

for n ≥ 1.

Also proved later by Lev (2004).
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Chen and Wang result

Shifting indices in the equation on the previous page gives

r≤(2, E ′, n + 1) = r≤(2,O′, n + 1)

for n ≥ 0. We can prove this as follows:

eval evil2_sum n "TT[i]=@0 & TT[j]=@0 & i<=j & n+1=i+j":

eval odious2_sum n "TT[i]=@1 & TT[j]=@1 & i<=j & n+1=i+j":

Here TT[i] is Walnut’s way of representing the twisted Thue-Morse
sequence, counting the parity of the number of 0’s in the base-2
representation of i .

These commands compute linear representations (of rank 20). We can
then use the theorem above to show that they represent the same function.
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The Rudin-Shapiro set

Walter Rudin Harold S. Shapiro

Let R = {3, 6, 11, 12, 13, 15, . . .} be the Rudin-Shapiro set: the numbers n
where the number of 11’s (possibly overlapping) in the binary expansion of
n is odd.

Dombi (2002) proved that for k ≥ 5, the function r(k,R, n) is an
eventually increasing function of n.

He conjectured this is also true for k = 4, but still no proof is known.
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The Rudin-Shapiro set

We can prove that r(3,R, n) is not eventually increasing as follows.

The first step is to create a linear representation for the difference sequence

d(n) := r(3,R, n)− r(3,R, n − 1).

We can do that with the following Walnut code:

def rudin3 n "RS[i]=@1 & RS[j]=@1 & RS[k]=@1 & n=i+j+k":

def rudin3m1 n "RS[i]=@1 & RS[j]=@1 & RS[k]=@1 & n=i+j+k+1":

and then combine them with the block matrix trick to get a linear
representation (v , γ,w) for d(n).

The goal is to find infinitely many n such that d(n) < 0.
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Closed forms for linear representations along subsequences

In general a function f (n) given by a linear representation (v , γ,w) will
not have a simply-describable behavior.

However, we can always obtain a formula for f evaluated at a subsequence
(ni )i for which the base-b representation is of the form

x

i copies︷ ︸︸ ︷
yy · · · y z

where x , y , z are strings of digits.

This is because
v γ(ni )w = v γ(x) γ(y)i γ(z)w ,

and each entry of γ(y)i can be expressed as a linear combination of the
i ’th powers of the zeros of the minimal polynomial of γ(y).

We can then solve for the coefficients of this linear combination from the
first few values of f , giving an exact closed-form formula for f .
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The Rudin-Shapiro set

The n that we choose have a base-2 representation of the form

zt :=

t+1 copies︷ ︸︸ ︷
10 10 · · · 10 = (22t+3 − 2)/3.

Now γ(10) has minimal polynomial

X 2(X−1)(X−2)(X−4)(X 3−5X 2+12X−16)(X 4−13X 3+72X 2−196X+256)

and hence there exist constants

a, b, c , α, γ, αi , γi (1 ≤ i ≤ 2), βi , δi (1 ≤ i ≤ 4)

such that

d(zt) = a + b · 2t + c · 4t + α1γ
t
1 + α2γ

t
2 + αγt + β1δ

t
1 + β2δ

t
2 + ζ1η

t
1 + ζ2η

t
2

where γ, γ1, γ2 are the zeros of X 3 − 5X 2 + 12X − 16 and the δi , ηi are
the zeros of X 4 − 13X 3 + 72X 2 − 196X + 256.
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The Rudin-Shapiro set

Here the αi are complex conjugates, as are the γi , the βi , the δi , the ζi ,
and the ηi .

Using Maple we can find the estimates

(zeros of X 3 − 5X 2 + 12X − 16)

{
|γ1|, |γ2|

.
= 2.41114

γ
.

= 2.75217

(zeros of X 4 − 13X 3 + 72X 2 − 196X + 256)

{
|δ1|, |δ2|

.
= 4.88015

|η1|, |η2|
.

= 3.27859

The dominant roots are clearly the δi and the corresponding coefficients
are

β1
.

= −.03881 + .00706i

β2
.

= −.03881− .00706i

Jeffrey Shallit Additive Number Theory NY NT Seminar—Apr 27 23 29 / 49



The Rudin-Shapiro set

For t large enough, then, the value of d(zt) is dominated by

β1δ
t
1 + β2δ

t
2 = 2<(β1δ

t
1),

which is large and negative when (say)

3π/4 < arg(β1δ
t
1) = (arg(β1) + t arg(δ1)) mod 2π < 5π/4.

