
Determining Repetition Thresholds via Logic and
Numeration Systems

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

1 / 40

https://cs.uwaterloo.ca/~shallit/

My co-authors

Aseem Baranwal James Currie Lucas Mol

Narad Rampersad Elise Vandomme

2 / 40

Repetitions in words

I Repetitions in words: a long-studied topic (since at least
1906) with many applications to other areas of mathematics
and computer science

I Most basic forms of repetitions: squares, cubes, overlaps:
I A square is a nonempty word of the form xx = x2, like the

German word nennen.
I A word is said to contain a square if some factor (contiguous

block) is a square. So the German word
Strebausbausteuerung contains the square bausbaus.

I A cube is a nonempty word of the form xxx = x3. The English
sort-of-word shshsh is a cube.

I An overlap is a word of the form axaxa, where a is a single
letter and x is a (possibly empty) word. The German word
mehrerer ends with the overlap rerer.

I A word avoids squares (or is squarefree) if it contains no
factor that is a square. So the word square is squarefree, but
the word squarefree is not.

3 / 40

Thue’s work on repetition in words

We say that squares are avoidable over
an alphabet Σ if there exists an
infinite squarefree word over Σ.

I It is easy to see that squares are not
avoidable over {0, 1}.
(The longest such word is of length 3.)

I Thue proved in 1906 that squares are
avoidable over {0, 1, 2}.

I Similarly, overlaps and cubes are avoidable
over {0, 1}.

Axel Thue (1863–1922)

4 / 40

Thue’s 1912 construction

I Consider the morphism µ mapping

0→ 01

1→ 10

I We can iterate this morphism, obtaining

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

...

I In the limit, we get µω(0) = t = 0110100110010110 · · · , the
infinite Thue-Morse word. It is a fixed point of µ.

I This word avoids overlaps.

5 / 40

Periods, exponents, and more general notions of repetition

I A (finite or infinite) word w has period p if w [i] = w [i + p]
for all meaningful i .

I Example: the word alfalfa has period 3.

I A word can have multiple periods. For example, aabaaaba
has periods 4 and 7.

I The shortest period is called the period.

I The exponent of a word is its length divided by its shortest
period.

I For example, the German word schematische has length 12
and period 8, so its exponent is 3/2.

I Not surprisingly, squares have exponent 2, and cubes have
exponent 3.

6 / 40

Critical exponents

I The critical exponent of a word w , written ce(w), is the
supremum, over all factors f of w , of the exponent of f .

I It measures the largest repetition occurring in a word.

I The critical exponent of the German word verwendenden is
8/3, corresponding to the factor endenden .

I In the case of infinite words, this critical exponent can be
attained, or not.

I Example: the infinite Fibonacci word f, the fixed point of the
morphism ϕ : 0→ 01 and 1→ 0:

f = 01001010010010100101001 · · · ,

has critical exponent 2 + τ
.

= 3.61803, where τ = (1 +
√

5)/2,
the golden ratio.

7 / 40

Repetition threshold

I The repetition threshold for a set S of words is the infimum,
over all words w ∈ S , of ce(w).

I This infimum can be attained by a member of S , or not.

I Essentially, the repetition threshold measures the largest
unavoidable repetition over all words in S .

8 / 40

Repetition threshold for small alphabets

Let RT(k) denote the repetition threshold for the set of all words
over a k-letter alphabet.

I Squares are not avoidable over a 2-letter alphabet, but
overlaps are.

I So RT(2) = 2.

I Dejean (1972) proved that the fixed point of the morphism

0→ 0120212012102120210

1→ 1201020120210201021

2→ 2012101201021012102

has critical exponent 7/4. This is best possible. So
RT(3) = 7/4.

9 / 40

Dejean’s theorem

I Dejean conjectured that RT(4) = 7/5 and RT(k) = k/(k − 1)
for k ≥ 5.

I This difficult and deep result was finally proven in 2009, by
the combined work of many authors (Pansiot, Moulin
Ollagnier, Mohammad-Noori, Currie, Carpi, Rampersad, Rao).

10 / 40

Outline of this talk

In this talk I will discuss computing repetition thresholds for three
different classes of words:

I balanced words over a k-letter alphabet;

I rich words over a binary alphabet; and

I binary words avoiding antisquares.

What makes this appropriate for NUMERATION 2019 is our proof
technique, which is based on numeration systems.

