
Recent results in combinatorics on words using
an automatic prover

Jeffrey Shallit

School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

shallit@cs.uwaterloo.ca

https://cs.uwaterloo.ca/~shallit

1 / 54

Some of my co-authors

Luke Schaeffer Hamoon Mousavi Narad Rampersad Daniel Goč

Chen Fei Du Émilie Charlier Eric Rowland Jean-Paul Allouche

2 / 54

This talk — summarized

1. There is a decision procedure for deducing and proving
theorems about automatic sequences and related sequences
based on first-order logic

2. Many properties of sequences that have long been studied in
the literature can be phrased in first-order logic (including
some for which this is not obvious!)

3. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available (Walnut)

4. The method can also be used to not simply decide, but also
enumerate, many aspects of sequences

3 / 54

Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved

7. However, there are some well-defined limits to what we can do
with the method because either

I the property is not expressible in first-order logic; or
I the underlying sequence leads to undecidability.

4 / 54

Some successes of the method

Unbordered factors

I A word w is said to be bordered if it can be written in the
form xyx , with x nonempty.

I Otherwise w is unbordered.

I For example, the French word lesquelles is bordered, with
x = les and y = quel.

5 / 54

Improving a result of Currie and Saari

I Currie and Saari proved that if n 6≡ 1 (mod 6), then there is an
unbordered factor of length n in the Thue-Morse sequence t.

I However, this is not an iff: the length-31 factor
0011010010110100110010110100101 occurs in t but is not
bordered.

I Raises the natural question: what is a precise characterization
of the lengths of unbordered factors of t?

I The logical method gives: t has an unbordered factor of
length n iff (n)2 6∈ 1(01∗0)∗(10∗1).

I We can also give a formula for the number of unbordered
factors of each length.

6 / 54

Avoiding the pattern xxxR

I Let xR denote the reversal (image miroir) of the word x .

I Example: if x = engager, then xR = regagne.

I We are interested in the pattern xxxR .

I An instance of the pattern xxxR in French appears in the word
choisissiez, where x = is.

I Can all instances of the pattern xxxR be avoided in an infinite
aperiodic binary word?

I We proved that it can.

7 / 54

Avoiding the pattern xxxR

Consider the following Fibonacci-automaton:

a/0 b1/0 a1/1 b0/0 b/1 a0/0 a2/1 b2/1

0

1 0 1

0

0

0

1

0

0

1

0

Figure : Fibonacci automaton generating the sequence R

It generates the sequence

R = 001001101101100100110110110010010011011001001001101100 · · · .

Claim: R is aperiodic and avoids the patterns xxxR and also
xxRxR .

Note: Narad Rampersad will speak more on this subject on Friday.
8 / 54

Repetitions in words

I A square is a word of the form xx , where x is a nonempty
word

I Examples in French include rentrent and froufrou

I An overlap is a word over the form axaxa, where a is a single
letter and x is a possibly empty word

I Examples in French include entente and tentent

9 / 54

Correcting an error of Fraenkel-Simpson

I Define the finite Fibonacci words Xn by X1 = 1, X2 = 0, and
Xn = Xn−1Xn−2 for n ≥ 3.

I Fraenkel and Simpson (1999) computed the number of
occurrences B(n) of squares in Xn:

B(n + 1) =
4

5
nFn+1 −

2

5
(n + 6)Fn − Fn−1 + n + 1

for n ≥ 3.

I But this is slightly wrong: the real formula is

B(n + 1) =
4

5
nFn+1 −

2

5
(n + 6)Fn − 4Fn−1 + n + 1.

I The logical method can obtain the correct formula (almost)
purely mechanically.

10 / 54

Bounds on pattern occurrence

The logical approach allows one to prove bounds on various
quantities about automatic sequences.

Example: suppose s = (sn)n≥0 is a k-automatic sequence.

We can prove theorems such as

Theorem. Let f (t) = 28t
2
. If s is generated by an automaton with

t states, and if s contains a square, then there is a square of order
≤ f (t) in the prefix of s of length ≤ f (t).

11 / 54

Factors in common

Theorem. If x is a factor of both the Thue-Morse sequence on
0, 1 and the Rudin-Shapiro sequence on 0, 1, then |x | ≤ 8.

Theorem. If f and g specify two different paperfolding sequences
Pf and Pg, and ` is the smallest index for which f[`] 6= g[`], then
Pf and Pg have no factors of length ≥ 14 · 2` in common.

Theorem. There exists an computable function f = f (k,m, n)
with the property that if two k-automatic sequences, generated by
automata with m (resp., n states), have a factor of length
≥ f (k ,m, n) in common, then they have infinitely many factors in
common.

