The Logical Approach to Automatic Sequences Part 3: Proving Claims about Automatic Sequences with Walnut

Jeffrey Shallit School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 Canada shallit@cs.uwaterloo.ca https://cs.uwaterloo.ca/~shallit

1/49

As we will see, the logical theory we discussed yesterday is powerful enough to express many assertions about automatic sequences.

Luckily, Hamoon Mousavi has created a Java prover Walnut that implements the decision procedure discussed yesterday, and it is publicly available.

There is also a software manual available that describes its use.

Today, we'll look at a variety of properties of automatic sequences and prove them using Walnut. We can write a formula for ultimate periodicity of a sequence S as follows:

$$\exists n \geq 0 \ \exists p \geq 1 \ \forall j \geq n \ S[j] = S[j+p].$$

When we translate this to Walnut:

– we need not specify $n \ge 0$ explicitly, as this is implicit in the domain \mathbb{N} :

– we translate
$$\exists p \geq 1 \cdots$$
 to
Ep (p >= 1) & ...

- we translate
$$\forall j \ge n \cdots$$
 to
Aj (j >= n) => ...

Checking ultimate periodicity of the Thue-Morse sequence **t**

% cd Walnut/bin % java Main.prover eval tmup "En Ep (p>=1) & Aj (j >= n) => T[j] = T[j+p]":

Now go and check the file tmup.txt in the directory Walnut/Result, and it says "false".

So the Thue-Morse sequence is not ultimately periodic.

Theorem. If a *k*-DFAO of *n* states generates an ultimately periodic sequence *S*, then the preperiod and period are bounded by $k^{3 \cdot 2^{4n^2}}$.

Proof. We can make a DFA accepting those $(j, l)_k$ such that S[j] = S[l] in n^2 states. We can enforce $(j \ge n) \land (l = j + p)$ using a total of $4n^2$ states. Checking $\forall j$ requires some nondeterminism and another negation, giving 2^{4n^2} . Finally, checking $p \ge 1$ takes 3 states, so $3 \cdot 2^{4n^2}$ states. Such an automaton, if it accepts anything at all, must accept p and n having at most $3 \cdot 2^{4n^2}$ symbols.

Better results: Honkala, Sakarovitch, etc.

Squares

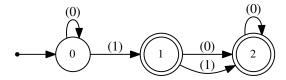
We can write a formula for the orders of squares in a sequence S as follows:

$$(n > 0) \land \exists i \forall j (j < n) \implies S[i+j] = S[i+j+n]$$

In Walnut, for the Thue-Morse sequence, this is done with the command

eval tmsq "(n>0) & Ei Aj (j<n) => T[i+j] = T[i+j+n]":

Then we go and look in the Result directory for tmsq.gv.



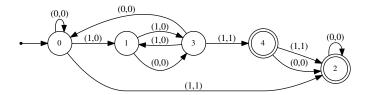
Thus there are squares of order 2^n and $3 \cdot 2^n$ for all $n \ge 0$ in the Thue-Morse sequence. Where are they?

Squares

We can write a formula for the positions and orders of squares in a sequence S as follows:

$$(n > 0) \land \forall j \ (j < n) \implies S[i+j] = S[i+j+n]$$

In Walnut, for the Thue-Morse sequence, this is
 eval tmsqp "(n>0) & Aj (j<n) => T[i+j] = T[i+j+n]":
Then we go and look in the Result directory for tmsqp.gv.



We can write a formula for the orders and positions of overlaps in a sequence S as follows:

$$(n \ge 1) \land \forall j \ (j \le n) \implies S[i+j] = S[i+j+n]$$

When we do this in Walnut for the Thue-Morse sequence we type eval tmover "(n>=1) & Aj (j<=n) => T[i+j] = T[i+j+n]": which gives an automaton that accepts nothing. Fractional powers are generalizations of integer powers.

We say a string x is a (ℓ/p) -power if it is of length ℓ and has period p.

For example, ionization is a (10/7)-power.

We say a word w avoids α powers, for $\alpha > 1$ a real number, if w has no factor that is a (ℓ/p) -power for $(\ell/p) \ge \alpha$.

