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Additive number theory

Let S be a subset of the natural numbers N = {0, 1, 2, . . .}.
The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S .

Probably the most famous example
is Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and

(b) three squares do not suffice for numbers of the form 4a(8k + 7).

(Conjectured by Bachet in 1621.)
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Additive bases

Let S ⊆ N.

We say that a subset S is an basis of order h if every natural number can
be written as the sum of h elements of S , not necessarily distinct.

We say that a subset S is an asymptotic basis of order h if every
sufficiently large natural number can be written as the sum of h elements
of S , not necessarily distinct.
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Gauss’s theorem for triangular numbers

A triangular number is a number of the form n(n + 1)/2.

Gauss wrote the following in his diary on July 10 1796:

i.e., The triangular numbers form an additive basis of order 3
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Waring’s problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is
– the sum of 4 squares
– the sum of 9 cubes
– the sum of 19 fourth powers
– “and so forth”.
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Waring’s problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k ’th powers.

Let G (k) be the least natural number m such that every sufficiently large
natural number is the sum of m k ’th powers.

Proving that g(k) and G (k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G (2) = 4.

Hilbert proved in 1909 that g(k) and G (k) exist for all k .

By Wieferich and Kempner we know g(3) = 9.

We know that 4 ≤ G (3) ≤ 7, but the true value is still unknown.
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Other additive bases?

What other sets can be additive bases?

Not the powers of 2 – too sparse.

Need a set whose natural density is at least N1/k for some k.

How about numbers with palindromic base-b expansions?
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Palindromes

A palindrome is any string that is equal to its reversal

Examples are radar (English), stannats (Swedish), and 10001.

We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

Examples are 16 = [121]3 and 297 = [100101001]2.

Binary palindromes (b = 2) form sequence A006995 in the On-Line
Encyclopedia of Integer Sequences (OEIS):

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, . . .

They have density Θ(N1/2).
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The problem

Do the base-b palindromes form an additive basis, and if so, of what order?

William Banks (2015) showed
that every natural number
is the sum of at most 49
base-10 palindromes.
(INTEGERS 16 (2016), #A3)

Javier Cilleruelo, Florian Luca, and
Lewis Baxter (2017) showed that for
all bases b ≥ 5, every natural
number is the sum of three
base-b palindromes.
(Math. Comp. (2017), to appear)
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What we proved

However, the case of bases b = 2, 3, 4 was left unsolved. We proved

Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number
4 is optimal.

For example,

10011938 = 5127737 + 4851753 + 32447 + 1

= [10011100011111000111001]2 + [10010100000100000101001]2+

+ [111111010111111]2 + [1]2

4 is optimal: 10011938 is not the sum of 2 binary palindromes.
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Previous proofs were complicated (1)

Excerpt from Banks (2015):

EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES 5

In the case that 10 ď m ď 43, we write m “ 10a ` b with digits a, b P D,
a ‰ 0. Using (2.2) we have

n ´ qL,0pa, bq “ n ´ p10L´1a ` 10L´2b ` a ` bq
“ n ´ p10L´2m ` a ` bq

“
L´1ÿ

j“0

10jδj ´ 10L´2p10δL´1 ` δL´2 ´ 6q ´ a ´ b

“ 6 ¨ 10L´2 `
L´3ÿ

j“0

10jδj ´ a ´ b,

and the latter number lies in NL´1,0p5`; cq, where c ” pδ0 ´a´ bq mod 10. Since
qL,0pa, bq is the sum of two palindromes, we are done in this case as well. �

2.4. Inductive passage from Nℓ,kp5`; c1q to Nℓ´1,k`1p5`; c2q.

Lemma 2.4. Let ℓ, k P N, ℓ ě k ` 6, and cℓ P D be given. Given n P Nℓ,kp5`; c1q, one
can find digits a1, . . . , a18, b1, . . . , b18 P Dzt0u and c2 P D such that the number

n ´
18ÿ

j“1

qℓ´1,kpaj , bjq

lies in the set Nℓ´1,k`1p5`; c2q.

Proof. Fix n P Nℓ,kp5`; c1q, and let tδjuℓ´1
j“0 be defined as in (1.1) (with L ..“ ℓ).

Let m be the three-digit integer formed by the first three digits of n; that is,

m ..“ 100δℓ´1 ` 10δℓ´2 ` δℓ´3.

Clearly, m is an integer in the range 500 ď m ď 999, and we have

n “
ℓ´1ÿ

j“k

10jδj “ 10ℓ´3m `
ℓ´4ÿ

j“k

10jδj . (2.4)

Let us denote
S ..“ t19, 29, 39, 49, 59u.