11 / 40

Balanced words

I A word w is balanced if all factors of w of the same length
have roughly the same frequencies of letters.

I More precisely, let |w |a be the number of occurrences of the
letter a in w . Then a word is balanced if ||x |a − |y |a| ≤ 1 for
all a ∈ Σ and all factors x , y of w of the same length.

I Example: the German word Steuerbefehle is balanced.

I The German word unausgewogen is not balanced.

12 / 40

Binary balanced words and Sturmian words

There is a nice characterization of the infinite binary balanced
words:

They coincide with the set of Sturmian words: words of the form

(bα(n + 1) + βc − bαn + βc)n≥1

for real numbers 0 ≤ α, β < 1 (or the same thing with floor
replaced by ceiling).

13 / 40

Balanced words over larger alphabets

For larger alphabets, the balanced words are the words obtainable
from Sturmian words by replacing the 0’s (respectively, the 1’s)
with a word of the form xω, where x is a constant-gap word (due
to Pascal Hubert and Ron Graham, independently):

We say x is a constant-gap word if two consecutive occurrences of
the same letter in xω = xxx · · · are always separated by the same
number of symbols.

For example, 0102 is a constant-gap word, but 0120 is not.

14 / 40

Repetition thresholds for balanced words

Theorem. (Rampersad-JOS-Vandomme; Baranwal-JOS)
The repetition threshold RTBAL(k) for balanced words over a
k-letter alphabet is as follows:

k RTBAL(k)

2 2 + τ
.

= 3.61803

3 2 +
√

2/2
.

= 2.7071
4 1 + τ/2

.
= 1.8090

5 3/2 = 1.5

In addition, we conjecture that RTBAL(k) = (k − 2)/(k − 3) for
k ≥ 5.

15 / 40

Rich words

I A palindrome is a word that reads the same forwards and
backwards, like the German word neben.

I Droubay, Justin, and Pirillo proved that a length-n word
contains at most n distinct nonempty palindromes as factors.

I A word that contains exactly n distinct palindromes is called
rich.

I An example is the German word besessen: it contains the
palindromes b, e, s, n, ss, ese, ses, esse.

I Rich words have been studied extensively, but they are still a
bit mysterious.

16 / 40

Repetition threshold for rich words

I Pelantová and Starosta proved (2013) that every infinite rich
word contains a square.

I Vesti (2017) gave upper and lower bounds on the length of a
longest square-free rich word over a k-letter alphabet.

I Vesti also proposed the problem of determining the repetition
threshold for infinite rich words.

17 / 40

Repetition threshold for rich words

Theorem. (Baranwal-JOS) The repetition threshold for infinite

binary rich words is between 2.700 and 2 +
√
2
2 = 2.7071 · · · , and

there is an infinite binary rich word with the latter critical
exponent.

18 / 40

Avoiding antisquares

An antisquare is a binary word of the form xx , where x is the
binary complement of x , mapping 0 to 1 and 1 to 0.

Antisquares can only be avoided trivially over a binary alphabet, by
the words 0ω and 1ω.

Similarly, if we allow only a single antisquare, the only possibilities
are 0 1ω and 1 0ω.

However, if we allow exactly two antisquares — 01 and 10, then
things become much more interesting.

19 / 40

Avoiding all antisquares (except 01 and 10)

Proposition. Every word in (1000 + 10000)∗ and (1000 + 10000)ω

avoids all antisquares (except 01 and 10).

So there are exponentially many such length-n words, and
uncountably many such infinite words.

Theorem. (Baranwal-Currie-Mol-Rampersad-JOS) The repetition
threshold for binary words avoiding all antisquares (except 01 and
10) is 2 + τ

.
= 3.61803.

20 / 40

Enter numeration systems!

Numeration systems can be used to prove many of the results
discussed so far! Basic idea:

I Find a morphism h generating a suitable candidate word w
whose critical exponent matches the repetition threshold

I Construct an appropriate numeration system S so that w is
S-automatic

I This means that there is a deterministic finite automaton with
output (DFAO) that, given a valid S-representation for the
integer n, computes w[n]

I Express some claim about the properties of w as a first-order
logical formula ϕ

I Finally, use a decision procedure to prove or disprove ϕ via a
computer program.

I One still has to argue that this candidate word is actually best.

21 / 40

The easiest case — uniform morphisms

I If the morphism is k-uniform (the image of every letter is of
length k), then the appropriate numeration system is ordinary
base-k representation

I The corresponding DFAO can be constructed directly from h.

