
The Logical Approach to Automatic Sequences
Part 3: Proving Claims about Automatic Sequences with Walnut

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

https://cs.uwaterloo.ca/~shallit

1 / 49

Deciding properties of automatic sequences with Walnut

As we will see, the logical theory we discussed yesterday is powerful
enough to express many assertions about automatic sequences.

Luckily, Hamoon Mousavi has created a Java prover Walnut that
implements the decision procedure discussed yesterday, and it is
publicly available.

There is also a software manual available that describes its use.

Today, we’ll look at a variety of properties of automatic sequences
and prove them using Walnut.

2 / 49

Ultimate periodicity

We can write a formula for ultimate periodicity of a sequence S as
follows:

∃n ≥ 0 ∃p ≥ 1 ∀j ≥ n S [j] = S [j + p].

When we translate this to Walnut:

– we need not specify n ≥ 0 explicitly, as this is implicit in the
domain N:

– we translate ∃p ≥ 1 · · · to
Ep (p >= 1) & ...

– we translate ∀j ≥ n · · · to
Aj (j >= n) => ...

3 / 49

Checking ultimate periodicity of the Thue-Morse sequence
t

% cd Walnut/bin

% java Main.prover

eval tmup "En Ep (p>=1) & Aj (j >= n) => T[j] = T[j+p]":

Now go and check the file tmup.txt in the directory
Walnut/Result, and it says “false”.

So the Thue-Morse sequence is not ultimately periodic.

4 / 49

Ultimate periodicity

Theorem. If a k-DFAO of n states generates an ultimately
periodic sequence S , then the preperiod and period are bounded by

k3·2
4n2

.

Proof. We can make a DFA accepting those (j , l)k such that
S [j] = S [l] in n2 states. We can enforce (j ≥ n)∧ (l = j + p) using
a total of 4n2 states. Checking ∀j requires some nondeterminism
and another negation, giving 24n

2
. Finally, checking p ≥ 1 takes 3

states, so 3 · 24n2 states. Such an automaton, if it accepts anything
at all, must accept p and n having at most 3 · 24n2 symbols.

Better results: Honkala, Sakarovitch, etc.

5 / 49

Squares

We can write a formula for the orders of squares in a sequence S
as follows:

(n > 0) ∧ ∃i ∀j (j < n) =⇒ S [i + j] = S [i + j + n]

In Walnut, for the Thue-Morse sequence, this is done with the
command
eval tmsq "(n>0) & Ei Aj (j<n) => T[i+j] = T[i+j+n]":

Then we go and look in the Result directory for tmsq.gv.

0

(0)

1(1) 2(0)
(1)

(0)

Thus there are squares of order 2n and 3 · 2n for all n ≥ 0 in the
Thue-Morse sequence. Where are they?

6 / 49

Squares

We can write a formula for the positions and orders of squares in a
sequence S as follows:

(n > 0) ∧ ∀j (j < n) =⇒ S [i + j] = S [i + j + n]

In Walnut, for the Thue-Morse sequence, this is
eval tmsqp "(n>0) & Aj (j<n) => T[i+j] = T[i+j+n]":

Then we go and look in the Result directory for tmsqp.gv.

0

(0,0)

1(1,0)

2

(1,1)

3

(0,0)

(1,0)
(0,0)

(0,0)

(1,0) 4(1,1)

(0,0)

(1,1)

7 / 49

Overlaps

We can write a formula for the orders and positions of overlaps in
a sequence S as follows:

(n ≥ 1) ∧ ∀j (j ≤ n) =⇒ S [i + j] = S [i + j + n]

When we do this in Walnut for the Thue-Morse sequence we type

eval tmover "(n>=1) & Aj (j<=n) => T[i+j] = T[i+j+n]":

which gives an automaton that accepts nothing.

8 / 49

Arbitrary fractional powers

Fractional powers are generalizations of integer powers.

We say a string x is a (`/p)-power if it is of length ` and has
period p.

