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Additive number theory

Let S, T be subsets of the natural numbers N = {0,1,2,...}.

The principal problem of additive number theory is to determine
whether every element of T (or every sufficiently large element of
T) can be written as the sum of some constant number of
elements of S, not necessarily distinct.

Often (but not always) T =N and S is a relatively sparse subset
of N.
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Example: Lagrange's theorem

Probably the most famous
example is
Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and

(b) three squares do not suffice for numbers of the form 42(8k + 7).

(Conjectured by Bachet in 1621.)

4/52



Goldbach’s conjecture

Let P={2,3,5,...,} be the prime numbers.

Goldbach's conjecture (1742): every even number > 4 is the sum
of two primes.

So here T = 2N.

Zwillinger’s conjecture (1979): every even number > 4208 is the
sum of 2 numbers, each of which is part of a twin-prime pair.



Additive bases

Let SCN.

We say that a subset S is an basis of order h if every natural
number can be written as the sum of h elements of S, not
necessarily distinct.

We say that a subset S is an asymptotic basis of order h if every
sufficiently large natural number can be written as the sum of h
elements of S, not necessarily distinct.

Usual convention: 0 € S.
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Gauss's theorem for triangular numbers

A triangular number is a number of the form n(n+ 1)/2
Gauss wrote the following in his diary on July 10 1796:

[m]

=

i.e., The triangular numbers form an additive basis of order 3



Waring's problem for powers

Edward Waring (1770) asserted,
without proof, that

every natural number is

— the sum of 4 squares

— the sum of 9 cubes

— the sum of 19 fourth powers
— “and so forth”.

9. Omnis integer numerus vel eft cubus; vel e duobus, tribus, 4, s,
6,7, 8, vel novem cubis compofitus: eft etiam quadrato-quadratus; vel
¢ duobus, tribus, &c. ufque ad novemdecim compofitus, & fic dein-
ceps: confimilia etiam affirmari poffunt (exceptis excipiendis) de co=
dem numero quantitatum earundem dimenfionum.
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Waring's problem

Let g(k) be the least natural number m such that every natural
number is the sum of m k'th powers.

Let G(k) be the least natural number m such that every
sufficiently large natural number is the sum of m k'th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G(2) = 4.

Hilbert proved in 1909 that g(k) and G(k) exist for all k.

By Wieferich and Kempner we know g(3) = 9.

We know that 4 < G(3) < 7, but the true value is still unknown.



How have problems in additive number theory been
proved, traditionally?

>

Waring's problem: solved by Hilbert in 1909 using polynomial
identities and geometry of numbers.

Hardy & Littlewood: in 1920, introduced their circle method
from complex analysis.

» use powers of generating functions like > -, X" and complex
analysis

» compute the residues around 0

» break unit circle up into “major arcs” and “minor arcs” (the
latter containing the main singularities)

I. M. Vinogradov: in 1926 modified the Hardy-Littlewood
method, replacing exponential sums with trigonometric sums,
to attack Goldbach's conjecture.

Linnik: in 1943, used Schnirelmann’s method instead (a much
more elementary approach).
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What could formal languages and automata theory
possibly offer the number theorist?

» New kinds of sets to consider (i.e., sets of numbers accepted
by automata of various kinds)

» New approaches for proving results

» Replacing long case-based arguments with a single machine
computation
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Other additive bases?

What other kinds of sets can form additive bases for N?
Not the powers of 2 — too sparse.
Need a set whose natural density is at least N/* for some k.
But this is not sufficient: consider the set
S={2"4j: n>1land0<i<2"}.

Its density is Q(N/2).

But S does not form an additive basis of any finite order, because
adding k elements of S in decreasing order can only result in at
most 2k + 1 “one” bits in the highest-order positions.



A simple example: the OOPS numbers

A number is said to be an OOPS number if it has ones in all
odd-numbered positions of its binary representation (where the
most significant digit is position 1).

The first few OOPS numbers are
1,2,3,5,7,10,11,14,15,21,23,29,31,42,43,46,47,58,59, . ..

The density of the OOPS numbers is ©(N'/2), so they are a good
candidate for forming an additive basis.

