As we will see, the logical theory we discussed yesterday is powerful enough to express many assertions about automatic sequences. Luckily, Hamoon Mousavi has created a Java prover Walnut that implements the decision procedure discussed yesterday, and it is publicly available.

There is also a software manual available that describes its use.

Today, we'll look at a variety of properties of automatic sequences and prove them using Walnut.
We can write a formula for ultimate periodicity of a sequence S as follows:

$$\exists n \geq 0 \ \exists p \geq 1 \ \forall j \geq n \ S[j] = S[j + p].$$

When we translate this to Walnut:

– we need not specify $n \geq 0$ explicitly, as this is implicit in the domain \mathbb{N}:

– we translate $\exists p \geq 1 \ldots$ to

$$\text{Ep \ (p \geq 1)} \ & \ldots$$

– we translate $\forall j \geq n \ldots$ to

$$\text{Aj \ (j \geq n)} \Rightarrow \ldots$$
% cd Walnut/bin
% java Main.prover
eval tmup "En Ep (p>=1) & Aj (j >= n) => T[j] = T[j+p]":

Now go and check the file tmup.txt in the directory Walnut/Result, and it says “false”.

So the Thue-Morse sequence is not ultimately periodic.
Theorem. If a k-DFAO of n states generates an ultimately periodic sequence S, then the preperiod and period are bounded by $k^3 \cdot 2^{4n^2}$.

Proof. We can make a DFA accepting those $(j, l)_k$ such that $S[j] = S[l]$ in n^2 states. We can enforce $(j \geq n) \land (l = j + p)$ using a total of $4n^2$ states. Checking $\forall j$ requires some nondeterminism and another negation, giving 2^{4n^2}. Finally, checking $p \geq 1$ takes 3 states, so $3 \cdot 2^{4n^2}$ states. Such an automaton, if it accepts anything at all, must accept p and n having at most $3 \cdot 2^{4n^2}$ symbols.

Better results: Honkala, Sakarovitch, etc.
Squares

We can write a formula for the orders of squares in a sequence S as follows:

$$(n > 0) \land \exists i \ \forall j \ (j < n) \implies S[i + j] = S[i + j + n]$$

In Walnut, for the Thue-Morse sequence, this is done with the command

eval tmsq "(n>0) & Ei Aj (j<n) => T[i+j] = T[i+j+n]":

Then we go and look in the Result directory for tmsq.gv.

Thus there are squares of order 2^n and $3 \cdot 2^n$ for all $n \geq 0$ in the Thue-Morse sequence. Where are they?
We can write a formula for the positions and orders of squares in a sequence S as follows:

$$(n > 0) \land \forall j \ (j < n) \implies S[i + j] = S[i + j + n]$$

In Walnut, for the Thue-Morse sequence, this is

```
 eval tmsqp "(n>0) & Aj (j<n) => T[i+j] = T[i+j+n]"
```

Then we go and look in the Result directory for `tmsqp.gv`.

```
 0
(0,0)
1(1,0)
2
(1,1)
3
(0,0)
(1,0)
4
(1,0)
(0,0)
(0,0)
(0,0)
(1,0)  4(1,1)
(0,0)
(1,1)
```

7 / 49
We can write a formula for the orders and positions of overlaps in a sequence S as follows:

$$(n \geq 1) \land \forall j \ (j \leq n) \implies S[i + j] = S[i + j + n]$$

When we do this in Walnut for the Thue-Morse sequence we type

```
eval tmover "(n>=1) & Aj (j<=n) => T[i+j] = T[i+j+n]"
```

which gives an automaton that accepts nothing.
Fractional powers are generalizations of integer powers.

We say a string x is a $((\ell/p))$-power if it is of length ℓ and has period p.

For example, ionization is a $(10/7)$-power.

We say a word w avoids α powers, for $\alpha > 1$ a real number, if w has no factor that is a $((\ell/p))$-power for $((\ell/p)) \geq \alpha$.

We say a word w avoid α^+ powers if w has no factor that is a $((\ell/p))$-power for $((\ell/p)) > \alpha$.