22 / 40

Expressing overlaps in first-order logic

Example: let the Thue-Morse sequence be given by

t = t0t1t2 · · · = 01101001 · · · .

Suppose t has an overlap axaxa beginning at position k with
|ax | = m ≥ 1. Then we have

So a first-order formula expressing the assertion that t has an
overlap is

∃k,m (m ≥ 1) ∧ ∀i (i ≤ m) =⇒ tk+i = tk+i+m.

23 / 40

Automaton for the Thue-Morse word

The corresponding DFAO for the Thue-Morse sequence

t = t0t1t2 · · · = 01101001 · · ·

is as follows:

24 / 40

Walnut

Walnut is free software, written by Hamoon Mousavi, that can
evaluate the truth of first-order formulas on sequences defined by
automata, using ideas of Büchi, Bruyère, and others.

The basic idea is that the automaton for the sequence is
transformed into an automaton accepting the representations (in
some numeration system) of the values of the free variables
making the formula true.

If there are no free variables, the system answers either true or
false.

25 / 40

Good news and bad news

Bad news first: the decision procedure used by Walnut has
enormously bad worst-case running time: it is

22
..

.2p(N)

,

where the number of 2’s in the exponent is equal to the number of
quantifier alternations, p is a polynomial in the length of the
particular statement being decided, and N is the number of
automaton states needed to describe the underlying sequence.

Good news: even so, we have been successful on something like
90% of the queries we’ve tried, even with as many as 5 quantifier
alternations.

26 / 40

Reproving Thue’s result on overlaps

We take the first-order formula

∃k,m (m ≥ 1) ∧ ∀i (i ≤ m) =⇒ tk+i = tk+i+m

expressing the assertion that t has an overlap, and translate it into
Walnut as follows:

E k,m (m >= 1) & Ai (i <= m) => T[k+i]=T[k+i+m]

Here T represents the two-state DFAO generating the Thue-Morse
sequence.

When we enter this into Walnut, it answers false, so we have
proved that t is overlap-free.

27 / 40

Reproving Dejean’s result for the three-letter alphabet

More generally, every k-uniform morphism over an s-letter
alphabet (each letter’s image has length k) corresponds trivially to
an s-state DFAO with transitions on 0, 1, . . . , k − 1 taking integer
inputs represented in base k.

Dejean’s morphism δ given by

0→ 0120212012102120210

1→ 1201020120210201021

2→ 2012101201021012102

corresponds to a 3-state automaton in base 19.

28 / 40

Reproving Dejean’s result for the three-letter alphabet

If we call the automaton D, then the Walnut formula asserting that
δω(0) has a repetition of exponent > 7/4 is as follows:

E i,p (p >= 1) & Aj (4*j <= 3*p) => D[i+j] = D[i+j+p]

Unfortunately, this runs out of memory (more than 50 Gigs are
needed)!

So instead make the variable substitution k = i + j and say

E i,p (p >= 1) & Aj,k ((k=i+j)&(4*j <= 3*p) =>

D[k] = D[k+p]

which returns false. Thus we’ve proved Dejean’s theorem for
alphabet size 3. This computation took 170 seconds and 15 gigs of
storage on an x86 64 GNU/Linux machine.

29 / 40

Balanced words: a proof with Walnut

If a candidate word is given by a suitable morphism, we can check
whether it is balanced with a first-order logic formula.

This is not obvious! There is no obvious general way to count the
number of occurrences of a letter in a factor of an infinite word
with a first-order formula.

However, for binary words, there is an alternative characterization
of the balance property that can be expressed in first-order logic: a
word x is unbalanced iff it has two factors of the form 0w0
and 1w1.

30 / 40

Working with non-uniform morphisms

If the morphism is non-uniform, then the corresponding
numeration system is not base-k representation; it depends on the
structure of the morphism.

Our decision procedure crucially depends on the ability to
implement addition in the numeration system based on the
morphism.

But not all numeration systems have this property!

31 / 40

Fibonacci numeration

One nice system that does is Fibonacci numeration: numbers are
represented in the form

∑
i≥2 eiFi , where F2 = 1, F3 = 2,

Fn = Fn + Fn−1 are the Fibonacci numbers. Here the ei are in
{0, 1} and no two consecutive ei are 1.