For example, ionization is a (10/7)-power.

We say a word w avoids α powers, for α > 1 a real number, if w
has no factor that is a (`/p)-power for (`/p) ≥ α.

We say a word w avoid α+ powers if w has no factor that is a
(`/p)-power for (`/p) > α.

Thus, avoiding squares is avoiding 2-powers, and avoiding overlaps
is avoiding 2+-powers.

9 / 49

Arbitrary fractional powers

We can write a formula for a word S avoiding α-powers:

¬(∃i ∃n (n ≥ 1) ∧ ∀j (j + n < αn) =⇒ S [i + j] = S [i + j + n])

or avoiding α+-powers:

¬(∃i ∃n (n ≥ 1) ∧ ∀j (j + n ≤ αn) =⇒ S [i + j] = S [i + j + n])

In order for this to be expressible in our logical theory, we must
have α = `/p for some integers `, p. Then we rewrite

j + n < αn as `j < (p − `)n

and
j + n ≤ αn as `j ≤ (p − `)n.

10 / 49

Arbitrary fractional powers

Example: the Leech sequence:

0→ 0121021201210; 1→ 1202102012021; 2→ 2010210120102

This sequence avoids (15/8)+ powers and has infinitely many
(15/8)-powers. We can create a file named LE.txt in the Word

Automata directory that implements this morphism. Then we say
eval le158 "?msd 13 Ei (n>=1) & Aj (8*j < 7*n) => LE[i+j] = LE[i+j+n]":

After a reasonable delay we get the automaton

0

(0)

1(8)

(0)

which says that there are powers x15/8 for |x | = 8 · 13i and i ≥ 0.

11 / 49

Antisquares

Antisquares are binary words of the form xx , where x means
change 0 to 1 and 1 to 0.

A formula for lengths of antisquares:

Ei (n ≥ 1) ∧ ∀j (j < n) =⇒ S [i + j] 6= S [i + j + n].

12 / 49

Antisquares

Let’s compute antisquare orders for the Rudin-Shapiro sequence in
Walnut:

Ei (n>=1) & Aj (j<n) => RS[i+j]!=RS[i+j+n]

0

(0)

1(1)

2
(0)

3
(1)

(1)

4(0)

(0)

This gives the following orders of antisquares: 2i for i ≥ 0 and 3
and 5.

13 / 49

Palindromes

We can write a formula for the positions of palindromes in a
sequence S as follows:

∃i ∀j (j < n) =⇒ S [i + j] = S [(i + n)− (j + 1)]

When we do this for the Rudin-Shapiro sequence we get

0

(0)

1(1) 2(0)
(1)

3(0)
(1)

4(0)

So the only palindrome lengths in Rudin-Shapiro are

{0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14}.

14 / 49

Maximal palindromes

A maximal palindrome in a word S is a palindrome x such that axa
does not appear in S for any a.

Formula:

∃i (∀j (j < n) =⇒ S [i + j] = S [(i + n)− (j + 1)]) ∧
(∀l (((l > 0) ∧ (∀ m (m < n) =⇒

S [l + m] = S [i + m])) =⇒ (S [l − 1] 6= S [l + n])))

15 / 49

Maximal palindromes

When we do this for the Thue-Morse sequence, we get only the
lengths 3 · 4i for i ≥ 0.

0

(0)

1(1) 2(1) 3(0)
(0)

Exercise: How could you use Walnut to prove that the only
maximal palindromes in the Thue-Morse sequence are µ2n(010)
and µ2n(101) for n ≥ 0?

16 / 49

Reversal-freeness

Formula:

∀i ∀j ∃k (k < n) ∧ S [i + k] 6= S [(j + n)− (k + 1)].

This says that for any word of length n beginning at position i , all
other words beginning at all positions j have their reversal
S [j ..j + n − 1] differing at some position k from S [i ..i + n − 1].

Here is an example: take the morphism defined by

0→ 0001011; 1→ 0010111.