Thus, avoiding squares is avoiding 2-powers, and avoiding overlaps is avoiding 2^+-powers.
Arbitrary fractional powers

We can write a formula for a word S avoiding α-powers:

$$\neg (\exists i \exists n (n \geq 1) \land \forall j (j + n < \alpha n) \implies S[i + j] = S[i + j + n])$$

or avoiding α^+-powers:

$$\neg (\exists i \exists n (n \geq 1) \land \forall j (j + n \leq \alpha n) \implies S[i + j] = S[i + j + n])$$

In order for this to be expressible in our logical theory, we must have $\alpha = \ell/p$ for some integers ℓ, p. Then we rewrite

$$j + n < \alpha n \quad \text{as} \quad \ell j < (p - \ell)n$$

and

$$j + n \leq \alpha n \quad \text{as} \quad \ell j \leq (p - \ell)n.$$
Example: the Leech sequence:

\[0 \rightarrow 0121021201210; \quad 1 \rightarrow 1202102012021; \quad 2 \rightarrow 2010210120102\]

This sequence avoids \((15/8)^+\) powers and has infinitely many \((15/8)\)-powers. We can create a file named LE.txt in the Word Automata directory that implements this morphism. Then we say eval le158 "?msd.13 Ei (n>=1) & Aj (8*j < 7*n) => LE[i+j] = LE[i+j+n]": After a reasonable delay we get the automaton

which says that there are powers \(x^{15/8}\) for \(|x| = 8 \cdot 13^i\) and \(i \geq 0\).
Antisquares

Antisquares are binary words of the form $x\overline{x}$, where \overline{x} means change 0 to 1 and 1 to 0.

A formula for lengths of antisquares:

$$Ei \ (n \geq 1) \land \forall j \ (j < n) \implies S[i + j] \neq S[i + j + n].$$
Let's compute antisquare orders for the Rudin-Shapiro sequence in Walnut:

\[E_i \ (n \geq 1) \& A_j \ (j < n) \Rightarrow RS[i+j] \neq RS[i+j+n] \]

This gives the following orders of antisquares: \(2^i \) for \(i \geq 0 \) and 3 and 5.
We can write a formula for the positions of palindromes in a sequence S as follows:

$$\exists i \ \forall j \ (j < n) \implies S[i + j] = S[(i + n) - (j + 1)]$$

When we do this for the Rudin-Shapiro sequence we get

So the only palindrome lengths in Rudin-Shapiro are

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14\}.$$
A *maximal palindrome* in a word S is a palindrome x such that axa does not appear in S for any a.

Formula:

$$\exists i \ (\forall j \ (j < n) \implies S[i + j] = S[(i + n) - (j + 1)]) \land$$

$$\left(\forall l \ (((l > 0) \land (\forall m \ (m < n) \implies S[l + m] = S[i + m])) \implies (S[l - 1] \neq S[l + n])) \right)$$
Maximal palindromes

When we do this for the Thue-Morse sequence, we get only the lengths $3 \cdot 4^i$ for $i \geq 0$.

Exercise: How could you use Walnut to prove that the only maximal palindromes in the Thue-Morse sequence are $\mu^{2n}(010)$ and $\mu^{2n}(101)$ for $n \geq 0$?
Reversal-freeness

Formula:

$$\forall i \forall j \exists k \ (k < n) \land S[i + k] \neq S[(j + n) - (k + 1)].$$

This says that for any word of length n beginning at position i, all other words beginning at all positions j have their reversal $S[j..j + n - 1]$ differing at some position k from $S[i..i + n - 1]$.

Here is an example: take the morphism defined by

$$0 \rightarrow 0001011; \quad 1 \rightarrow 0010111.$$

This gives a 7-automatic sequence. We encode this in a file RSR.txt. Then we use the Walnut command:
?msd_7 A_i A_j E_k (k<n) & RSR[i+k] != RSR[(j+n)-(k+1)]

and we get the automaton below. So the only lengths for which words and their reversals are both present are 0, 1, 2, 3, 4, 5.
Recurrence

Recall: x is recurrent if every factor that occurs, occurs infinitely often.