12 / 54

An application to algebra

Theorem. There is an algorithm that, given n algebraic formal
power series f1(X), . . . , fn(X) in GF (q)[[X]] and a degree bound d ,
decides if there exist n polynomials g1(X), . . . , gn(X) in GF (q)[X],
not all 0, each of degree ≤ d , such that

g1f1 + · · ·+ gnfn = 0.

Theorem. There is an algorithm that, given two algebraic formal
power series f (X) and g(X) in GF (q)[[X]], decides whether there
exists some integer t ≥ 0 such that f (X) and X tg(X) agree on
infinitely many coefficients.

13 / 54

First-order logic

By first-order logic, we mean the set of all formulas formed from

I any finite number of variables that can take values in some
domain;

I equality defined on variables;

I possibly other comparison operators that can be applied to
variables, such as less than, greater than, etc., depending on
domain;

I possibly other functions applied to the variables, such as
addition or multiplication;

I logical operations such as and (∧), or (∨), logical
implication (=⇒), iff (⇐⇒), and not (¬);

I quantifiers, such as for all (∀) and there exists (∃).

14 / 54

First-order logic

I Variables can be either bound (by a quantifier) or unbound.

I If all variables are bound, then we can assign a truth value to
the formula.

I If some variables are unbound, then we can consider the set of
all values of the variables for which the formula is true.

A first-order logical theory is decidable if there is an algorithm
that, given a well-formed formula with all variables bound, will
decide its truth.

In the case of unbound variables, we’d like to algorithmically
construct the representations of all integers for which the formula
is true.

15 / 54

Presburger arithmetic

Presburger arithmetic is Th(N,+), the first-order theory of the
natural numbers N = {0, 1, 2, . . .} with addition.

Mojżesz Presburger (1904–1943)
(died in the Holocaust)

16 / 54

Presburger arithmetic

I Sometimes Presburger arithmetic is written to include <, the
“less-than” operator

I But it is not really needed, since the assertion x < y is
equivalent to ∃z (z 6= 0) ∧ y = x + z .

17 / 54

Example: The Chicken McNuggets Problem

A famous problem in elementary arithmetic books in the US:

At McDonald’s, Chicken McNuggets are available in packs of
either 6, 9, or 20 nuggets. What is the largest number of
McNuggets that one cannot purchase?

18 / 54

Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6, 9, and 20, as
follows:

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧
¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z). (1)

Here, of course, “6x” is shorthand for the expression
“x + x + x + x + x + x”, and similarly for 9y and 20z .

19 / 54

Presburger’s theorem

Presburger proved that Th(N,+, 0, 1) is decidable: that is, there
exists an algorithm that, given a well-formed formula in the theory,
will decide its truth.

He used quantifier elimination.

20 / 54

Decidability of Presburger arithmetic: Büchi’s proof

Julius Richard Büchi (1924–1984) found a much simpler proof of
Presburger’s result, based on automata. It gives us automata for
the unbound variable case, too!

Ideas:

I represent integers in an integer base k ≥ 2 using the alphabet
Σk = {0, 1, . . . , k − 1}.

I represent n-tuples of integers as words over the alphabet Σn
k ,

padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

I For example, the pair (21, 7) can be represented in base 2 by
the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

21 / 54

Büchi’s proof

I Automata will accept words over the alphabet Σn
k representing

n-tuples of integers

I The language accepted is the set of all n-tuples of integers for
which the formula (or subformula) is true

I Parsing the formula corresponds to performing operations on
automata

I For example, if automaton M corresponds to some formula ϕ,
then ¬ϕ can be obtained by changing the “finality” of M’s
states: a final state becomes non-final and vice-versa

I Care is needed to handle the “leading zeroes” problem

22 / 54

Decidability of Presburger arithmetic

I The relation x + y = z can be checked by a simple 2-state
automaton depicted below, where transitions not depicted
lead to a nonaccepting “dead state”.

{[a,b,c] : a+b = c} {[a,b,c] : a+b+1 = c}
{[a,b,c] : a+b+1=c+k}

{[a,b,c] : a+b = c+k }

carry

no
carry

23 / 54

Decidability of Presburger arithmetic: proof sketch

I Relations like x = y and x < y can be checked similarly.
(exercise)

I Given a formula with free variables x1, x2, . . . , xn, we construct
an automaton accepting the base-k expansion of those
n-tuples (x1, . . . , xn) for which the proposition holds.

I If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them.