Theorem. The OOPS numbers form an asymptotic additive basis
of order 3, but not of order 2.
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Proving the OOPS result

Let's observe that the OOPS numbers are recognized by the
following simple DFA, which takes the base-2 representation of n
as input: 0

-~ 1l

Now we can use a great theorem, due to Biichi and Bruyere:

Theorem. Every first-order statement about a sequence defined by
a finite automaton in base k, using operations such as addition,
comparison, logical operations, and the 3 and V quantifiers, is
decidable. Furthermore, there is an automaton recognizing those
inputs corresponding to values of the free variables that make the
statement true.
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Proving the OOPS result

The first-order statements for additive number theory are generally
rather easy. For example, here's the statement defining those n
that are the sum of two OOPS numbers:

Ix,y(n=x+y) A oops(x) =1 A oops(y) = 1.

We can use the Walnut software package, written by Hamoon
Mousavi, to consruct an automaton recognizing those n for which
this statement is true:

eval oop2 "E x,y (n=x+y) & 00P[x]=0@1 & 0OO0P[y]=@1":
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Sums of two OOPS numbers

This gives us the following automaton:

State 8 (a non-accepting state) is recurrent, so the OOPS numbers
don't form an asymptotic additive basis of order 2.

16
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Sums of three OOPS numbers

By contrast, the Walnut statement for the sum of three OOPS
numbers
eval oop3 "E x,y,z (n=x+y+z) & 00P[x]=01 &
00P[y]=@1 & 00P[z] = @1":
returns the following automaton

thus proving that every number > 3 is the sum of three OOPS
numbers.
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A recent theorem of Bell, Hare, and JOS

Theorem. If a set S of natural numbers is recognized (in base k)
by a finite automaton of n states, then

(a) it is decidable if S forms an additive basis (resp., an asymptotic
additive basis) of finite order;

(b) if S is a basis, there is a computable bound (as a function of k
and n) on the order of the basis;

(c) the minimal order is computable.
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But what about other sets?

We could try to do additive number theory with more complicated
sets, such as

BAL = {0, 2,10,12,42,44,50,52,56, ...},

the numbers whose base-2 representation forms a string of
balanced parentheses (where 1 represents a left paren and 0 a right
paren).

Note that gcd(BAL) = 2, so it cannot be an additive basis for N,
but it could be an additive basis for 2N, the even numbers.

But BAL is not regular, so the previous method cannot work.

Nevertheless, we can prove results about some sets like this, using
the method of regular approximation.
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Method of regular approximation

Recent work of Bell, Lidbetter, and JOS.

Idea: find a suitable regular language that is an
underapproximation (subset) of BAL, and another regular language
that is an overapproximation (superset) of BAL.

The underapproximation gives an upper bound on the order of the
basis and the overapproximation gives a lower bound.



Approximating BAL

We can underapproximate BAL by considering those numbers that
are balanced and have a “nesting level” of at most three.

We use the following DFA:

and prove

Theorem. Every even natural number except
8,18,28, 38,40,82,166 is the sum of 3 balanced numbers.



Balanced numbers

Proof. We use Walnut and get the following automaton accepting
n such that 2n = x + y + z, with x, y, z balanced.




Palindromes

» How about numbers with palindromic base-b expansions?
> A palindrome is any string that is equal to its reversal

» Examples are radar (English), reliefpfeiler (German),
and 10001.

» We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

» Examples are 16 = [121]3 and 297 = [100101001]>.

» Binary palindromes (b = 2) form sequence A006995 in the
On-Line Encyclopedia of Integer Sequences (OEIS):
0,1,3,5,7,9,15,17,21,27,31,33,45,51,63, ...

» They have density O(N'/?).



The problem

Do the base-b palindromes form an additive basis, and if so, of
what order?

William Banks (2015) showed
that every natural number

is the sum of at most 49
base-10 palindromes.

(INTEGERS 16 (2016), #A3)

Javier Cilleruelo, Florian Luca, and
Lewis Baxter (2017) showed that for
all bases b > 5, every natural
number is the sum of three

base-b palindromes.

(Math. Comp. (2017), to appear)
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What we proved

However, the case of bases b = 2, 3,4 was left unsolved. We
proved

Theorem. (Rajasekaran, JOS, Smith) Every natural number N is
the sum of 4 binary palindromes. The number 4 is optimal.

For example,

10011938 = 5127737 4 4851753 + 32447 4 1
= [10011100011111000111001]>
+ [10010100000100000101001]>
+[111111010111111],
+[1a.