We say a word w avoid α^+ powers if w has no factor that is a (ℓ/p) -power for $(\ell/p) > \alpha$.

Thus, avoiding squares is avoiding 2-powers, and avoiding overlaps is avoiding 2^+ -powers.

We can write a formula for a word S avoiding α -powers:

 $\neg(\exists i \exists n \ (n \geq 1) \land \forall j \ (j+n < \alpha n) \implies S[i+j] = S[i+j+n])$

or avoiding α^+ -powers:

$$\neg(\exists i \exists n \ (n \ge 1) \land \forall j \ (j+n \le \alpha n) \implies S[i+j] = S[i+j+n])$$

In order for this to be expressible in our logical theory, we must have $\alpha = \ell/p$ for some integers ℓ, p . Then we rewrite

$$j+n as $\ell j<(p-\ell)n$$$

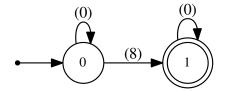
and

$$j+n\leq lpha n$$
 as $\ell j\leq (p-\ell)n.$

<ロト < 部ト < 言ト < 言ト 10 / 49 Example: the Leech sequence:

 $0 \to 0121021201210; \quad 1 \to 1202102012021; \quad 2 \to 2010210120102$

This sequence avoids $(15/8)^+$ powers and has infinitely many (15/8)-powers. We can create a file named LE.txt in the Word Automata directory that implements this morphism. Then we say eval le158 "?msd_13 Ei (n>=1) & Aj (8*j < 7*n) => LE[i+j] = LE[i+j+n]": After a reasonable delay we get the automaton



which says that there are powers $x^{15/8}$ for $|x| = 8 \cdot 13^i$ and $i \ge 0$.

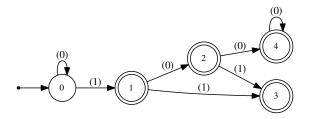
Antisquares are binary words of the form $x\overline{x}$, where \overline{x} means change 0 to 1 and 1 to 0.

A formula for lengths of antisquares:

$$Ei (n \ge 1) \land \forall j (j < n) \implies S[i+j] \neq S[i+j+n].$$

Let's compute antisquare orders for the Rudin-Shapiro sequence in Walnut:

Ei (n>=1) & Aj (j<n) => RS[i+j]!=RS[i+j+n]



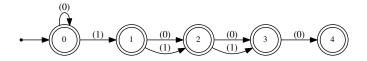
This gives the following orders of antisquares: 2^i for $i \ge 0$ and 3 and 5.

Palindromes

We can write a formula for the positions of palindromes in a sequence S as follows:

$$\exists i \forall j (j < n) \implies S[i+j] = S[(i+n) - (j+1)]$$

When we do this for the Rudin-Shapiro sequence we get



So the only palindrome lengths in Rudin-Shapiro are

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\}.$

A maximal palindrome in a word S is a palindrome x such that axa does not appear in S for any a.

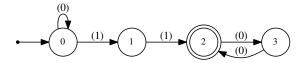
Formula:

$$\exists i \ (\forall j \ (j < n) \implies S[i+j] = S[(i+n) - (j+1)]) \land \\ (\forall l \ (((l > 0) \land (\forall m \ (m < n) \implies \\ S[l+m] = S[i+m])) \implies (S[l-1] \neq S[l+n])))$$

イロン イロン イヨン イヨン 三日

15/49

When we do this for the Thue-Morse sequence, we get only the lengths $3 \cdot 4^i$ for $i \ge 0$.



Exercise: How could you use Walnut to prove that the only maximal palindromes in the Thue-Morse sequence are $\mu^{2n}(010)$ and $\mu^{2n}(101)$ for $n \ge 0$?

Formula:

$$\forall i \ \forall j \ \exists k \ (k < n) \ \land \ S[i+k] \neq S[(j+n) - (k+1)].$$

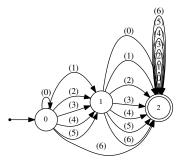
This says that for any word of length n beginning at position i, all other words beginning at all positions j have their reversal S[j..j + n - 1] differing at some position k from S[i..i + n - 1].