I If the formula is of the form ∀p, we use the equivalence
∀p ≡ ¬∃¬p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

I Ultimately, if all variables are bound, we are left with a single
state machine that either accepts (formula is true) or rejects
(formula is false)

24 / 54

The bad news

I The worst-case running time of the algorithm above is
bounded above by

22
..

.2p(N)

,

where the number of 2’s in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is
the number of states needed to describe the underlying
automatic sequence.

I The bound for Presburger arithmetic can be improved to
double-exponential.

25 / 54

The proof using automata

A couple of additional tricks: if the last quantifiers are ∃, all we
need to do is check to see if the resulting automaton accepts some
word.

In this case, we do not need to convert an NFA to a DFA.

We can check acceptance with depth-first search, by seeing if there
is a path in the automaton from the initial state q0 to a state of F .
This can be done in time linear in the size of the automaton.

Similarly, if we want to know if there are infinitely many integers
for which some formula holds (which is sometimes written ∃∞) we
just need to check for which states q there is a nonempty cycle
beginning and ending at q (which can be done using depth-first
search), and then check to see if there is a path from q0 to q and
q to a final state. Again, linear time.

26 / 54

Some subtleties

Every integer has infinitely many representations!

For example, 5 in base 2 can be written as 101, 0101, 00101, and
so forth.

It is best to allow all possible representations in our automata.

(If we do not, then we can run into problems working with k-tuples
of integers where one integer has a larger representation than
other.)

27 / 54

Augmenting Presburger arithmetic

As described, Presburger arithmetic isn’t so interesting (although
used, e.g., in system verification).

But if we add DFAO’s to the mix, using the same decision
procedure, we suddenly can prove theorems people actually want
to prove.

For example, we can start with a 2-DFAO M for the Thue-Morse
sequence t, write a predicate for t having an overlap, and use the
decision procedure to decide it — thus reproving Thue’s 1912
result by machine.

But what is the logical theory corresponding to starting with a
DFAO?

28 / 54

Büchi’s mistake

Büchi was apparently the first to consider this question.

He thought one should add, to Presburger arithmetic, the function
νk(n), which is the function computing the exponent of the
highest power of k dividing n. For example, ν2(24) = 3.

This was a mistake.

The correct function to add is Vk(n), the function computing the
highest power of k, say ke , dividing n. For example, V2(24) = 8.

29 / 54

Presburger arithmetic augmented

Theorem. A set of integers is definable in Th(N,+,Vk) if and
only if its characteristic sequence is k-automatic.

Corollary. The theory Th(N,+,Vk) is decidable.

Proof. We can decide if a formula in Th(N,+,Vk) is true, just as
with Presburger arithmetic, by creating the automaton associated
with the formula and checking if it accepts.

(See work of Bruyère, Michaux, Villemaire, Hansel, Hodgson, etc.)

Theorem. There is an algorithm that, given a proposition phrased
using only the universal and existential quantifiers, indexing into
one or more k-automatic sequences, addition, subtraction, logical
operations, and comparisons, will decide the truth of that
proposition.

30 / 54

Walnut

I My former student Hamoon Mousavi implemented the
decision procedure in Java in freely available software.

I It is downloadable from
https://github.com/hamoonmousavi/Walnut

I You can
I define automata as text files
I enter predicates in terms of these automata
I if there are no unbound variables, you can evaluate the

truth/falsity of these predicates
I if there are unbound variables, you can obtain automata

accepting those (n)k for which the predicate is true .

31 / 54

An example

Let’s write a predicate for the assertion that a sequence t has an
overlap:

So our predicate is

∃k ∃m (m ≥ 1) ∧ ∀i (i ≤ m) =⇒ t[k + i] = t[k + i + m].

32 / 54

Evaluating the predicate in Walnut

I The predicate was

∃k ∃m (m ≥ 1) ∧ ∀i (i ≤ m) =⇒ t[k + i] = t[k + i + m]

I To evaluate its truth/falsity we type the following command
into Walnut

eval t2 "Ek Em (m >= 1) & Ai (i <= m) => T[k+i] =

T[k+i+m]":

and Walnut returns the value “false”.

33 / 54

Complexity

Theorem. If s is a k-automatic sequence, then its complexity
function p(n) (counting the number of distinct factors of length n
in s) is k-regular. Furthermore, an explicit representation for p is
computable from the automaton for s.

The complexity of t is well-known.

So let’s compute it for a lesser-known sequence, the twisted
Thue-Morse sequence

t′ = 0010011010010110011010011001011 · · ·

that counts the number of occurrences of 0, mod 2, in the binary
representation of n.

