The Logical Approach to Automatic Sequences

Part 1: Automatic Sequences and k-Regular Sequences

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
https://cs.uwaterloo.ca/"shallit

/48

Some of my co-authors

Luke Schaeffer = Hamoon Mousavi Narad Rampersad

2

Emilie Charlier Eric Rowland

/48

This Short Course — Summarized

1. A decision procedure for proving theorems about a large class
of interesting sequences exists (and handles many famous
sequences such as Thue-Morse, Rudin-Shapiro, etc.), based
on first-order logic

2. Many properties that have long been studied in the literature
can be phrased in first-order logic (including some for which
this is not obvious!)

3. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available (Walnut)

4. The method can also be used to not simply decide, but also
enumerate, many aspects of sequences

Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved, such as avoidability of the
R

pattern xxx
7. However, there are some well-defined limits to what we can do
with the method because either
» the property is not expressible in first-order logic; or
» the underlying sequence leads to undecidability

What is an automatic sequence?

» Also called k-recognizable in the literature.
» An automatic sequence is an infinite sequence (sometimes
called an infinite word or infinite string)

a = ggaiaz -

over a finite alphabet of letters, generated by a finite-state
machine (automaton)
» The automaton, given an integer n as input, computes a, as
follows:
> nis represented in some fixed integer base k > 2
» The automaton moves from state to state according to this
input and its internal transition table
» Each state has an output letter associated with it
» The output on input n is the output associated with the last
state reached
» The notion is base-dependent, so we speak of k-automatic
sequences.

An example: the “Mephisto Waltz" automaton

0,1 0,1
This 3-automaton generates the “Mephisto Waltz sequence”

W = (Wn)nZO

n [0 1 2
1

4 5 6 7 8 9 10 11 12 13
w[n]‘OO 0 1

1100 0 1 0 O

3
0
base 3, and the output is the name of the state.

Here the input is in

Some obvious questions to ask

> Is the Mephisto Waltz sequence w ultimately periodic?

» Does it ever have two consecutive identical blocks? Three?
Four? What are their sizes? Where do they appear?

» Does it have infinitely many distinct palindromes?
» How many distinct blocks of length n are there?
» Does every block that occurs, occur infinitely often?

» What is the maximum distance between two consecutive
occurrences of the same block?

Another example: the Thue-Morse sequence

This automaton generates the Thue-Morse sequence
t = (ts)n>0 = 0110100110010110 - - - .

Here input is in base 2, and the output is the name of the state.

Appearances of the Thue-Morse sequence

» The famous Tarry-Escott problem asks to find two disjoint
sets of positive integers S and T such that

LR oL
seS teT
fori=0,1,...,n— 1.
» For example, for n = 3 one solution is
01345 16 =110 1447

for i =0,1,2.
> If we define S, ={0<i<2" : t;=0} and
To={0<i<?2" : tj =1}, we get a solution.

Appearances of the Thue-Morse sequence

» The Cooper-Dutle fair dueling problem: given two shooters
Alice and Bob firing at each other, what firing order results
when the order is chosen greedily to make probability in
prefixes as close as possible to each other?

» Example: p =1/3: Alice goes first, wins with probability 1/3.
Bob goes next, wins with probability (2/3)(1/3) = 2/9. This
is less than 1/3, so Bob goes again, now wins with probability
2/9+ (2/3)2(1/3) = 10/27. This is more than Alice's
probability, so Alice goes next.

» Continuing, the sequence is ABBABABB - - -

> As p — 0, the sequence goes to the Thue-Morse sequence

10 /48

Another example: the Rudin-Shapiro sequence

» The Rudin-Shapiro sequence counts the parity of the number
of 11's in the binary expansion of n.

> It is generated by the following automaton, where the states
record the parity of the number of 11's seen so far, and
whether the last character seen was a 1.

(V) 0)

11/48

Why study automatic sequences?

» They are a nontrivial class of self-similar sequences

» They appear in many different areas of mathematics,
computer science, theoretical physics, etc.

» Many “naturally-occurring” sequences are automatic
» Halfway between periodic and chaotic

» The class is invariant under many natural kinds of
transformations (shifts, linearly-indexed subsequences, block
compression, etc.)

» They provide canonical examples for various kinds of
avoidance problems

12 /48

What we're going to see in this course

Claim. Many properties of automatic sequences can be proved
purely mechanically, by a machine computation that implements a
decision procedure.