Here is an example: take the morphism defined by

$$0
ightarrow 0001011; \qquad 1
ightarrow 0010111.$$

This gives a 7-automatic sequence. We encode this in a file RSR.txt. Then we use the Walnut command:

?msd_7 Ai Aj Ek (k<n) & RSR[i+k] != RSR[(j+n)-(k+1)] and we get the automaton below. So the only lengths for which words and their reversals are both present are 0, 1, 2, 3, 4, 5.



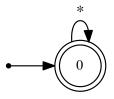
Recall: \mathbf{x} is recurrent if every factor that occurs, occurs infinitely often.

Equivalent to: for every factor that occurs, there is another occurrence at a higher index. Formula

$$\forall i \ \forall n \ \exists j \ (j > i) \land (\forall l(l < n) \implies S[i + l] = S[j + l]).$$

When we run

Ai An Ej ((j>i) & (Al (l<n) => T[i+1] = T[j+1])) in Walnut for the Thue-Morse sequence we get the automaton



which is Walnut's way to represent an automaton that accepts everything with 0 free variables.

A nonempty word x is bordered if there is a nonempty word w and a possibly empty word t such that x = wtw. For example, ionization is bordered with border ion.

Formula for S[i..i + n - 1] being bordered:

 $\exists l \ (0 < l) \land (l < n) \land (\forall j \ (j < l) \implies S[i+j] = S[(i+n+j)-l])$

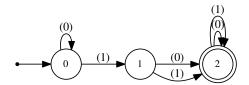
In Walnut we can define a macro for this:

def tmbord "E1 (0<1) & (1<n) & (Aj (j<1) => T[i+j]=T[(i+n+j)-1])":
 and then use it by saying
 eval tmborders "Ei \$tmbord(i,n)":

or

```
eval tmunbord "Ei ~$tmbord(i,n)":
```

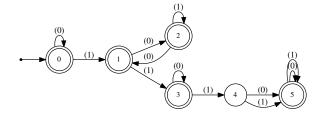
When we do this for Thue-Morse we get



for the lengths of bordered factors of Thue-Morse, which shows that there is a bordered factor for all lengths > 1.

Unbordered factors

When we do this for unbordered factors we get



for the lengths of unbordered factors of Thue-Morse.

So we have proved: there is an unbordered factor of length *n* of the Thue-Morse sequence iff $(n)_2 \notin 1(01^*0)^*10^*1$. This improves a 2009 result due to Currie and Saari; they proved **t** has an unbordered factor of length *n* if $n \not\equiv 1 \pmod{6}$.

A word x is *balanced* if $||y|_a - |z|_a| \le 1$ for all equal-length factors y, z of x and all letters a.

It is not clear how to state this in first-order logic.

Luckily there is an alternative characterization, which is often quoted as

x is unbalanced iff there exists a palindrome p such that both 0p0 and 1p1 are both factors of x .

But an even simpler characterization is

x is unbalanced iff there exists a word y (not necessarily a palindrome) such that both 0y0 and 1y1 are both factors of x.

These two characterizations are easily seen to be equivalent.

Here is a formula for unbalanced factors of length *n*:

$$(n \ge 2) \land \exists i \exists j (\forall k((0 < k) \land (k + 1 < n)) \Longrightarrow$$
$$(S[i + k] = S[j + k])) \land S[i] = 0 \land S[j] = 1$$
$$\land S[i + n - 1] = 0 \land S[j + n - 1] = 1$$

In Walnut this is
(n>=2) & Ei Ej (Ak ((0<k)&(k+1<n)) => S[i+k] = S[j+k])
& S[i]=@0 & S[i+n-1] = @0 & S[j] = @1 & S[j+n-1] = @1

We can count the number of distinct palindromes occurring in a word.

For example, the word Mississippi has the following distinct nonempty palindromes in it:

M, i, s, p, ss, pp, sis, issi, ippi, ssiss, ississi

Theorem. Every word of length n contains, as factors, at most n distinct palindromes.