4 is optimal: 10011938 is not the sum of 2 binary palindromes.



Previous proofs were complicated (1)
Excerpt from Banks (2015):

2.4. Inductive passage from N ;(5";¢;) to No_q141(5%; ¢2).

LemMa 2.4. Let (k€ N, { = k + 6, and ¢, € D be given. Given n € Ny (5%; ¢1), one
can find digits ay, ..., a1s,b1, ..., bis € D\{0} and ¢, € D such that the number

18
n-— Z qe-1,(aj, b;)
J=1
lies in the set Ny_y p41(57; ¢2).
Proof. Fix n € Ngx(5%;¢1), and let {ri]}ﬁ;é be defined as in (1.1) (with L = /).
Let m be the three-digit integer formed by the first three digits of n; that is,
m = 1008,_1 + 1005 + d¢_3.
Clearly, m is an integer in the range 500 < m < 999, and we have
-1 [
n= Y1070, = 10°m + 3" 105;. (2.4)
j=k =k
Let us denote
S = {19,29,39, 49, 59}.
In view of the fact that

95 := S+---+8 = {171,181,191,...,531},
| S
nine copies

it is possible to find an element i € 9S for which m — 80 < 2h < m — 60. With
h fixed, let s, . .., sy be elements of S such that

S1+ -+ 89 =h.
Finally, let £, . . ., 9 be natural numbers, each equal to zero or two: ¢; € {0,2}
for j = 1,...,9. A specific choice of these numbers is given below.
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Previous proofs were complicated (2)
Excerpt from Cilleruelo et al. (2017)

II.2 ¢, = 0. We distinguish the following cases:

11.24) Ym # 0.
Om | Om—1 Om | Om—1
0 0 1 1
—
* 1 YUm * |\ ym—1
* * * *

11.2.i1) Y = 0.
11.2.§.2) Ypm_1 # 0.

Om | Om1 Om2 | Om b1 b2
0 0 * 1 1 *
N )
Ym-1| 0 Ym-1 Ym-1—1] 92 ym-1—1
* | Zme1 Zmet * Zm-1+1 Zmo1+1

The above step is justified for z,_1 # g — 1. But if 2,1 = ¢ — 1, then
ene1 > (1 2m1)/9 2 1,50 € = (1 +em1)/g = (9—1+1)/g = 1,
a contradiction.

11.2.ii.b) Ym—1 = 0, Zm—1 # 0.

O | Ome1 Oma om | Omot Om |
0 0 * 0 0 *
—
0 0 0 1 1 1
* | Zm—1 Zm-1 * | zm-o1—1 zpo—1

11.2.i.c) Yym—1 =0, Zm—1 = 0.
If also ¢p,—1 = 0, then d,,—; = 0, which is not allowed. Thus, ¢,,—; = 1.
This means that z,,_1 € {g — 1,9 — 2}. Since z; € {0,1,2} for i > 3, it
follows that m = 3 and we are in one of the cases A.5) or A.6):Further;

02 = 1. In this case we change the above configuration to: 27 /52



Previous proofs were complicated (3)

» Proofs of Banks and Cilleruelo et al. were long and case-based
» Difficult to establish
» Difficult to understand

» Difficult to check, too: the original Cilleruelo et al. proof had
some minor flaws that were only noticed when the proof was
implemented as a Python program

> Idea: could we automate such proofs?



Regular approximation can't work for the palindromes

A theorem of Horvéath, Karhumaki, and Kleijn (1987) shows that
any regular underapproximation of the palindromes is slender: the
number of words of length n is at most a constant.

So we will never have a dense enough underapproximation to get
results this way.

Is there some other method that could work?
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The main idea of our proof

» Construct a finite-state machine that takes natural numbers
as input, expressed in the desired base

> Allow the machine to nondeterministically “guess” a
representation of the input as a sum of palindromes

» The machine accepts an input if it verifies its guess

» Then use a decision procedure to establish properties about
the language of representations accepted by this machine
(e.g., universality)
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Picking a machine model for palindromes

What machine model?