Often, there is no longer any need for long case-based arguments
that are prone to error.

To illustrate the complexity of “traditional” case-based methods,
let's prove that the Thue-Morse sequence t has no overlaps.

(An overlap is a block of the form axaxa, where a is a single letter
and x is a block, like the English word alfalfa.)

First, we need some basics on words and languages.

13 /48

Basics on words (strings)

|x|: length of the word x

v

v

|x|2: number of occurrences of the letter a in the word x
> ¢: empty word, of length 0O

> xy: concatenation of two words; ¢ is identity element

n

n

—
» x" =%x---x: power of a word x: (ma)2 = mama

» xR: reversal of word x: (drawer)f = reward

v

x[i]: i'th letter of word x (usually indexed starting at 0)

14 /48

Basics on words

> If z= wxy, then

> w is a prefix of z
> yis a suffix of z

» x is a factor of z (also sometimes called subword)

» Prefixes, suffixes, and factors of z are proper if they do not
equal z.

» x[a..b]: the factor starting at position a and ending at
position b of x

15/48

Basics on words

» Two words x and y are conjugates if y is a cyclic shift of x;
alternatively if there exist words u, v such that x = uv and
y = vu: listen and enlist are conjugates

» w*: the infinite word (or infinite sequence) www - - -

» An infinite word x is ultimately periodic if there exist finite
words y, z such that x = yz%.

» Morphism: map h from words to words satisfying
h(xy) = h(x)h(y) for all words x, y.

» Morphisms can be defined by their action on single letters;
e.g., the Thue-Morse morphism p defined by 1(0) = 01 and

u(1) =10

16 /48

Basics on languages

v

language L: a set of words

v

|L]: cardinality of language L

v

LiL>: {X1X2 o x1 €Ly, xp € Lz}

—
> L™ LL---L

L% Upso L”

L“: language of infinite words defined by {xjx2--- : x; € L}

v

v

17/48

Number representations

> represent integers in an integer base k > 2 using the alphabet
Y ={0,1,...,k—1}.

> for example, 101011 is the representation of 43 in base 2.

» We write (43), = 101011; this is a map from N to X.

> The representation of 0 is ¢, the empty word.

» Similarly, we can define a map from ¥} to N by

[3132---an]k = Z a,'kn_i.

1<i<n

» So [000101011], = 43.

18 /48

Representations of N”

> represent n-tuples of integers as words over the alphabet X7,
padding with leading zeroes, if necessary.

» For example, the pair (21,7) can be represented in base 2 by
the word

x = (21,7)2 = [1,0][0, 0][L, 1][0, 1][1, 1].

» Projections: m1(x) = 10101 and mp(x) = 00111.

19/48

The Thue-Morse sequence has no overlaps

We define 0 =1 and 1 = 0.

Lemma. Let p be the Thue-Morse morphism defined by

1(0) =01 and p(1) = 10. Then pu(tn) = tantonti-

Proof. By induction on n.

The base case is n = 0. Then we have u(ty) = 1(0) = 01 = toty.

For the induction step, assume the result is true for i < n; we
prove it for i = n.

Now the binary expansion of 2n is the same as that for n, except
with an extra 0 on the end. The binary expansion of 2n+ 1 is that
same as that for n, except with an extra 1 on the end. Hence

top = t, and topt1 = th.

It follows that u(t,) = t, t, = tontont1-

20/48

The Thue-Morse sequence has no overlaps

Note that this lemma implies that
» If t, = a and r is even, then t,;1 = 73;

» If t, = a and r is odd, then t,_1 = a.

Theorem. The Thue-Morse word t is overlap-free.

Proof. We assume that t has an overlap axaxa beginning at
position k, with |ax| = n. Thus it looks like
a X a X a

~ = ~ = N N
t=tot1---tk—1 tk tkt1- - tktn—1 Tktn Cktnt+l- - tkt2n—1 tkt2n -

To get a contradiction we assume that (a) this overlap is smallest
among all overlaps in t and (b) among all overlaps of this size, it
appears earliest in t. In other words, we assume that n is as small
as possible and k as small as possible for this n.

21/48

The Thue-Morse sequence has no overlaps

There are a number of cases to consider:

Case 1: k even, n even.

Since k + 2n is even, we get txiop11 = tkion = a.