This gives a 7-automatic sequence. We encode this in a file
RSR.txt. Then we use the Walnut command:

17 / 49

Reversal-freeness

?msd 7 Ai Aj Ek (k<n) & RSR[i+k] != RSR[(j+n)-(k+1)]

and we get the automaton below. So the only lengths for which
words and their reversals are both present are 0, 1, 2, 3, 4, 5.

0

(0)
1

(1)

(2)
(3)

(4)
(5)

2

(6)

(0)

(1)

(2)

(3)
(4)
(5)
(6)

(0)
(1)
(2)
(3)
(4)
(5)
(6)

18 / 49

Recurrence

Recall: x is recurrent if every factor that occurs, occurs infinitely
often.

Equivalent to: for every factor that occurs, there is another
occurrence at a higher index. Formula

∀i ∀n ∃j (j > i) ∧ (∀l(l < n) =⇒ S [i + l] = S [j + l]).

19 / 49

Recurrence

When we run
Ai An Ej ((j>i) & (Al (l<n) => T[i+l] = T[j+l]))

in Walnut for the Thue-Morse sequence we get the automaton

0

*

which is Walnut’s way to represent an automaton that accepts
everything with 0 free variables.

20 / 49

Bordered and unbordered factors

A nonempty word x is bordered if there is a nonempty word w and
a possibly empty word t such that x = wtw . For example,
ionization is bordered with border ion.

Formula for S [i ..i + n − 1] being bordered:

∃l (0 < l)∧ (l < n)∧ (∀j (j < l) =⇒ S [i + j] = S [(i + n + j)− l])

In Walnut we can define a macro for this:

def tmbord "El (0<l) & (l<n) & (Aj (j<l) => T[i+j]=T[(i+n+j)-l])":

and then use it by saying
eval tmborders "Ei $tmbord(i,n)":

or
eval tmunbord "Ei ~$tmbord(i,n)":

21 / 49

Bordered factors

When we do this for Thue-Morse we get

0

(0)

1(1) 2(0)
(1)

(0)
(1)

for the lengths of bordered factors of Thue-Morse, which shows
that there is a bordered factor for all lengths > 1.

22 / 49

Unbordered factors

When we do this for unbordered factors we get

0

(0)

1(1)

2
(0)

3

(1)

(0)

(1)

(0)

4(1) 5(0)
(1)

(0)
(1)

for the lengths of unbordered factors of Thue-Morse.

So we have proved: there is an unbordered factor of length n of
the Thue-Morse sequence iff (n)2 6∈ 1(01∗0)∗10∗1. This improves a
2009 result due to Currie and Saari; they proved t has an
unbordered factor of length n if n 6≡ 1 (mod 6).

23 / 49

Balanced words

A word x is balanced if ||y |a − |z |a| ≤ 1 for all equal-length factors
y , z of x and all letters a.

It is not clear how to state this in first-order logic.

Luckily there is an alternative characterization, which is often
quoted as

x is unbalanced iff there exists a palindrome p such that both 0p0
and 1p1 are both factors of x .

But an even simpler characterization is

x is unbalanced iff there exists a word y (not necessarily a
palindrome) such that both 0y0 and 1y1 are both factors of x .

These two characterizations are easily seen to be equivalent.

24 / 49

Balanced words

Here is a formula for unbalanced factors of length n:

(n ≥ 2) ∧ ∃i ∃j (∀k((0 < k) ∧ (k + 1 < n)) =⇒
(S [i + k] = S [j + k])) ∧ S [i] = 0 ∧ S [j] = 1

∧ S [i + n − 1] = 0 ∧ S [j + n − 1] = 1

In Walnut this is
(n>=2) & Ei Ej (Ak ((0<k)&(k+1<n)) => S[i+k] = S[j+k])

& S[i]=@0 & S[i+n-1] = @0 & S[j] = @1 & S[j+n-1] = @1

25 / 49

Rich words

We can count the number of distinct palindromes occurring in a
word.