Proof. For each index p of a word w, consider the palindromes ending at this index. Suppose at least two palindromes, x and y occur for the first time ending at p. Then wlog |x| < |y|. So then x is a suffix of y, so $x^R = x$ is a prefix of y, contradicting the claim that x occurred for the first time ending at p.

So at each position p at most 1 new palindrome can end.

We say that a length-n word is rich if it contains, as factors, exactly n distinct nonempty palindromes.

We can therefore make a formula for the factor S[i..i + n - 1] being rich as follows: at each position p there is a palindrome ending at p that doesn't occur earlier in that factor.

Exercise. Write a predicate for richness and test it on the Thue-Morse sequence. You should find that there are no rich factors of length > 16.

Exercise. Find a 2-automatic sequence where all factors are rich, and prove it using Walnut.

A nonempty word w is *primitive* if it cannot be written as x^e with $e \ge 2$. So a primitive word is a non-power.

It's easy to see that a word w is a nontrivial power if and only if there is some cyclic shift (by 0 < j < |w| positions) of w that is equal to w. So we can write a formula for S[i..i + n - 1] being a power as follows:

$$\exists j, \ 0 < j < n, \ ((\forall t < n - j \ S[i + t] = S[i + j + t]) \land \\ (\forall u < j \ S[i + u] = S[i + n + u - j]))$$

A formula for being primitive is just the negation of this.

Recall our formula for primitivity:

$$\neg \exists j, \ 0 < j < n, \ ((\forall t < n-j \ S[i+t] = S[i+j+t]) \land \\ (\forall u < j \ S[i+u] = S[i+n+u-j]))$$

This formula is correct, but indexing the automatic sequence by four variables (as in i + n + u - j) could be prohibitively expensive for our algorithm when the underlying automaton has many states.

To reduce the running time, use the substitution of variables t' = i + t and u' = i + u + n to get

$$eggin{aligned}
eggin{aligned}
egg$$

This one is about twice as fast for the Thue-Morse sequence.

A word x is *privileged* if is of length ≤ 1 , or it has a border w with $|x|_w = 2$ that is itself privileged. For example, abracadabra has a border abra that appears only at the beginning and end. And abra has a border a that occurs only at the beginning and end. Finally, a is privileged, and so is abra and so is abracadabra.

As stated it is not obvious that we can state this property in first-order logic.

However, there is another way to state the property (due to Luke Schaeffer): a word is privileged if for all n with $1 \le n < |w|$ there exists a word x of length $\le n$ such x is a border of w and there is exactly one occurrence of x in the first n symbols of w and one occurrence of x in the last n symbols of w.

Exercise: write a predicate for the privileged property, and run it on the Thue-Morse word.

A word x is called closed if it is of length ≤ 1 , or if it has a border w with $|x|_w = 2$.

For example, alfalfa is a closed word because of the border alfa. On the other hand, although academia is bordered, it is not closed.

Theorem. There is a closed factor of the Thue-Morse word **t** of every length.

Arbitrarily large common factors between two *k*-automatic sequences:

$$\exists i \; \exists j \; \forall k \; (k < n) \implies R[i + k] = S[j + k]$$

If two *k*-automatic sequences, generated by automata of *s* and *t* states, respectively, have a factor of length $\ell > \dots$ in common, then they have arbitrarily long factors in common.

A real number x is said to be k-automatic in base-b if its base-b expansion mod 1 is generated by a k-DFAO. The set of all such numbers is written L(k, b).

Example: the Thue-Morse real number

0.0110100110010110 · · ·

is 2-automatic in base 10.

Exercise: how can we show that L(k, b) forms a Q-vector space? The difficulty comes because carries can come from arbitrarily far to the right.

- The critical exponent of a word w is the supremum, over all factors x of w, of the exponent of x.
- ► The critical exponent of the Thue-Morse word **t** is 2.