Equivalent to: for every factor that occurs, there is another occurrence at a higher index. Formula

$$\forall i \forall n \exists j \ (j > i) \land (\forall l (l < n) \implies S[i + l] = S[j + l]).$$
When we run

\[\text{Ai An Ej (}(j>i) \& (\text{Al (}l<n) \implies T[i+1] = T[j+1])) \]

in Walnut for the Thue-Morse sequence we get the automaton

![Automaton Diagram]

which is Walnut’s way to represent an automaton that accepts everything with 0 free variables.
A nonempty word \(x \) is bordered if there is a nonempty word \(w \) and a possibly empty word \(t \) such that \(x = wtw \). For example, ionization is bordered with border ion.

Formula for \(S[i..i+n-1] \) being bordered:

\[
\exists l \ (0 < l) \land (l < n) \land (\forall j \ (j < l) \implies S[i+j] = S[(i+n+j) - l])
\]

In Walnut we can define a macro for this:

```walnut
def tmbord "El (0<l) & (l<n) & (Aj (j<l) => T[i+j]=T[(i+n+j)-l] )":
and then use it by saying
  eval tmborders "Ei $tmbord(i,n)":

or
  eval tmunbord "Ei ~$tmbord(i,n)":
```
Bordered factors

When we do this for Thue-Morse we get

for the lengths of bordered factors of Thue-Morse, which shows that there is a bordered factor for all lengths > 1.
When we do this for unbordered factors we get

for the lengths of unbordered factors of Thue-Morse.

So we have proved: there is an unbordered factor of length n of the Thue-Morse sequence iff $(n)_2 \not\in 1(01^*0)^*10^*1$. This improves a 2009 result due to Currie and Saari; they proved t has an unbordered factor of length n if $n \not\equiv 1 \pmod{6}$.
A word x is *balanced* if $|y_a - z_a| \leq 1$ for all equal-length factors y, z of x and all letters a.

It is not clear how to state this in first-order logic.

Luckily there is an alternative characterization, which is often quoted as

x is unbalanced iff there exists a palindrome p such that both $0p0$ and $1p1$ are both factors of x.

But an even simpler characterization is

x is unbalanced iff there exists a word y (not necessarily a palindrome) such that both $0y0$ and $1y1$ are both factors of x.

These two characterizations are easily seen to be equivalent.
Balanced words

Here is a formula for unbalanced factors of length n:

$$(n \geq 2) \land \exists i \exists j \ (\forall k((0 < k) \land (k + 1 < n)) \implies (S[i + k] = S[j + k])) \land S[i] = 0 \land S[j] = 1$$

$$\land S[i + n - 1] = 0 \land S[j + n - 1] = 1$$

In Walnut this is

$$(n \geq 2) \& Ei \ Ej (Ak ((0<k)\&(k+1<n)) \Rightarrow S[i+k] = S[j+k])$$

$$\& S[i]=@0 \land S[i+n-1] = @0 \land S[j] = @1 \land S[j+n-1] = @1$$
We can count the number of distinct palindromes occurring in a word.

For example, the word *Mississippi* has the following distinct nonempty palindromes in it:

\[M, i, s, p, ss, pp, sis, issi, ippi, ssiss, ississi \]

Theorem. Every word of length \(n \) contains, as factors, at most \(n \) distinct palindromes.

Proof. For each index \(p \) of a word \(w \), consider the palindromes ending at this index. Suppose at least two palindromes, \(x \) and \(y \) occur for the first time ending at \(p \). Then wlog \(|x| < |y| \). So then \(x \) is a suffix of \(y \), so \(x^R = x \) is a prefix of \(y \), contradicting the claim that \(x \) occurred for the first time ending at \(p \).

So at each position \(p \) at most 1 new palindrome can end.
We say that a length-\(n\) word is rich if it contains, as factors, exactly \(n\) distinct nonempty palindromes.

We can therefore make a formula for the factor \(S[i..i + n - 1]\) being rich as follows: at each position \(p\) there is a palindrome ending at \(p\) that doesn’t occur earlier in that factor.

Exercise. Write a predicate for richness and test it on the Thue-Morse sequence. You should find that there are no rich factors of length > 16.