Since β1/|β1| is not a root of unity, this will occur for infinitely many t.

Hence d(zt) < 0 infinitely often.

Hence r(3,R, n) is not eventually increasing.
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Powers of Thue-Morse power series

We can also study powers of the Thue-Morse power series

T (X ) :=
∑
n≥0

tnX
n = X + X 2 + X 4 + X 7 + X 8 + · · · .

Allouche recently proved, using complex analysis and following ideas of
Dombi, that the coefficients of T 10(X ) are eventually increasing.

Jean-Paul Allouche
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Powers of Thue-Morse power series

More precisely, suppose (qn)n≥0 is a sequence of ±1, and define
Qn(z) =

∑
0≤j≤n qjz

j and A = {n ≥ 1 : qn−1 = 1}.

Theorem (Allouche)

Suppose there exist constants C > 0 and 0 < α < 1 such that for all
complex z with |z | = 1 and all n ≥ 1 one has |Qn(z)| ≤ Cnα. Then
(r(k ,A, n))n≥0 is eventually strictly increasing for all k > 2/(1− α).

For Thue-Morse we can take α = (log 3)/(log 4)
.

= 0.79248. Since
10 > 2/(1− α)

.
= 9.63768, Allouche’s result follows.
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Powers of Thue-Morse power series

On the other hand, we can prove (just as we did for Rudin-Shapiro) that
the coefficients of T 5(X ) are not eventually increasing.

The status of T 6,T 7,T 8,T 9 is still unknown. It seems likely that T 6 has
eventually increasing coefficients.
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Dombi’s conjecture

Let A ⊂ N be a set. Dombi studied the properties of r(3,A, n)—in
particular the first difference of this sequence.

If N \ A is sparse, then we expect r(3,A, n) to grow roughly like n2

(because there are two choices for the first two summands, both with
about n possibilities, and then the third is fixed).

So we expect the first difference r(3,A, n)− r(3,A, n − 1) to grow roughly
like order n. But there might be fluctuations...
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Dombi’s conjecture

For example, here is how r(3,A, n)− r(3,A, n − 1) behaves when
A = N \ {1, 4, 9, 16, 25, . . .}.
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Dombi’s conjecture refuted

Dombi (2002) conjectured that there is no set A such that N \ A is infinite
and r(3,A, n) is eventually increasing. But we have:

Theorem

Let F = {3 · 2n : n ≥ 0} = {3, 6, 12, 24, . . .}. Set A := N \ F . Then
r(3,A, n) is strictly increasing right from the start.

Proof.

(Sketch.) Using Walnut, we generate a linear representation for
d(n) := r(3,A, n)− r(3,A, n − 1), guess a closed form for it, and then
verify the closed form with Walnut. The closed form is strong enough to
show that d(n) is always positive.
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Dombi’s conjecture refuted

The closed form for

d(n) := r(3,A, n)− r(3,A, n − 1)

looks like
d(3n + i) = 3n − 3dlog2 ne − fi (n),

for i ∈ {0, 1, 2}, where (fi (n))n≥0 is an automatic sequence.
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How I found this counterexample

I found this counterexample by “intelligent guessing”, namely:

Do a breadth-first search on the tree of all possible finite
characteristic sequences

Reject sequences such that r(3,A, n) is not strictly increasing right
from the start

Using the Myhill-Nerode theorem, find the size of the smallest
automaton compatible with potential examples, and reject if it is too
large.

After some computation, I was left with potential counterexamples of
automatic sequences generated by DFAO’s with a small number of
states.

One of these worked right away.
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A Dombi counterexample of positive density

The example of the previous slide corresponds to a sparse set:
F = {3 · 2n : n ≥ 0}.

This suggestions the question of whether there is an example where F has
positive density.

Indeed there is such an example:

Theorem

Let F = {3, 12, 13, 14, 15, 48, 49, 50, . . .} be the set of natural numbers
whose base-2 expansion is of even length and begins with 11.
Then F is of positive lower density and r(3,N \ F , n) is strictly increasing.

Proof.

Like before, using automata and the fact that F is a 2-automatic set.
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Dombi’s conjecture refuted

Jason Bell found a different approach to refuting Dombi’s conjecture:

Theorem (Bell & JOS, 2022)

Let k ≥ 3 be an integer. Let F ⊆ N and assume 0 6∈ F . Let (f (n))n≥0 be
its associated characteristic sequence and F (X ) its associated power series∑

i≥0 f (i)X i . Define σf (n) =
∑

0≤i≤n f (i). Suppose σf (n) = o(nα) for
some α ≤ (k − 2)/k and A = N \ F .