For example, the word Mississippi has the following distinct
nonempty palindromes in it:

M, i, s, p, ss, pp, sis, issi, ippi, ssiss, ississi

Theorem. Every word of length n contains, as factors, at most n
distinct palindromes.

Proof. For each index p of a word w , consider the palindromes
ending at this index. Suppose at least two palindromes, x and y
occur for the first time ending at p. Then wlog |x | < |y |. So then
x is a suffix of y , so xR = x is a prefix of y , contradicting the
claim that x occurred for the first time ending at p.

So at each position p at most 1 new palindrome can end.

26 / 49

Rich words

We say that a length-n word is rich if it contains, as factors,
exactly n distinct nonempty palindromes.

We can therefore make a formula for the factor S [i ..i + n − 1]
being rich as follows: at each position p there is a palindrome
ending at p that doesn’t occur earlier in that factor.

Exercise. Write a predicate for richness and test it on the
Thue-Morse sequence. You should find that there are no rich
factors of length > 16.

Exercise. Find a 2-automatic sequence where all factors are rich,
and prove it using Walnut.

27 / 49

Primitive words

A nonempty word w is primitive if it cannot be written as xe with
e ≥ 2. So a primitive word is a non-power.

It’s easy to see that a word w is a nontrivial power if and only if
there is some cyclic shift (by 0 < j < |w | positions) of w that is
equal to w . So we can write a formula for S [i ..i + n − 1] being a
power as follows:

∃j , 0 < j < n, ((∀t < n − j S [i + t] = S [i + j + t]) ∧
(∀u < j S [i + u] = S [i + n + u − j]))

A formula for being primitive is just the negation of this.

28 / 49

The “substitute variables” trick

Recall our formula for primitivity:

¬∃j , 0 < j < n, ((∀t < n − j S [i + t] = S [i + j + t]) ∧
(∀u < j S [i + u] = S [i + n + u − j]))

This formula is correct, but indexing the automatic sequence by
four variables (as in i + n + u − j) could be prohibitively expensive
for our algorithm when the underlying automaton has many states.

To reduce the running time, use the substitution of variables
t ′ = i + t and u′ = i + u + n to get

¬∃j , 0 < j < n, ((∀t ′, i ≤ t ′ < n + i − j , S [t ′] = S [t ′ + j]) ∧
(∀u′, n + i ≤ u′ < n + i + j , S [u′ − n] = S [u′ − j]))

This one is about twice as fast for the Thue-Morse sequence.

29 / 49

Privileged words

A word x is privileged if is of length ≤ 1, or it has a border w with
|x |w = 2 that is itself privileged. For example, abracadabra has a
border abra that appears only at the beginning and end. And
abra has a border a that occurs only at the beginning and end.
Finally, a is privileged, and so is abra and so is abracadabra.

As stated it is not obvious that we can state this property in
first-order logic.

However, there is another way to state the property (due to Luke
Schaeffer): a word is privileged if for all n with 1 ≤ n < |w | there
exists a word x of length ≤ n such x is a border of w and there is
exactly one occurrence of x in the first n symbols of w and one
occurrence of x in the last n symbols of w .

Exercise: write a predicate for the privileged property, and run it
on the Thue-Morse word.

30 / 49

Closed words

A word x is called closed if it is of length ≤ 1, or if it has a
border w with |x |w = 2.

For example, alfalfa is a closed word because of the border
alfa. On the other hand, although academia is bordered, it is not
closed.

Theorem. There is a closed factor of the Thue-Morse word t of
every length.

31 / 49

Common factors

Arbitrarily large common factors between two k-automatic
sequences:

∃i ∃j ∀k (k < n) =⇒ R[i + k] = S [j + k]

If two k-automatic sequences, generated by automata of s and t
states, respectively, have a factor of length ` > ... in common, then
they have arbitrarily long factors in common.