Letting u =t[5 + 1.5+ 2 — 1] and v =t[5 + 2.5 + n—1], by
the lemma we see u(auava) = axaxaa = t[k..k +2n+1].
Furthermore, since u(au) = ax = p(av), we must have u = v. So
auaua = t[%..% + n] is an overlap with |au| = n/2 < n, a
contradiction.

22 /48

The Thue-Morse sequence has no overlaps

Case 2: k odd, n even.

Since k is odd, we have t,_; = tx = a.

Similarly, since kK + n and k + 2n are both odd, we get
tktn—1 = tkyn = 3 and tyi2p-1 = tkton = a.

So the equation above can be rewritten as

a y a a

N —— N —— ~ =
t=totr - tk—1 tk i1 tktn—2 thtn—1 thtn thtnt1 - tky2n—2 thkton—1 thyon- -+,

where x = ya.

Now t[k — 1..k + 2n — 1] = 3aayaaya is an overlap of the same
length as before, but occurring one place earlier than before, that
is, k — 1 < k. This is a contradiction.

23 /48

The Thue-Morse sequence has no overlaps

Case 3: k even, n odd.

There are two subcases here: n=1and n> 1. If n =1 then the
overlap is just aaa. But from the lemma we know that

t € {01,10}“, so we cannot have three consecutive identical
symbols in t.

The second subcase is n > 1. The idea here is to “ping-pong”
back and forth between the two copies of x, learning more and
more symbols of x.

We start with the first copy.

24 /48

The Thue-Morse sequence has no overlaps

Since k + n — 1 is even, the lemma gives us txy,_1 = tkip = a.

So the last symbol of x must be 3, which tell us that in the second
copy of x we have txi2,-1 = a.

Now k 4+ 2n — 1 is odd, so the lemma gives us
tkton—2 = tkqpon—1 = a.

Back in the first copy of x, this gives us ty1,_o = a.
Now k + n— 2 is odd, so the lemma gives us tx1p_3 = tkyn_2 = a.

In the second copy of x, we get tx12,_3 = 3, too.

25 /48

The Thue-Morse sequence has no overlaps

We continue ping-ponging back and forth, learning more and more
symbols of x. You can see that the situation above continues,
giving

X=---aaaaaa.
But since n = |ax| is odd, this means that ax must begin and end
with the same symbol. But ax begins with a and ends with 3, a
contradiction.

Case 4: k odd, n odd.

This is just like the previous case. In the second subcase, we
“ping-pong” back and forth in the same manner, except that we
start with the second copy.

Thus, all cases give us a contradiction, so there is no overlap in t.

26 /48

The logical approach to overlaps

Instead of a tedious case-based argument, we can prove that t has
no overlaps using a general approach.

Idea: we write a formula (predicate) in a certain logical language
expressing the claim that t has an overlap, and then use a decision
procedure to evaluate the truth of the claim.

3 3In>1Vj < ntli+j]=tli+j+n].

When we run our decision procedure on this statement, we obtain
false as the output.

Similarly with the formula
3i 3n > 1Vk <3nwl[i+ k] =w[i+ k+ n],

we can prove that the Mephisto Waltz word w has no fourth
powers in it (no four consecutive identical blocks).

27 /48

Formal definition of our automaton model

Formally, a deterministic finite automaton with output (DFAO) is a
6-tuple M = (Q, X, 9, go, A, 7) as follows:.
» @ is a finite nonempty set of states;.
¥ is the input alphabet (usually ¥4);.
0: Q x X — Q@ is the transition function, which is extended to
Q x X*:.
qo is the initial (or “start”) state;.
A is the output alphabet;.
7:Q — A is the output map.

v

v

v

v

v

28 /48

Deterministic finite automata (DFA's)

A different, slightly simpler model:.

>

No output function, just a distinguished set of states F called
the final or accepting states.

An automaton accepts a word w if processing w takes M
from qp to a state of F.

The language accepted by automaton M, written L(M), is the
set of all words accepted.

A language is regular if it is accepted by some DFA

There is an efficient algorithm to find the (unique) minimal
DFA equivalent to a given DFA (e.g., Valmari).

29 /48

The pumping lemma: a basic tool for automata

Theorem. If L is a regular language, then there is a constant
n = n(L) such that for all z € L with |z| > n there exists a
decomposition z = uvw with |uv| < n and |v| > 1 such that
uviw € L for all i > 0.