There is an automaton that decides, on input x , y , z in the
Fibonacci numeration system, whether z = x + y .

More generally, adders can be implemented for Pisot numeration
systems (see work of Christiane Frougny et al.).

32 / 40

Critical exponents

Given a candidate word w, we’d like an algorithm to determine the
critical exponent e of w.

For words defined by uniform morphisms, we know how to do this
(Schaeffer-JOS), but for more general morphisms this is not yet
known in all cases.

For many numeration systems, the following often works: we write
a logical formula corresponding to the period lengths of “large
repetitions” close to e.

Usually the possible period lengths p will be rare and easy to
describe.

We then write a logical formula corresponding to the possible
periods p, and specifying words of maximal length ` with this
period. Again, usually these will be easy to specify. With some
knowledge about the numeration system, we can often compute
the supremum of `/p.

33 / 40

Balanced words

Using these ideas, we were able to determine the repetition
threshold for balanced words over alphabets of size 2, 3, 4, 5.

For alphabet size 2, 3, 4 more work was needed to argue that our
candidate words are actually best.

For alphabet size 5, since the repetition threshold is 3/2, a
breadth-first search suffices to show that the exponent is optimal
over all balanced words.

34 / 40

Rich words

Recall that a length-n word is rich if it has n distinct nonempty
palindromes as factors.

It turns out that this is equivalent to the following: a (finite or
infinite) word is rich if every nonempty prefix has a palindromic
suffix that does not appear earlier in the word.

This can be expressed in first-order logic. So we can verify that a
candidate word is actually rich.

For alphabet size 2, our candidate word is given by g(hω(0)):

h : 0→ 01 g : 0→ 0

1→ 02 1→ 01

2→ 022 2→ 011

35 / 40

Rich words II

This word is automatic for the Pell numeration system, built on
the terms of the linear recurrence P1 = 1, P2 = 2, and
Pn = 2Pn−1 + Pn−2.

So we can compute its critical exponent (which is
2 +
√

2/2=̇2.707) and verify that it is rich, using Walnut.

Breadth-first search shows there is no infinite binary rich word with
critical exponent < 2.700.

We still do not know if our bound 2 +
√

2/2 is optimal.

36 / 40

Words avoiding antisquares

Idea #1: consider binary words avoiding all antisquares (except 01
and 10), and restrict attention to those with small critical
exponent, say < e. It turns out we can take e = 11/3.

Idea #2: restrict attention to those words x with more 0’s than 1’s.

These words have a nice property: up to short prefixes and suffixes,
we can factor such words into blocks of 0001 and 01.

In other words, such words can be written in the form
x = x1h(x2)x3, with |x1| and |x3| short, and h(0) = 0001,
h(1) = 01.

Now we can do another factorization on x2, this time in the form
x2 = y1g(y2)y3, where g(0) = 001 and g(1) = 01.

Furthermore, y2 has such a factorization in terms of g itself.

37 / 40

Words avoiding antisquares

It follows that sufficiently large x have a factor of the form
h(g i (0)) for large i , and hence the critical exponent of all infinite
words avoiding antisquares (except 01 and 10) is at least that of
h(gω(0)).

Now we can use Walnut to determine this critical exponent, and
also verify that h(gω(0)) avoids all antisquares (except 01 and 10).

We get

Theorem. (Baranwal-Currie-Mol-Rampersad-JOS) Every binary
infinite word avoiding all antisquares (except 01 and 10) has
critical exponent at least 2 + τ

.
= 3.61803. This is best possible,

since h(gω(0)) has critical exponent exactly 2 + τ .

38 / 40

Future prospects

I Try to extend the computability of critical exponents to
non-standard numeration systems (beyond base-k)

I Implement a more general decision procedure for deciding
properties of Sturmian sequences, based on ideas of
Hieronymi, Schaeffer, and others.

39 / 40

Open Problems

1. Prove that the repetition threshold for balanced words,
RTBAL(k) satisfies RTBAL(k) = (k − 2)/(k − 3) for k ≥ 5.
(Known to hold for k = 5.)

2. How many length-n rich binary words are there? Upper and
lower bounds are known, but they are widely separated.

3. Prove or disprove that the repetition threshold for binary rich
words is indeed 2 +

√
2/2, and prove analogous results for

larger alphabets.

4. Is there a first-order logic characterization of balanced words
over alphabets of size ≥ 3?

40 / 40