Exercise. Find a 2-automatic sequence where all factors are rich, and prove it using Walnut.
A nonempty word w is \textit{primitive} if it cannot be written as x^e with $e \geq 2$. So a primitive word is a non-power.

It’s easy to see that a word w is a nontrivial power if and only if there is some cyclic shift (by $0 \leq j < |w|$ positions) of w that is equal to w. So we can write a formula for $S[i..i + n - 1]$ being a power as follows:

$$\exists j, 0 < j < n, ((\forall t < n - j \ S[i + t] = S[i + j + t]) \land \ (\forall u < j \ S[i + u] = S[i + n + u - j]))$$

A formula for being primitive is just the negation of this.
The "substitute variables" trick

Recall our formula for primitivity:

\[\neg \exists j, \ 0 < j < n, \ ((\forall t < n - j \ S[i + t] = S[i + j + t]) \wedge (\forall u < j \ S[i + u] = S[i + n + u - j])) \]

This formula is correct, but indexing the automatic sequence by four variables (as in \(i + n + u - j \)) could be prohibitively expensive for our algorithm when the underlying automaton has many states.

To reduce the running time, use the substitution of variables \(t' = i + t \) and \(u' = i + u + n \) to get

\[\neg \exists j, \ 0 < j < n, \ ((\forall t', \ i \leq t' < n + i - j, \ S[t'] = S[t' + j]) \wedge (\forall u', \ n + i \leq u' < n + i + j, \ S[u' - n] = S[u' - j])) \]

This one is about twice as fast for the Thue-Morse sequence.
Privileged words

A word x is *privileged* if is of length ≤ 1, or it has a border w with $|x|_w = 2$ that is itself privileged. For example, abracadabra has a border abra that appears only at the beginning and end. And abra has a border a that occurs only at the beginning and end. Finally, a is privileged, and so is abra and so is abracadabra.

As stated it is not obvious that we can state this property in first-order logic.

However, there is another way to state the property (due to Luke Schaeffer): a word is privileged if for all n with $1 \leq n < |w|$ there exists a word x of length $\leq n$ such x is a border of w and there is exactly one occurrence of x in the first n symbols of w and one occurrence of x in the last n symbols of w.

Exercise: write a predicate for the privileged property, and run it on the Thue-Morse word.
A word x is called closed if it is of length ≤ 1, or if it has a border w with $|x|_w = 2$.

For example, alfalfa is a closed word because of the border alfa. On the other hand, although academia is bordered, it is not closed.

Theorem. There is a closed factor of the Thue-Morse word t of every length.
Arbitrarily large common factors between two \(k \)-automatic sequences:

\[
\exists i \ \exists j \ \forall k \ (k < n) \implies R[i + k] = S[j + k]
\]

If two \(k \)-automatic sequences, generated by automata of \(s \) and \(t \) states, respectively, have a factor of length \(\ell > \ldots \) in common, then they have arbitrarily long factors in common.
A real number x is said to be k-automatic in base-b if its base-b expansion mod 1 is generated by a k-DFAO. The set of all such numbers is written $L(k, b)$.

Example: the Thue-Morse real number

$$0.0110100110010110 \cdots$$

is 2-automatic in base 10.

Exercise: how can we show that $L(k, b)$ forms a \mathbb{Q}-vector space? The difficulty comes because carries can come from arbitrarily far to the right.
The *critical exponent* of a word w is the supremum, over all factors x of w, of the exponent of x.

- The critical exponent of the Thue-Morse word t is 2.
Representing rational numbers

- Represent rational number $\alpha = p/q$ by pair of integers (p, q), represented in base k; pad shorter with leading zeroes.
- So representations of rationals are over the alphabet $\Sigma_k \times \Sigma_k$.
- For example, if $w = [3, 0][5, 0][2, 4][6, 1]$ then $[w]_{10} = (3526, 41)$.
- Define $\text{quo}_k(x) = [\pi_1(x)]_k/[\pi_2(x)]_k$, where π_i is the projection onto the i’th coordinate.
- So $\text{quo}_{10}(w) = 3526/41 = 86$.
- Canonical representations lack leading $[0, 0]$’s.
- Every rational has infinitely many canonical representations, e.g., as $(1, 2), (2, 4), (3, 6), \ldots,$ etc.
Automatic sets over $\mathbb{Q}^\geq 0$

- $\text{quo}_k(L) = \bigcup_{x \in L} \{\text{quo}_k(x)\}$

- $A \subseteq \mathbb{Q}^\geq 0$ is a k-automatic set of rationals if $A = \text{quo}_k(L)$ for some regular language $L \subseteq (\Sigma_k \times \Sigma_k)^*$.