34 / 54

Determining the complexity of t′

First, we find an automaton for t′:

0/0

(0)

1/0(1)

(1)

2/1(0)
(0)

(1)

The first difference of the complexity function
d(n) = p(n + 1)− p(n) is just the number of length-n factors x for
which both x0 and x1 are factors.

These are the so-called right-special factors.

35 / 54

A predicate for right-special factors

We can create a predicate for the assertion that the factor of
length n beginning at position i is right-special:

spec(i , n) :=

(∃k0 (t′[k0 + n] = 0) ∧ (∀` (` < n) =⇒ t′[i + `] = t′[k0 + `]))

∧ (∃k1 (t′[k1 + n] = 1) ∧ (∀` (` < n) =⇒ t′[i + `] = t′[k1 + `])).

36 / 54

Finding first occurrence of a special factor

Next, we modify this modified predicate to include the assertion
that the factor of length n beginning at position i is right-special
and also is the first occurrence of that factor:

spec(i , n) ∧ ∀k (k < i) =⇒ ∃t (t < n) t′[k + t] 6= t′[i + t].

From the automaton A accepting those pairs (i , n)2 for which the
predicate is true, we can form the matrices M0 (resp., M1)
counting the number of transitions from state p to state q for
which the second component is labeled 0 (resp., 1).

This gives a linear representation for d(n):

vMa1 · · ·Mai w ,

where (n)2 = a1 · · · ai .

37 / 54

Linear representation for complexity

Here it is:
v = [1 1 0 0 0 0 0 0 0 0 0 0 0 0] w = [1 0 1 0 1 0 0 1 1 1 0 0 0 1]T

M0 =



1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



M1 =



0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



38 / 54

Complexity of t′

We can obtain an exact description of the first difference of the
subword complexity of t′:

Theorem.

d(n) =


1, if n = 0;

2, if n = 1, 2 or 7 · 2k−2 < n ≤ 2k+1 for k ≥ 2;

3, if n = 4 or 3 · 2k−1 < n ≤ 7 · 2k−2 for k ≥ 2;

4, if 2k < n ≤ 3 · 2k−1 for k ≥ 1.

Proof. Now we can make an automaton out of the states, which
are the vectors v dotted with the semigroup S generated by the
matrices M0,M1. The output of each state is the name of the
state dotted with w .
When we do this for t′ we get the following automaton.

39 / 54

Complexity

[11000000000000]

1

0

[00111100000000]

2
1

[00000011011200]

2
0

[00000000130210]

4

1

[00000000020401]

3
0

[00000000040400]

4

1

[00000000040300]

4
0

[00000000030200]

3

1

1

[00000000020400]

2
0

0

[00000000030300]

3
1

0

[00000000020200]

2
1

0,1

0,1

0,1

1

0

From this the theorem about complexity follows.

40 / 54

A new complexity result suggested by computation

Arseny Shur and JS just proved:

Theorem. If s is an overlap-free binary sequence, then

pt(n) ≤ ps(n) ≤ pt′(n)

where

I t is the Thue-Morse sequence; and

I t′ is the twisted Thue-Morse sequence.

41 / 54

Avoiding the pattern xxxR

I We start by trying depth-first search.

I It gives the lexicographically least such sequence.

I This gives the word

(001)3(10)ω = 001001001101010 · · · .

I So in particular the word (10)ω = 101010 · · · avoids the
pattern. (Easy proof!)

I This suggests: are there any other periodic infinite words
avoiding xxxR?

I Also: are there any aperiodic infinite words avoiding xxxR?

42 / 54

An extended example: avoiding the pattern xxxR

When we search for other primitive words z such that zω avoids
the pattern, we find there are some of length 10:

0010011011 0011011001 0100110110 0110010011 0110110010

1001001101 1001101100 1011001001 1100100110 1101100100

I We notice that each of these words is of the form ww .

I This suggests looking at words of this form.

I The next ones are w = 001001001101100100100, and its
shifts and complements.

43 / 54

An extended example: avoiding the pattern xxxR

I To summarize, here are the solutions we’ve found so far:

w |w |
0 1

00100 5
001001001101100100100 21

I The presence of the numbers 1,5,21 suggests some connection
with the Fibonacci numbers.

I They are F2,F5, and F8.

44 / 54

An aperiodic word avoiding xxxR

I Suppose we take the run-length encodings of the strings of
length 21. One of them looks familiar: 2122121221221. This
is a prefix of the infinite Fibonacci word generated by 2→ 21,
1→ 2.