Proof. A long word accepted = a long acceptance path = a
loop (repeated state) in the acceptance path = we can go
around this loop as often as we like (or not at all) and still have an
acceptance path for the resulting word. B

30/48

Equivalent descriptions of automatic sequences

» Example: the Mephisto Waltz morphism w : 0 — 001,
1 — 110.

» A morphism is k-uniform if every letter's image has the same
length k.

» If k=1 itis called a coding.

» If A C %, then we can iterate a morphism.

» h?(x) = h(h(x)), h*(x) = h(h(h(x))), etc.

» If h(a) = ax, then we can iterate h starting on a, producing
h*(a) = axh(x)h?(x)h3(x)---.

» Then h(h¥(a)) = h*(a), so h*(a) is sometimes called a fixed
point of h.

31/48

Cobham'’s little theorem

Theorem. A sequence s over the alphabet A is k-automatic if and
only if there is a k-uniform morphism h: X* — ¥* prolongable on
the letter a, and a coding 7 : ¥ — A, such that s = 7(h“(a)).

Proof sketch. For one direction, given h and 7, make an
automaton where the states g are the letters of X, and the initial
state is a. The transition from state g on input i goes from g to
the i'th letter of h(q). The output associated with q is 7(q).

For the other direction, from the automaton, let a = qg, the initial

state; define h(q) = 6(q,0)d(q,1)---d(q,k — 1), and let 7(q) be
the output associated with state gq.

32/48

Kernels

The k-kernel of a sequence a = apajaz . .. is the set Ki(a) of
subsequences of the form

{(akenJr,-),,ZO ce>0and0<i< ke}.

For example, for k = 2 the k-kernel of a is the set of the following
subsequences:
(Sn)nZO, (52n)n20; (52n+1)n207

(S4n)n>0, (S4n+1)n>0, (San+2)n>0, (S4n+3)n>0, - - -

33/48

Eilenberg's theorem

Theorem. The sequence a = agaias ... is k-automatic if and only
if the k-kernel of a has finite cardinality.

Proof sketch. Similar to the proof about morphisms, except now
we use automata accepting the reversed representation of integers,
starting with the least significant digit.

34/48

Closure properties of automatic sequences

If a=agaiar--- and b = bgb1b, - - - are k-automatic sequences,
so are

» expansion: h(a) for a uniform morphism h;

» shift: (ajyc)i>o for any c € Z;

» linearly-indexed subsequence: (a,n+i)n>0 for any pair of
integers r > 1, i > 0.

» cross-product: a x b = [ao, bo][a1, b1][az, b2] - - -

35/48

Cobham's big theorem

We say integers k,¢ > 1 are multiplicatively dependent if there
exists an integer m > 1 and exponents e, f such that k = m¢ and
¢ = m’. Example: 36 = 62 and 216 = 63 are multiplicatively
dependent, with m = 6.

Otherwise they are multiplicatively independent.
Theorem. Let a = apajar - -+ be a sequence that is k-automatic

and f-automatic, for k and ¢ multiplicatively independent. Then a
is ultimately periodic.

Proposition Let a be a sequence, and let k > 2 be an integer.

Then a is k®-automatic for some e > 1 iff it is kf-automatic for all
f>1.

36 /48

Generalizations: morphic sequences

» More generally, for any morphism prolongable on a we can
consider the infinite sequence h*(a)

» Example: h(0) =01, h(1) = 0 gives the infinite Fibonacci
word 0100101001001 - --

» Such a sequence is called pure morphic; the image under a
coding of such a sequence is called morphic.

» Morphic sequences have been widely studied, but are harder
to understand, in general, than automatic sequences

37/48

Non-automatic sequences

Not all morphic sequences are automatic.

Here is an example that we will prove not k-automatic for any k
later:

Consider the morphism defined by h(a) = aab and h(b) = b.

The infinite fixed point is

h*(a) = aabaabbaabaabbb- - - .

This sequence is not k-automatic for any k.

38/48

Another generalization: k-regular sequences

Automatic sequences are always defined over a finite alphabet.
Can we generalize to an infinite alphabet, such as N?

Example: The sequence sp(n) = the sum of the digits in the base-2
representation of n.