In view of the fact that

9S ..“ S ` ¨ ¨ ¨ ` S
nine copies

“ t171, 181, 191, . . . , 531u,

it is possible to find an element h P 9S for which m ´ 80 ă 2h ď m ´ 60. With
h fixed, let s1, . . . , s9 be elements of S such that

s1 ` ¨ ¨ ¨ ` s9 “ h.

Finally, let ε1, . . . , ε9 be natural numbers, each equal to zero or two: εj P t0, 2u
for j “ 1, . . . , 9. A specific choice of these numbers is given below.
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Previous proofs were complicated (2)

Excerpt from Cilleruelo et al. (2017)

EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 15

II.1 cm = 1. We do nothing and the temporary configuration becomes the final

one.

II.2 cm = 0. We distinguish the following cases:

II.2.i) ym 6= 0.

δm δm−1

0 0

∗ ym

∗ ∗

−→

δm δm−1

1 1

∗ ym − 1

∗ ∗
II.2.ii) ym = 0.

II.2.ii.a) ym−1 6= 0.

δm δm−1 δm−2

0 0 ∗
ym−1 0 ym−1

∗ zm−1 zm−1

−→

δm δm−1 δm−2

1 1 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ zm−1 + 1 zm−1 + 1

The above step is justified for zm−1 6= g − 1. But if zm−1 = g − 1, then

cm−1 ≥ (ym−1+zm−1)/g ≥ 1, so cm = (zm−1+ cm−1)/g = (g−1+1)/g = 1,

a contradiction.

II.2.ii.b) ym−1 = 0, zm−1 6= 0.

δm δm−1 δm−2

0 0 ∗
0 0 0

∗ zm−1 zm−1

−→

δm δm−1 δm−2

0 0 ∗
1 1 1

∗ zm−1 − 1 zm−1 − 1

II.2.ii.c) ym−1 = 0, zm−1 = 0.

If also cm−1 = 0, then δm−1 = 0, which is not allowed. Thus, cm−1 = 1.

This means that xm−1 ∈ {g − 1, g − 2}. Since xi ∈ {0, 1, 2} for i ≥ 3, it

follows that m = 3 and we are in one of the cases A.5) or A.6). Further,

δ2 = 1. In this case we change the above configuration to:

δm+1 δm δm−1 δm−2

xm−1 − 1 1 1 xm−1 − 1

∗ g − 1 g − 4 g − 1

0 ∗ 2 2

II.3 cm = 2. In this case it is clear that zm−1 = ym = g − 1 (otherwise

cm 6= 2). Note also that if ym−1 = 0, then cm−1 6= 2 and then cm 6= 2. Thus,
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Previous proofs were complicated (3)

Proofs of Banks and Cilleruelo et al. were long and case-based

Difficult to establish

Difficult to understand

Difficult to check, too: the original Cilleruelo et al. proof had some
minor flaws that were only noticed when the proof was implemented
as a Python program

Idea: could we automate such proofs?
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The main idea of our proof

Construct a finite-state machine that takes natural numbers as input,
expressed in the desired base

Allow the machine to nondeterministically “guess” a representation of
the input as a sum of palindromes

The machine accepts an input if it verifies its guess

Then use a decision procedure to establish properties about the
language of representations accepted by this machine (e.g.,
universality)
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Picking a machine model for palindromes

What machine model?

it should be possible to check if the guessed summands are
palindromes

can be done with a pushdown automaton (PDA)

it should be possible to add the summands and compare to the input

can be done with a finite automaton (DFA or NFA)

However

Can’t add summands with these machine models unless they are
guessed in parallel

Can’t check if summands are palindromes if they are wildly different
in length & presented in parallel

Universality is not decidable for PDA’s

What to do?
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Visibly pushdown automata (VPA)

Use visibly-pushdown automata!

Popularized by Alur and Madhusudan in 2004, though similar ideas
have been around for longer

VPA’s receive an input string, and read the string one letter at a time

They have a (finite) set of states and a stack

Upon reading a letter of the input string, the VPA can transition to a
new state, and might modify the stack

The states of the VPA are either accepting or non-accepting

If the VPA can end up in an accepting state after it is done reading
the input, then the VPA “accepts” the input, else it “rejects” it

Rajasekaran, Shallit, and Smith Automata 16 / 1



Using the VPA’s stack

The VPA can only take very specific stack actions

The input alphabet, Σ, is partitioned into three disjoint sets

Σc , the push alphabet
Σl , the local alphabet
Σr , the pop alphabet

If the letter of the input string we read is from the push alphabet, the
VPA pushes exactly one symbol onto its stack

If the letter of the input string we read is from the pop alphabet, the
VPA pops exactly one symbol off its stack

If the letter of the input string we read is from the local alphabet, the
VPA does not consult its stack at all
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Example VPA

A VPA for the language {0n12n : n ≥ 1}:

The push alphabet is {0}, the local alphabet is {1}, and the pop alphabet
is {2}.
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Determinisation and Decidability

A nondeterministic VPA can have several matching transition rules for
a single input letter

Nondeterministic VPA’s are as powerful as deterministic VPA’s

VPL’s are closed under union, intersection and complement. There
are algorithms for all these operations.