Then (r(k ,A, n))n≥0 is eventually strictly increasing.

Proof.

(Sketch.) d(n) := r(k ,A, n)− r(k ,A, n − 1) is the coefficient of X n of

(1− X )

(
1

1− X
− F (X )

)k

.

Now expand using the binomial theorem and estimate the size of the
coefficients.
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New advances on Dombi’s theorem

News flash: the condition α ≤ (k − 2)/k was recently improved by Sándor
Z. Kiss, Csaba Sándor, and Quan-Hui Yang to α ≤ (k − 2)/(k − 1).

See https://arxiv.org/abs/2303.01314.
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A Fibonacci example

Let f = 0100101001001 · · · be the infinite Fibonacci word. It has many
different definitions, but one is as the fixed point of the map 0→ 01,
1→ 0.

Let F be the associated set {1, 4, 6, 9, 12, . . .}, corresponding to the
positions of the 1’s in f. This is a simple variation on the upper Wythoff
sequence.

Yet another way to express F is via Fibonacci representations: we write n
as a sum of non-adjacent Fibonacci numbers

∑
2≤i≤t aiFi with ai ∈ {0, 1}.

Then n ∈ F iff a2 = 1.
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A Fibonacci example

Theorem

The equalities

r(2,F , n) = r(2,F , n − 1)

r(2,N \ F , n) = r(2,N \ F , n − 1)

hold for infinitely many n.

Proof. We can compute a linear representation (v , γ,w) for r(2,F , n)
using Walnut. The idea is to show that

r(2,F , n) = r(2,F , n − 1) = (F6i+3 − 2)/4 (1)

for n = (F6i+5 − 5)/2 and i ≥ 1.
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A Fibonacci example

The Fibonacci representation of (F6i+5 − 5)/2 is (100)2i+110000, and the
Fibonacci representation of (F6i+5 − 7)/2 is (100)2i+101010.

So both r(2,F , (F6i+5− 5)/2) and r(2,F , (F6i+5− 7)/2) can be expressed
as a linear combination of the i ’th powers of the zeros of the minimal
polynomial of γ(100).

This minimal polynomial is X 2(X − 1)(X + 1)(X 2 − 4X − 1). Solving for
the coefficients and simplifying gives Eq. (1).

Using exactly the same ideas, we can prove that

r(2,N \ F , n) = r(2,N \ F , n − 1) = (L6i+6 − 2)/4

for n = (F6i+8 − 7)/2 and i ≥ 1.
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Another Fibonacci example

Theorem

For i ≥ 1 we have

r(3,F , n) = r(3,F , n − 1) = (F 2
2i+3 − 3F2i+3 + 2)/4

for n = F2i+5 − 4 and i ≥ 1.

Proof.

(Sketch.) The Fibonacci representation of F2i+5 − 5 is (10)i000 and the
Fibonacci representation of F2i+5 − 4 is (10)i001.

We find the linear representation (v , γ,w) for r(3,F , n) and compute the
minimal polynomial for γ(10). It is X 2(X −1)(X 2−3X + 1)(X 2−7X + 1).
Solving for constants and simplifying gives the formulas above.
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Proofs for families of sequences

We can also use Walnut to prove results for certain families of
uncountably many sequences, for example, the paperfolding numbers.

These are sequences describable from the iterated folding of a piece of
paper, introducing at each step either a hill (1) or a valley (0). This gives
a characteristic sequence of a set Sf depending on the sequence f of
folding choices.

Theorem

For all paperfolding sequences f, every n ≥ 15 is the sum of three elements
of Sf . The bound 15 is optimal.
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Three conjectures

Conjecture

For the Rudin-Shapiro set R we have r(4,R, n) > r(4,R, n − 1) for
n ≥ 196.

For the odious numbers O we have r(6,O, n) > r(6,O, n − 1) for
n ≥ 6.

For the evil numbers E we have r(6, E , n) > r(6, E , n − 1) for n ≥ 38.
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Wrapping things up

Automata and combinatorics on words can be used to prove new
theorems about additive number theory.

In some cases the theorems can be proven “purely mechanically”, just
by doing a computation.

Sometimes the computations require a lot of space and time.

However, the techniques I presented cannot be used for more
traditional sequences, like primes and squares—at least directly.
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