Representing rational numbers

- ▶ Represent rational number α = p/q by pair of integers (p, q), represented in base k; pad shorter with leading zeroes
- So representations of rationals are over the alphabet $\Sigma_k imes \Sigma_k$
- For example, if w = [3,0][5,0][2,4][6,1] then [w]₁₀ = (3526,41).
- Define quo_k(x) = [π₁(x)]_k/[π₂(x)]_k, where π_i is the projection onto the i'th coordinate
- So $quo_{10}(w) = 3526/41 = 86$.
- Canonical representations lack leading [0,0]'s
- Every rational has infinitely many canonical representations, e.g., as (1,2), (2,4), (3,6),..., etc.

- $quo_k(L) = \bigcup_{x \in L} \{quo_k(x)\}$
- A ⊆ Q^{≥0} is a k-automatic set of rationals if A = quo_k(L) for some regular language L ⊆ (Σ_k × Σ_k)*.

(日) (四) (注) (注) (三)

36 / 49

 not the same notion as the automatic reals of Boigelot, Brusten, and Bruyère **Example 1.** Let k = 2, $B = \{[0,0], [0,1], [1,0], [1,1]\}$, and consider

$$L_1 := B^* \{ [0,1], [1,1] \} B^*.$$

Then L_1 consists of all pairs of integers where the second component has at least one nonzero digit — the point being to avoid division by 0. Then $quo_2(L) = \mathbb{Q}^{\geq 0}$, the set of all non-negative rational numbers.

Example 2. Consider

$$L_2 = \{w \in (\Sigma_k^2)^* \, : \, \pi_1(w) \in 0^* C_k \, \, ext{and} \, \, \pi_2(w) \in 0^* 1 \}.$$

Then $quo_2(L_2) = \mathbb{N}$.

Examples

Example 3. Let k = 3, and consider the language

 $L_3:=[0,1]\{[0,0],[2,0]\}^*.$

Then $quo_3(L_3)$ is the 3-adic Cantor set, the set of all rational numbers in the "middle-thirds" Cantor set with denominators a power of 3.

Example 4. Let k = 2, and consider

$$L_4 := [0,1]\{[0,0],[0,1]\}^*\{[1,0],[1,1]\}.$$

Then the numerator encodes the integer 1, while the denominator encodes all positive integers that start with 1. Hence

$$quo_2(L_4) = \{\frac{1}{n} : n \ge 1\}.$$

38 / 49

Example 5. Let k = 4, and consider

$$S := \{0, 1, 3, 4, 5, 11, 12, 13, \ldots\}$$

of all non-negative integers that can be represented using only the digits 0, 1, -1 in base 4. Consider the language

$$L_5 = \{(p,q)_4 : p,q \in S\}.$$

It is not hard to see that L_5 is $(\mathbb{Q}, 4)$ -automatic. The main result in Loxton & van der Poorten [1987] can be rephrased as follows: $quo_4(L_5)$ contains every odd integer. In fact, an integer t is in $quo_4(L_5)$ if and only if the exponent of the largest power of 2 dividing t is even.

Example 6. Consider

$$L_6 = \{ w \in (\Sigma_k^2)^* : \pi_2(w) \in 0^* 1^+ 0^* \}.$$

An easy exercise using the Fermat-Euler theorem shows that that $\mathsf{quo}_2(\mathcal{L}_6)=\mathbb{Q}^{\geq 0}.$

Example 7. For a word x and letter a let $|x|_a$ denote the number of occurrences of a in x. Consider the regular language

 $L_7 = \{ w \in (\Sigma_2^2) : |\pi_1(w)|_1 \text{ is even and } |\pi_2(w)|_1 \text{ is odd} \}.$

Then it follows from a result of Schmid [1984] that

$$quo_2(L_7) = \mathbb{Q}^{\geq 0} - \{2^n : n \in \mathbb{Z}\}.$$

(ロ) (個) (目) (目) 目) の

41 / 49

Given a DFA M accepting a language L representing a set of rationals S, can decide

- if $S = \emptyset$
- ▶ given $\alpha \in \mathbb{Q}^{\geq 0}$, whether there exists $x \in S$ with $x = \alpha$ (resp., $x < \alpha, x \leq \alpha, x > \alpha, x \geq \alpha, x \neq \alpha$, etc.)
- if $|S| = \infty$
- given a finite set $F \subseteq \mathbb{Q}^{\geq 0}$, if $F \subseteq S$ or if $S \subseteq F$
- given $\alpha \in \mathbb{Q}^{\geq 0}$, if α is an accumulation point of S

$\sup A$ is rational or infinite

Given a DFA *M* accepting $L \subseteq (\Sigma_k \times \Sigma_k)^*$ representing a set of rationals $A \subseteq \mathbb{Q}^{\geq 0}$, what can we say about sup *A*?