» it should be possible to check if the guessed summands are
palindromes

» can be done with a pushdown automaton (PDA)

> it should be possible to add the summands and compare to
the input
» can be done with a finite automaton (DFA or NFA)

However
» Can't add summands with these machine models unless they

are guessed in parallel

» Can't check if summands are palindromes if they are wildly
different in length & presented in parallel

» Universality is not decidable for PDA's
What to do?
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Visibly pushdown automata (VPA)

Use visibly-pushdown automatal!

Popularized by Alur and Madhusudan in 2004, though similar
ideas have been around for longer

VPA's receive an input string, and read the string one letter at
a time

They have a (finite) set of states and a stack

Upon reading a letter of the input string, the VPA can
transition to a new state, and might modify the stack

The states of the VPA are either accepting or non-accepting

If the VPA can end up in an accepting state after it is done
reading the input, then the VPA “accepts” the input, else it
“rejects” it



Using the VPA's stack

» The VPA can only take very specific stack actions
» The input alphabet, %, is partitioned into three disjoint sets
» 3, the push alphabet
» 3, the local alphabet
> 3 ,, the pop alphabet
> If the letter of the input string we read is from the push
alphabet, the VPA pushes exactly one symbol onto its stack
> If the letter of the input string we read is from the pop
alphabet, the VPA pops exactly one symbol off its stack
> If the letter of the input string we read is from the local
alphabet, the VPA does not consult its stack at all
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Example VPA

A VPA for the language {0"12" : n>1}:

Read: 0 Read: 2
Push: MORE Pop: MORE

Read: 0 Read: 2
( 0 ) Push: FIRST _ 1 Read: 1 _ 2 Pop: FIRST k@

The push alphabet is {0}, the local alphabet is {1}, and the pop
alphabet is {2}.
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Determinization and Decidability

v

A nondeterministic VPA can have several matching transition
rules for a single input letter

Nondeterministic VPA's are as powerful as deterministic VPA's

VPL's are closed under union, intersection and complement.
There are algorithms for all these operations.

Testing emptiness, universality and language inclusion are
decidable problems for VPA's

But a nondeterministic VPA with n states can have as many
20(n?) h inized!
as states when determinized!
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Proof strategy

> We build a VPA that “guesses” inputs of roughly the same
size, in parallel

> It checks to see that they are palindromes

» And it adds them together and verifies that the sum equals
the input.

» There are some complications due to the VPA restrictions.
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More details of the proof strategy

v

To prove our result, we built 2 VPA's A and B:

> A accepts all n-bit odd integers, n > 8, that are the sum of
three binary palindromes of length either

» n,n—2,n—3, or
» n—1,n—2, n—3.

» B accepts all valid representations of odd integers of length
n>38

v

We then prove that all inputs accepted by B are accepted by A
We used the ULTIMATE Automata Library

Once A and B are built, we simply have to issue the command

v

v

assert(IsIncluded(B,A))

in ULTIMATE.
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Bases 3 and 4

» Unfortunately, the VPA's for bases 3 and 4 are too large to
handle in this way.

» So we need a different approach.

> Instead, we use ordinary nondeterministic finite automata
(NFA).

» But they cannot recognize palindromes...

» Instead, we change the input representation so that numbers
are represented in a “folded” way, where each digit at the
beginning of its representation is paired with its corresponding
digit at the end.

» With this we can prove...
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Other results

Theorem. (Rajasekaran, JOS, Smith) Every natural number is the
sum of at most three base-3 palindromes.

Theorem. (Rajasekaran, JOS, Smith) Every natural number is the
sum of at most three base-4 palindromes.

This completes the classification for base-b palindromes for all
b>2.
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An analogue of Lagrange's theorem

Using NFA's we can also establish an analogue of Lagrange's
four-square theorem.

» A square is any string that is some shorter string repeated
twice

» Examples are hotshots (English), nennen (German), and
100100.

» We call an integer a base-b square if its base-b representation
is a square

» Examples are 36 = [100100], and 3 = [11]>.
» The binary squares form sequence A020330 in the OEIS

3,10,15, 36,45, 54,63,136, 153,170, 187, 204, 221, . ...
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Lagrange's theorem strategy

Lemma.

(a) Every length-n integer, n odd, n > 13, is the sum of binary
squares as follows: either

» one of length n — 1 and one of length n— 3, or

vV VY VY VvYYy

two of length n — 1 and one of length n — 3, or

one of length n — 1 and two of length n — 3, or

one each of lengths n— 1, n—3, and n—5, or

two of length n — 1 and two of length n — 3, or

two of length n — 1, one of length n — 3, and one of length
n—5.