I This suggests the construction of an infinite aperiodic word
avoiding xxxR : take the infinite Fibonacci word, and use it as
“repetition factors” for 0 and 1 alternating. This gives the
word

R = 001001101101100100110 · · ·

which we conjecture avoids xxxR .

I Can we find an automaton generating this sequence? Yes, but
now it is not based on base-2 representations, but rather
Fibonacci (or “Zeckendorf”) representations.

I “Guess” the automaton and verify it with Walnut.

45 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

We turn to a result of Fraenkel and Simpson (1999). They
computed the exact number of occurrences of all squares
appearing in the finite Fibonacci words Xn.
To solve this using the logical approach, we generalize the problem
to consider any length-n prefix of f.
The total number of square occurrences in f[0..n − 1]:

Ldos := {(n, i , j)F : i +2j ≤ n and f[i ..i +j−1] = f[i +j ..i +2j−1]}.

Let b(n) denote the number of occurrences of squares in
f[0..n − 1]. First, we use the logical method to find a DFA M
accepting Ldos. This (incomplete) DFA has 27 states.

46 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

Next, we compute matrices M0 and M1 as we did before. We get a
linear representation of the sequence b(n):
if x = a1a2 · · · at is the Fibonacci representation of n, then there
are matrices M0,M1 and vectors v ,w such that

b(n) = vMa1 · · ·Mat w
T . (2)

47 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

Now let B(n) denote the number of square occurrences in the
finite Fibonacci word Xn.
This corresponds to considering the Fibonacci representation of the
form 10n−1; that is, B(n + 1) = b([10n]F).
The matrix M0 is the following 27× 27 array

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0


48 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

I M0 has minimal polynomial

X 4(X − 1)2(X + 1)2(X 2 − X − 1)2.

I It follows from the theory of linear recurrences that there are
constants c1, c2, . . . , c8 such that

B(n+1) = (c1n+c2)αn+(c3n+c4)βn+c5n+c6+(c7n+c8)(−1)n

for n ≥ 3, where α = (1 +
√

5)/2, β = (1−
√

5)/2 are the
roots of X 2 − X − 1.

I We can find these constants by computing
B(4),B(5), . . . ,B(11) and then solving for the values of the
constants c1, . . . , c8.

49 / 54

Reproving (and fixing) a result of Fraenkel and Simpson

When we do so, we find

c1 =
2

5
c2 = − 2

25

√
5− 2 c3 =

2

5

c4 =
2

25

√
5− 2 c5 = 1 c6 = 1

c7 = 0 c8 = 0

A little simplification, using the fact that Fn = (αn − βn)/(α− β),
leads to

Theorem
Let B(n) denote the number of square occurrences in Xn. Then

B(n + 1) =
4

5
nFn+1 −

2

5
(n + 6)Fn − 4Fn−1 + n + 1

for n ≥ 3.

This statement corrects a small error in their paper.
50 / 54

Counting cube occurrences in finite Fibonacci words

In a similar way, we can count the cube occurrences in Xn. Using
analysis exactly like the square case, we easily find

Theorem
Let C (n) denote the number of cube occurrences in the Fibonacci
word Xn. Then for n ≥ 3 we have

C (n) = (d1n + d2)αn + (d3n + d4)βn + d5n + d6

where

d1 =
3−
√

5

10
d2 =

17

50

√
5− 3

2

d3 =
3 +
√

5

10
d4 = −17

50

√
5− 3

2
d5 = 1 d6 = −1.

51 / 54

Limits to the approach

I A difficult candidate: abelian properties

I We say that a nonempty word x is an abelian square if it is of
the form ww ′ with |w | = |w ′| and w ′ a permutation of w .
(An example in English is the word reappear.)

I Luke Schaeffer showed that the predicate for abelian
squarefreeness is indeed inexpressible in Th(N,+, 0, 1,Vk).

I However, for some sequences (e.g., Thue-Morse, Fibonacci)
many abelian properties are decidable

52 / 54

Other limits to the approach

I Consider the morphism a→ abcc, b → bcc, c → c.

I The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

I It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

I So the first-order theory Th(N,+, 0, 1, n→ s[n]) is powerful
enough to express the assertion that “n is a square”

I With that, one can express multiplication, and so the theory is
undecidable.

53 / 54

Going even further

I The first-order theory of the paperfolding words (uncountably
many!) is decidable.

I Generalizing to “visibly pushdown automata” (in progress)

I Not quite achieved yet (but soon!): the first-order theory of
the overlap-free binary words is decidable.

I We hope to show: the first-order theory of the characteristic
(and even Sturmian?) words is decidable.

54 / 54