Theorem. sup *A* is rational or infinite, and is computable.

Proof ideas: $quo_k(uv^iw)$ forms a monotonic sequence. Defining

$$\gamma(u, v) := \frac{[\pi_1(uv)]_k - [\pi_1(u)]_k}{[\pi_2(uv)]_k - [\pi_2(u)]_k}$$

one of the following three cases must hold:

(i)
$$\operatorname{quo}_k(uw) < \operatorname{quo}_k(uvw) < \operatorname{quo}_k(uv^2w) < \cdots < U$$
;
(ii) $\operatorname{quo}_k(uw) = \operatorname{quo}_k(uvw) = \operatorname{quo}_k(uv^2w) = \cdots = U$;
(iii) $\operatorname{quo}_k(uw) > \operatorname{quo}_k(uvw) > \operatorname{quo}_k(uv^2w) > \cdots > U$.

Furthermore, $\lim_{i\to\infty} quo_k(uv^iw) = U$.

It follows that if sup A is finite, and the DFA M has n states, then $\sup A = \max T$, where

$$T=T_1 \cup T_2$$

and

$$T_1 = \{ quo_k(x) : |x| < n \text{ and } x \in L \};$$

$$T_2 = \{ \gamma(u, v) : |uv| \le n, |v| \ge 1, \ \delta(q_0, u) = \delta(q_0, uv),$$

and there exists w such that $uvw \in L \}.$

イロト イロト イヨト イヨト 二日

44 / 49

We know that $\sup A$ lies in the finite computable set T.

For each of $t \in T$, we can check to see if $t \ge \sup A$ by checking if $A \cap (t, \infty)$ is empty.

Then $\sup A$ is the least such t.

- Previously known to be computable for fixed points of uniform morphisms (Krieger)

Theorem. If w is a *k*-automatic sequence, then its critical exponent is rational or infinite. Furthermore, it is computable from the DFAO *M* generating *w*.

Proof sketch. Given M, we can transform it into another automaton M' accepting

 $\{(m, n) : \text{there exists } i \ge 0 \text{ such that } \mathbf{w}[i..i+m-1] \text{ has period } n\}.$

We then apply our algorithm for computing $\sup(quo_k(L))$ to L(M').

- Extend these ideas to morphic sequences (fixed points of possibly non-uniform morphisms, followed by a coding)
 - ► Some ideas are extendable to, e.g., the Fibonacci word
 - ► Carton & Thomas proved that (N, <, morphic word) is decidable</p>
- Which predicates for automatic sequences (like squarefreeness) are decidable in polynomial time? Leroux has proved it for ultimate periodicity.

- ► Extend these ideas to "infinite state" automata (i.e., fixed points of morphism like n → (an + b, cn + d)) or prove undecidability
- Is sup{x/y : (x, y)_k ∈ L} computable for context-free languages L?
- Given a regular language L ⊆ (Σ_k × Σ_k)* representing a set S ⊆ N × N of pairs of natural numbers, is it decidable if S contains a pair (p, q) with p | q?
 - This is a question of ∃¹(N, +, V_k, |); of course Th(N, +, |) is undecidable and ∃¹(N, +, |) is decidable (Lipshitz)

► Prove or disprove: if L is a regular language with quo_k(L) = Q^{≥0}, then L contains infinitely many distinct representations for infinitely many distinct rational numbers.

Which of the following questions is decidable? Given L representing a set of rationals S,

- ► Is there some rational p/q ∈ S having infinitely many distinct representations in L?
- ► Are there infinitely many distinct rationals p/q ∈ S having infinitely many distinct representations in L?