Testing emptiness, universality and language inclusion are decidable
problems for VPA’s

But a nondeterministic VPA with n states can have as many as 2Θ(n2)

states when determinized!
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Proof strategy

We build a VPA that “guesses” inputs of roughly the same size, in
parallel

It checks to see that they are palindromes

And it adds them together and verifies that the sum equals the input.

There are some complications due to the VPA restrictions.
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More details of the proof strategy

To prove our result, we built 2 VPA’s A and B:

A accepts all n-bit odd integers, n ≥ 8, that are the sum of three
binary palindromes of length either

n, n − 2, n − 3, or
n − 1, n − 2, n − 3.

B accepts all valid representations of odd integers of length n ≥ 8

We then prove that all inputs accepted by B are accepted by A

We used the ULTIMATE Automata Library

Once A and B are built, we simply have to issue the command

assert(IsIncluded(B, A))

in ULTIMATE.
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Bases 3 and 4

Unfortunately, the VPA’s for bases 3 and 4 are too large to handle in
this way.

So we need a different approach.

Instead, we use ordinary nondeterministic finite automata (NFA).

But they cannot recognize palindromes...

Instead, we change the input representation so that numbers are
represented in a “folded” way, where each digit at the beginning of its
representation is paired with its corresponding digit at the end.

With this we can prove...
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Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Theorem

Every natural number N > 64 is the sum of at most three base-4
palindromes.

This completes the classification for base-b palindromes for all b ≥ 2.
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More results

Using NFA’s we can establish an analogue of Lagrange’s four-square
theorem.

A square is any string that is some shorter string repeated twice

Examples are hotshots (English), purpur (Swedish), and 100100.

We call an integer a base-b square if its base-b representation is a
square

Examples are 36 = [100100]2 and 3 = [11]2.

The binary squares form sequence A020330 in the OEIS

3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, . . .
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Results

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares.

For example:

10011938 = 9291996 + 673425 + 46517

= [100011011100100011011100]2 + [10100100011010010001]2

+ [1011010110110101]2

We also have the following result

Theorem

Every natural number is the sum of at most two binary squares and at
most two powers of 2.
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Generalizing: Waring’s theorem for binary k ’th powers

Recall Waring’s theorem: for every k ≥ 1 there exists a constant g(k)
such that every natural number is the sum of g(k) k’th powers of natural
numbers.

Could the same theorem hold for binary k ’th powers?

Two issues:

1 is not a binary k ’th power, so it has to be “every sufficiently large
natural number” and not “every natural number”.

The gcd g of the binary k’th powers need not be 1, so it actually has
to be “every sufficiently large multiple of g”.
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gcd of the binary k ’th powers

Theorem

The gcd of the binary k’th powers is gcd(k , 2k − 1).

Example:
The binary 6’th powers are

63, 2730, 4095, 149796, 187245, 224694, 262143, 8947848, 10066329, . . .

with gcd equal to gcd(6, 63) = 3.
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Very recent results

Theorem

Every sufficiently large multiple of gcd(k, 2k − 1) is the sum of a constant
number (depending on k) of binary k’th powers.

Obtained with Daniel Kane and Carlo Sanna.
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Outline of the proof

Given a number N we wish to represent as a sum of binary k ’th powers:

choose a suitable power of 2, say 2n, and express N in base 2n.

use linear algebra to change the basis and instead express x as a
linear combination of ck(n), ck(n + 1), . . . , ck(n + k − 1) where

ck(n) =
2kn − 1

2n − 1
.

Such a linear combination would seem to provide an expression for x
in terms of binary k’th powers, but there are three problems to
overcome:

(a) the coefficients of ck(i), n ≤ i < n + k , could be much too large;
(b) the coefficients could be too small or negative;
(c) the coefficients might not be integers.

All of these problems can be handled with some work.
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Other results

Call a set S of natural numbers b-automatic if the language of the base-b
expansions of its members is regular (accepted by a finite automaton).

Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive
basis (resp., asymptotic additive basis) of finite order.
If it does, the minimum order is also computable.

The proof uses, in part, a decidable extension of Presburger arithmetic.
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Open Problems

Are there arbitrarily large even numbers that cannot be written as the
sum of two binary palindromes? The sequence of unrepresentable
numbers starts

176, 188, 208, 242, 244, 310, 524, 628, 656, 736, 754, 794, 832, 862, . . .

Does the set of numbers representable as the sum of two binary
palindromes have positive density?
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Happy 80th Birthday DEK!
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