- *not* the same notion as the automatic reals of Boigelot, Brusten, and Bruyère
Example 1. Let $k = 2$, $B = \{[0, 0], [0, 1], [1, 0], [1, 1]\}$, and consider

$$L_1 := B^* \{[0, 1], [1, 1]\} B^*.$$

Then L_1 consists of all pairs of integers where the second component has at least one nonzero digit — the point being to avoid division by 0. Then $\text{quo}_k(L) = \mathbb{Q}_{\geq 0}$, the set of all non-negative rational numbers.

Example 2. Consider

$$L_2 = \{w \in (\Sigma_k^2)^* : \pi_1(w) \in 0^* C_k \text{ and } \pi_2(w) \in 0^* 1\}.$$

Then $\text{quo}_k(L_2) = \mathbb{N}$.
Examples

Example 3. Let $k = 3$, and consider the language

$$L_3 := [0, 1]\{[0, 0], [2, 0]\}^*.$$

Then $\text{quo}_k(L_3)$ is the 3-adic Cantor set, the set of all rational numbers in the “middle-thirds” Cantor set with denominators a power of 3.

Example 4. Let $k = 2$, and consider

$$L_4 := [0, 1]\{[0, 0], [0, 1]\}^*\{[1, 0], [1, 1]\}.$$

Then the numerator encodes the integer 1, while the denominator encodes all positive integers that start with 1. Hence

$$\text{quo}_k(L_4) = \left\{\frac{1}{n} : n \geq 1\right\}.$$
Example 5. Let $k = 4$, and consider

$$S := \{0, 1, 3, 4, 5, 11, 12, 13, \ldots \}$$

of all non-negative integers that can be represented using only the digits 0, 1, −1 in base 4. Consider the language

$$L_5 = \{(p, q)_4 : p, q \in S\}.$$

It is not hard to see that L_5 is $(\mathbb{Q}, 4)$-automatic. The main result in Loxton & van der Poorten [1987] can be rephrased as follows: $\text{quo}_4(L_5)$ contains every odd integer. In fact, an integer t is in $\text{quo}_4(L_5)$ if and only if the exponent of the largest power of 2 dividing t is even.
Example 6. Consider

\[L_6 = \{ w \in (\Sigma_k^2)^* : \pi_2(w) \in 0^*1^+0^* \}. \]

An easy exercise using the Fermat-Euler theorem shows that that \(\text{quo}_k(L_6) = \mathbb{Q}^{\geq 0} \).
Example 7. For a word x and letter a let $|x|_a$ denote the number of occurrences of a in x. Consider the regular language

$$L_7 = \{ w \in (\Sigma^2) : |\pi_1(w)|_1 \text{ is even and } |\pi_2(w)|_1 \text{ is odd} \}.$$

Then it follows from a result of Schmid [1984] that

$$\text{quo}_2(L_7) = \mathbb{Q}^{\geq 0} - \{ 2^n : n \in \mathbb{Z} \}.$$
Basic decidability properties

Given a DFA M accepting a language L representing a set of rationals S, can decide

- if $S = \emptyset$
- given $\alpha \in \mathbb{Q}^{\geq 0}$, whether there exists $x \in S$ with $x = \alpha$ (resp., $x < \alpha$, $x \leq \alpha$, $x > \alpha$, $x \geq \alpha$, $x \neq \alpha$, etc.)
- if $|S| = \infty$
- given a finite set $F \subseteq \mathbb{Q}^{\geq 0}$, if $F \subseteq S$ or if $S \subseteq F$
- given $\alpha \in \mathbb{Q}^{\geq 0}$, if α is an accumulation point of S
sup \(A\) is rational or infinite

Given a DFA \(M\) accepting \(L \subseteq (\Sigma_k \times \Sigma_k)^*\) representing a set of rationals \(A \subseteq \mathbb{Q}_{\geq 0}\), what can we say about \(\text{sup } A\)?