The first few terms of (sp(n)),>0 are as follows:
n |01 23 45 6 7 8 9 10
(0 1 1 2 1 2 2 3 1 2 2

Note that, for n > 0,

s2(2n) = sp(n)
(2n+1) =s(n)+1

39 /48

Another example: Per Ngrgard's “infinity sequence”

This is a sequence (s(n))s>0 of integers representing the number
of half-steps above or below a given base note. Here are the first
32 notes:

and the first 16 terms:

| n |0 1 2 3 4
s(n)jo0 1 -1 2 1

5
0 -2 3 -1 2 O

The recurrence is s(0) = 0, s(2n) = —s(n) for n > 1, and
s(2n+1) = s(n)+ 1 for n > 0.

40 /48

More examples of k-regular sequences

» the Mallows sequence: the unique monotone sequence
(a(n))n>0 of non-negative integers such that a(a(n)) = 2n for

n#1

n [0 1 23 456 7 8 9 10 11 12 13 14 15 16
a0 1 3 4 6 7 8 10 12 13 14 15 16 18 20 22 24

It satisfies the recurrence

a(4n) = 2a(2n)
a(4n+1) = a(2n) + a(2n+1)
a(4n+3) = —2a(n) + a(2n + 1) 4 a(4n + 2)
a(8n+2) =2a(2n) + a(4n + 2)
a(8n+6) = —4a(n) +2a(2n+ 1) + 2a(4n + 2)

» the number of overlap-free binary words of length n (Carpi;
Cassaigne)

41 /48

More examples of k-regular sequences

Divide-and-conquer linear recurrence for mergesort
T(n)=T(|n/2])+ T([n/2])+n—1

for n > 2.

It satisfies the system

T(4n+1)=4T(n)—5T(2n)+ T(2n+ 1)+ 2T (4n)

T(4n+3) = —12T(n) + 15T(2n) — 3T(2n + 1) — 5T (4n) + 3T (4n + 2)
T(8n) =4T(n)—8T(2n)+5T(4n)

T(8n+2)=12T(n) —16T(2n) + 6T (4n) + T(4n+2)

T(8n+4) = —4T(n) +6T(2n) — 6T(2n + 1) — 2T(4n) + 5T (4n + 2)

T(8n+6) = —36T(n) +48T(2n) — 16 T(2n + 1) — 16 T(4n) + 11T (4n + 2)

42 /48

k-regular sequences

> An integer sequence (ap)n>0 is said to be k-regular if the
Z-module generated by the sequences in the k-kernel is
finitely generated.

» Example: for sp(n) the relations s,(2n) = s3(n) and
$(2n+ 1) = sp(n) + 1 imply that (Kx(s2)) is generated by
(s2(n))n>0 and the constant sequence 1.

> k-regular sequences appear in many different fields of
mathematics: numerical analysis, topology, number theory,
combinatorics, analysis of algorithms, and fractal geometry.

43 /48

Properties of k-regular sequences

» Every k-automatic sequence is also k-regular.
> If a k-regular sequence is bounded, then it is k-automatic.

» The k-regular sequences are closed under shift, and periodic
deletion.

> A sequence is k-regular iff it is k"-regular for any r > 2.

» The k-regular sequences are closed under (termwise) sum and
product.

> If £(X) =2 50 X" and g(X) = 3,50 8, X" are formal
power series with k-regular coefficients, then so is f(X)g(X).

44 /48

Linear representations

A sequence (ap)n>0 has a k-linear representation if there is a d x d
matrix-valued morphism h with domain ¥} and two d-element
vectors u, v such that for all n >0

an = uh(x)v’
when x = (n)y.

For example, here is a linear representation of s,(n):

=01 w0 =g 3| ww=[] S]v-na

45 /48

Linear representations

Theorem. A sequence has a k-linear representation if and only if
it is k-regular.

46 /48

Closure properties of k-regular sequences

Theorem. Let k > 2 be an integer. The class of k-regular
sequences taking values in Q is closed under

(a) scalar multiplication by elements of Q: d(n) = ca(n)
) shift: d(n) = a(n+1)
(c) running sum: d(n) = > o.;.,a(n)
) linearly-indexed subsequer:ce: d(n) = a(mn+1i) for m>1,
i>0
) Q-linear combination: b(n) = >, ;- ciai(n)
) product: d(n) = [[;<;<, ai(n)
(g) convolution: d(n) =3, ;_,a(i)b(n— i)
(h)

perfect shuffle: d(mn+ i) =aj(n) for 0 < i< m

47 /48

Tomorrow

Tomorrow: logic and automatic sequences.

48 /48