(b) Every length-n integer, n even, n > 18, is the sum of binary
squares as follows: either

>

>
>
»

two of length n — 2 and two of length n — 4, or

three of length n — 2 and one of length n— 4, or

one each of lengths n, n—4, and n— 6, or

two of length n — 2, one of length n — 4, and one of length
n—6.
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Lagrange's theorem

Note that
» Using automata we cannot state the theorem we want to
prove

» This is due to the fact that we can’t add squares of wildly
differing lengths using the representation we chose

» But we can state the stronger result of the lemma on the
previous slide

» So we are combining a decision procedure together with a
heuristic search for an appropriate lemma to prove.



Results
Theorem. (Madhusudan, Nowotka, Rajasekaran, JOS) Every
natural number N > 686 is the sum of at most 4 binary squares.

For example:

10011938 = 9291996 + 673425 + 46517
= [100011011100100011011100], + [10100100011010010001],

+[1011010110110101]>
Here the 686 is optimal.
The list of all exceptions is
1,2,4,5,7,8,11,14,17,22,27,29,32,34,37,41, 44,47,
53,62,95,104,107,113,116,122,125,131, 134, 140, 143,

148,155, 158, 160, 167, 407, 424, 441, 458, 475, 492, 500,
526, 552, 560, 569, 587, 599, 608, 613, 620, 638, 653, 671, 636.
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Another result

Theorem. Every natural number is the sum of at most two binary
squares and at most two powers of 2.
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Generalizing: Waring's theorem for binary k'th powers

Recall Waring's theorem: for every k > 1 there exists a constant
g(k) such that every natural number is the sum of g(k) k'th
powers of natural numbers.

Could the same result hold for the binary k'th powers?

Two issues:

» 1 is not a binary k'th power, so it has to be “every sufficiently
large natural number” and not “every natural number”.

» The gcd g of the binary k'th powers need not be 1, so it
actually has to be “every sufficiently large multiple of g”.
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gcd of the binary k'th powers

Theorem. The gcd of the binary k'th powers is gcd(k, 2K — 1).

Example:
The binary 6'th powers are

63,2730, 4095, 149796, 187245, 224694, 262143, 8947848, 10066329, . . .

with ged equal to ged(6,63) = 3.
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Waring's theorem for binary k'th powers

Theorem. Every sufficiently large multiple of gcd(k, 2% — 1) is the
sum of a constant number (depending on k) of binary k'th powers.

Obtained with Daniel Kane and Carlo Sanna.
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Outline of the proof
Given a number N we wish to represent as a sum of binary k'th
powers:
> choose a suitable power of 2, say 2", and express N as a
polynomial in x =2". We want x¥ ~ N.
> use linear algebra to change the basis and instead express N
as a linear combination of cx(n), ck(n+1),...,ck(n+k —1)
where
2kn —1
T 21
» Such a linear combination would seem to provide an
expression for N in terms of binary k'th powers, but there are
three problems to overcome:
(a) the coefficients of ¢k (i), n < i < n+ k, could be much too
large;
(b) the coefficients could be too small or negative;
(c) the coefficients might not be integers.

ck(n) =142 402 ... 4 olk=1)n

All of these problems can be handled with some work...
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Could additive number theorists be replaced by a decision
procedure?

v

Unfortunately, probably not: for example, every context-free
subset of the prime numbers is finite...

» ... so we will never be able to prove Goldbach’s conjecture
using these naive methods.

v

Similarly, every regular subset of the powers expressed in base
k is slender ...

> ... so Waring's theorem is also probably out of reach.
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Open Problems

» Say something about the number of representations as the
sum of two, three, or four palindromes.

> Are there arbitrarily large even numbers that cannot be
written as the difference of two binary palindromes? The
sequence of unrepresentable numbers starts
1844,1892,2512,3700,4702,5476,5534,7364, ...
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Moral of the story

v

Formal languages and automata are a source of new problems
for additive number theory

And they offer new techniques as well...

They offer the prospect of proving nontrivial theorems of
interest using decision procedures and brute-force
computation

They can replace long case-based proofs that are prone to
error.
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