Theorem. \(\text{sup } A\) is rational or infinite, and is computable.

Proof ideas: \(\text{quo}_k(\ uv^i\ w)\) forms a monotonic sequence. Defining

\[
\gamma(u, v) := \frac{[\pi_1(\ uv)]_k - [\pi_1(\ u)]_k}{[\pi_2(\ uv)]_k - [\pi_2(\ u)]_k}
\]

one of the following three cases must hold:

(i) \(\text{quo}_k(\ uw) < \text{quo}_k(\ uvw) < \text{quo}_k(\ uv^2w) < \cdots < U\);
(ii) \(\text{quo}_k(\ uw) = \text{quo}_k(\ uvw) = \text{quo}_k(\ uv^2w) = \cdots = U\);
(iii) \(\text{quo}_k(\ uw) > \text{quo}_k(\ uvw) > \text{quo}_k(\ uv^2w) > \cdots > U\).

Furthermore, \(\lim_{i \to \infty} \text{quo}_k(\ uv^i\ w) = U\).
sup A is rational or infinite

It follows that if sup A is finite, and the DFA M has n states, then

$$\sup A = \max T,$$

where

$$T = T_1 \cup T_2$$

and

$$T_1 = \{ \text{quo}_k(x) : |x| < n \text{ and } x \in L \};$$

$$T_2 = \{ \gamma(u, v) : |uv| \leq n, |v| \geq 1, \delta(q_0, u) = \delta(q_0, uv), \text{ and there exists } w \text{ such that } uvw \in L \}. $$
sup A is computable

We know that sup A lies in the finite computable set T.

For each of $t \in T$, we can check to see if $t \geq \sup A$ by checking if $A \cap (t, \infty)$ is empty.

Then sup A is the least such t.
Computing the critical exponent

- Previously known to be computable for fixed points of uniform morphisms (Krieger)

Theorem. If w is a k-automatic sequence, then its critical exponent is rational or infinite. Furthermore, it is computable from the DFAO M generating w.

Proof sketch. Given M, we can transform it into another automaton M' accepting

$$\{(m, n) : \text{there exists } i \geq 0 \text{ such that } w[i..i+m-1] \text{ has period } n\}.$$

We then apply our algorithm for computing $\sup(\text{quo}_k(L))$ to $L(M')$.
Extend these ideas to morphic sequences (fixed points of possibly non-uniform morphisms, followed by a coding)
 - Some ideas are extendable to, e.g., the Fibonacci word
 - Carton & Thomas proved that \((\mathbb{N}, <, \text{morphic word})\) is decidable

Which predicates for automatic sequences (like squarefreeness) are decidable in polynomial time? Leroux has proved it for ultimate periodicity.
More open problems

- Extend these ideas to “infinite state” automata (i.e., fixed points of morphism like \(n \rightarrow (an + b, cn + d) \)) or prove undecidability
- Is \(\sup \{ x/y : (x, y)_k \in L \} \) computable for context-free languages \(L \)?

Given a regular language \(L \subseteq (\Sigma_k \times \Sigma_k)^* \) representing a set \(S \subseteq \mathbb{N} \times \mathbb{N} \) of pairs of natural numbers, is it decidable if \(S \) contains a pair \((p, q)\) with \(p \mid q \)?

- This is a question of \(\exists^1(\mathbb{N}, +, V_k, |) \); of course \(\text{Th}(\mathbb{N}, +, |) \) is undecidable and \(\exists^1(\mathbb{N}, +, |) \) is decidable (Lipshitz)
Prove or disprove: if L is a regular language with $\text{quo}_k(L) = \mathbb{Q}_{\geq 0}$, then L contains infinitely many distinct representations for infinitely many distinct rational numbers.

Which of the following questions is decidable? Given L representing a set of rationals S,

- Is there some rational $p/q \in S$ having infinitely many distinct representations in L?
- Are there infinitely many distinct rationals $p/q \in S$ having infinitely many distinct representations in L?