32 / 49

Automatic reals and Lehr’s proof of closure under addition

A real number x is said to be k-automatic in base-b if its base-b
expansion mod 1 is generated by a k-DFAO. The set of all such
numbers is written L(k , b).

Example: the Thue-Morse real number

0.0110100110010110 · · ·

is 2-automatic in base 10.

Exercise: how can we show that L(k , b) forms a Q-vector space?
The difficulty comes because carries can come from arbitrarily far
to the right.

33 / 49

Other decidable things: critical exponents

I The critical exponent of a word w is the supremum, over all
factors x of w, of the exponent of x .

I The critical exponent of the Thue-Morse word t is 2.

34 / 49

Representing rational numbers

I Represent rational number α = p/q by pair of integers (p, q),
represented in base k ; pad shorter with leading zeroes

I So representations of rationals are over the alphabet Σk × Σk

I For example, if w = [3, 0][5, 0][2, 4][6, 1] then
[w]10 = (3526, 41).

I Define quok(x) = [π1(x)]k/[π2(x)]k , where πi is the
projection onto the i ’th coordinate

I So quo10(w) = 3526/41 = 86.

I Canonical representations lack leading [0, 0]’s

I Every rational has infinitely many canonical representations,
e.g., as (1, 2), (2, 4), (3, 6), . . ., etc.

35 / 49

Automatic sets over Q≥0

I quok(L) =
⋃

x∈L{quok(x)}

I A ⊆ Q≥0 is a k-automatic set of rationals if A = quok(L) for
some regular language L ⊆ (Σk × Σk)∗.

I not the same notion as the automatic reals of Boigelot,
Brusten, and Bruyère

36 / 49

Examples

Example 1. Let k = 2, B = {[0, 0], [0, 1], [1, 0], [1, 1]}, and
consider

L1 := B∗{[0, 1], [1, 1]}B∗.

Then L1 consists of all pairs of integers where the second
component has at least one nonzero digit — the point being to
avoid division by 0. Then quo2(L) = Q≥0, the set of all
non-negative rational numbers.

Example 2. Consider

L2 = {w ∈ (Σ2
k)∗ : π1(w) ∈ 0∗Ck and π2(w) ∈ 0∗1}.

Then quo2(L2) = N.

37 / 49

Examples

Example 3. Let k = 3, and consider the language

L3 := [0, 1]{[0, 0], [2, 0]}∗.

Then quo3(L3) is the 3-adic Cantor set, the set of all rational
numbers in the “middle-thirds” Cantor set with denominators a
power of 3.

Example 4. Let k = 2, and consider

L4 := [0, 1]{[0, 0], [0, 1]}∗{[1, 0], [1, 1]}.

Then the numerator encodes the integer 1, while the denominator
encodes all positive integers that start with 1. Hence

quo2(L4) = {1

n
: n ≥ 1}.

38 / 49

Examples

Example 5. Let k = 4, and consider

S := {0, 1, 3, 4, 5, 11, 12, 13, . . .}

of all non-negative integers that can be represented using only the
digits 0, 1,−1 in base 4. Consider the language

L5 = {(p, q)4 : p, q ∈ S}.

It is not hard to see that L5 is (Q, 4)-automatic.
The main result in Loxton & van der Poorten [1987] can be
rephrased as follows: quo4(L5) contains every odd integer.
In fact, an integer t is in quo4(L5) if and only if the exponent of
the largest power of 2 dividing t is even.

39 / 49

Examples

Example 6. Consider

L6 = {w ∈ (Σ2
k)∗ : π2(w) ∈ 0∗1+0∗}.

An easy exercise using the Fermat-Euler theorem shows that that
quo2(L6) = Q≥0.

40 / 49

Examples

Example 7. For a word x and letter a let |x |a denote the number
of occurrences of a in x . Consider the regular language

L7 = {w ∈ (Σ2
2) : |π1(w)|1 is even and |π2(w)|1 is odd}.

Then it follows from a result of Schmid [1984] that

quo2(L7) = Q≥0 − {2n : n ∈ Z}.

41 / 49

Basic decidability properties

Given a DFA M accepting a language L representing a set of
rationals S , can decide

I if S = ∅
I given α ∈ Q≥0, whether there exists x ∈ S with x = α (resp.,

x < α, x ≤ α, x > α, x ≥ α, x 6= α, etc.)

I if |S | =∞
I given a finite set F ⊆ Q≥0, if F ⊆ S or if S ⊆ F

I given α ∈ Q≥0, if α is an accumulation point of S

42 / 49

supA is rational or infinite

Given a DFA M accepting L ⊆ (Σk × Σk)∗ representing a set of
rationals A ⊆ Q≥0, what can we say about supA?

Theorem. supA is rational or infinite, and is computable.

Proof ideas: quok(uv iw) forms a monotonic sequence. Defining

γ(u, v) :=
[π1(uv)]k − [π1(u)]k
[π2(uv)]k − [π2(u)]k

one of the following three cases must hold:

(i) quok(uw) < quok(uvw) < quok(uv2w) < · · · < U ;

(ii) quok(uw) = quok(uvw) = quok(uv2w) = · · · = U ;

(iii) quok(uw) > quok(uvw) > quok(uv2w) > · · · > U .

Furthermore, limi→∞ quok(uv iw) = U.
43 / 49

supA is rational or infinite

It follows that if supA is finite, and the DFA M has n states, then
supA = maxT , where

T = T1 ∪ T2

and

T1 = {quok(x) : |x | < n and x ∈ L};
T2 = {γ(u, v) : |uv | ≤ n, |v | ≥ 1, δ(q0, u) = δ(q0, uv),

and there exists w such that uvw ∈ L}.

44 / 49

supA is computable

We know that supA lies in the finite computable set T .

For each of t ∈ T , we can check to see if t ≥ supA by checking if
A ∩ (t,∞) is empty.

Then supA is the least such t.

45 / 49

Computing the critical exponent

- Previously known to be computable for fixed points of uniform
morphisms (Krieger)

Theorem. If w is a k-automatic sequence, then its critical
exponent is rational or infinite. Furthermore, it is computable from
the DFAO M generating w .

Proof sketch. Given M, we can transform it into another
automaton M ′ accepting

{(m, n) : there exists i ≥ 0 such that w[i ..i+m−1] has period n}.

We then apply our algorithm for computing sup(quok(L)) to
L(M ′).

46 / 49

Open Questions

I Extend these ideas to morphic sequences (fixed points of
possibly non-uniform morphisms, followed by a coding)

I Some ideas are extendable to, e.g., the Fibonacci word

I Carton & Thomas proved that (N, <,morphic word) is
decidable

I Which predicates for automatic sequences (like
squarefreeness) are decidable in polynomial time? Leroux has
proved it for ultimate periodicity.

47 / 49

More open problems

I Extend these ideas to “infinite state” automata (i.e., fixed
points of morphism like n→ (an + b, cn + d)) or prove
undecidability

I Is sup{x/y : (x , y)k ∈ L} computable for context-free
languages L?

I Given a regular language L ⊆ (Σk × Σk)∗ representing a set
S ⊆ N× N of pairs of natural numbers, is it decidable if S
contains a pair (p, q) with p | q?

I This is a question of ∃1(N,+,Vk , |); of course Th(N,+, |) is
undecidable and ∃1(N,+, |) is decidable (Lipshitz)

48 / 49

More Open Questions

I Prove or disprove: if L is a regular language with
quok(L) = Q≥0, then L contains infinitely many distinct
representations for infinitely many distinct rational numbers.

Which of the following questions is decidable? Given L
representing a set of rationals S ,

I Is there some rational p/q ∈ S having infinitely many distinct
representations in L?

I Are there infinitely many distinct rationals p/q ∈ S having
infinitely many distinct representations in L?

49 / 49

