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Some notation

> - a finite nonempty set of symbols - the alphabet
word - a finite or infinite list of symbols chosen from ¥
> * - set of all finite words

YT - set of all finite nonempty words

Y¥ - set of all (right-)infinite words

Yo=Y U ¥
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More notation

the empty word: ¢

W = aiap---dp

wli] ;== aj, wli.j]:= ajajt1---a;

W = gpdiaz---

XY = xxx---

ultimately periodic: z = xy*

Operations: concatenation, raising to powers x" = m x0 =¢,
reversal xR

prefix, suffix, factor, subword
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Algebraic framework

B semigroup: concatenation is multiplication, associative

20 /201



Algebraic framework

B semigroup: concatenation is multiplication, associative

m monoid: semigroup + identity element (¢)

21 /201



Algebraic framework

B semigroup: concatenation is multiplication, associative
m monoid: semigroup + identity element (¢)

m free monoid: no relations among elements



Algebraic framework

B semigroup: concatenation is multiplication, associative
m monoid: semigroup + identity element (¢)
m free monoid: no relations among elements

m group: add inverses of elements a—!
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Periodicity

words - fundamentally noncommutative

casebook # bookcase

When do words commute?
Here are two words that “almost” commute:
w = 01010 and x = 01011010

wx = 0101001011010
xw = 0101101001010

By the way, this raises the question: can the Hamming distance
between wx and xw be 17 It can't; there is a one-line proof.
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What are the solutions to x> = y in words?

- Over N, x2 = y3 iff x is a cube and y is a square
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First Theorem of Lyndon-Schutzenberger

Let x,y € ¥ . Then the following three conditions are equivalent:
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First Theorem of Lyndon-Schutzenberger

Theorem

Let x,y € ¥ . Then the following three conditions are equivalent:
(1) xy = yx;
(2) There exist z € ¥+ and integers k,| > 0 such that x = z* and

y=2z
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First Theorem of Lyndon-Schutzenberger

Theorem

Let x,y € ¥ . Then the following three conditions are equivalent:
(1) xy = yx;

(2) There exist z € ¥+ and integers k,| > 0 such that x = z* and

y=2z

(3) There exist integers i,j > 0 such that x' = y/.
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Second Theorem of Lyndon-Schiitzenberger

Under what conditions can a string have a nontrivial proper prefix
and suffix that are identical?
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Second Theorem of Lyndon-Schiitzenberger

Under what conditions can a string have a nontrivial proper prefix
and suffix that are identical?

Examples in English: reader — begins and ends with r
alfalfa — which begins and ends with alfa

The answer is given by the following theorem.

Theorem

Let x,y,z € ¥*. Then xy = yz if and only if there exist u € ¥,
v € 2%, and an integer e > 0 such that x = uv, z = vu, and
y = (uv)®u = u(vu)©.
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Primitive words

We say a word x is a power if it can be expressed as x = y" for
some y #£¢€, n> 2.
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Primitive words

We say a word x is a power if it can be expressed as x = y" for
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A nonpower is called primitive.

Every nonempty word can be written uniquely in the form x*
where x is primitive and k > 1.
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Primitive words

We say a word x is a power if it can be expressed as x = y" for
some y #£¢€, n> 2.

A nonpower is called primitive.

Every nonempty word can be written uniquely in the form x*
where x is primitive and k > 1.

Enumeration: there are exactly
> u(d)kme
d|n

primitive words of length n over a k-letter alphabet. Here p is the
Mobius function and the sum is over the divisors of n.
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Primitive words

We say a word x is a power if it can be expressed as x = y" for
some y #£¢€, n> 2.

A nonpower is called primitive.

Every nonempty word can be written uniquely in the form x*
where x is primitive and k > 1.

Enumeration: there are exactly
> u(d)kme
d|n

primitive words of length n over a k-letter alphabet. Here p is the
Mobius function and the sum is over the divisors of n.

Open question: is the set of primitive binary words a CFL?
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Conjugates

A word w is a conjugate of a word x if w can be obtained from x
by cyclically shifting the letters.
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Conjugates

A word w is a conjugate of a word x if w can be obtained from x
by cyclically shifting the letters.

For example, the English word enlist is a conjugate of listen.
A conjugate of a k-th power is a k-th power of a conjugate.
Every primitive word has an unbordered conjugate.

Lyndon word: lexicographically least among all its conjugates

Theorem: Every finite word has a unique factorization as the
product of Lyndon words wyws - - - wy,, where wy > wo > ws - - wp,.
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Fractional powers

We say a word w is a p/q power, for integers p > g > 1, if

w = xP/aly/

for a prefix x' of x such that |w|/|x| = p/q.
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be written as (ent)?e.
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Fractional powers

We say a word w is a p/q power, for integers p > g > 1, if

w = xP/aly/

for a prefix x' of x such that |w|/|x| = p/q.

For example, the French word entente is a 7/3-power, as it can
be written as (ent)?e.

The German word schematische is a 3/2 power.

If w=xlP/alx"is a p/q power, then we call x a period of w.
Often the word period is used to refer to |x|.

If a word w is a p/q > 1 power, then it begins and ends with some
nonempty string. Such a string is also called bordered. Otherwise
it is unbordered.
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Unbordered words

The unbordered words play the same role for fractional powers as
the primitive words do for ordinary powers.
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no simple closed form.
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Unbordered words

The unbordered words play the same role for fractional powers as
the primitive words do for ordinary powers.

Enumeration of unbordered words is more challenging and there is
no simple closed form.

However, there are asymptotically c k" such words, where ¢, is a
constant that tends to 1 as k tends to oo.
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Duval’s conjecture

Let u(w) be the length of the longest unbordered factor of w.
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Duval’s conjecture

Let u(w) be the length of the longest unbordered factor of w.
Let p(w) be the length of the longest period of w.
Duval conjectured that if [w| > 3u(w), then pu(w) = p(w).

This was proved by Harju & Nowotka, and S. Holub. The result
has been improved to |w| > 3u(w) —2 = u(w) = p(w).
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The Fine-Wilf theorem

Let w and x be nonempty words. Lety € w{w, x}* and
z € x{w, x}*. Then the following conditions are equivalent:

(a) y and z agree on a prefix of length at least
lw| + [x| — ged(|wl, [x]);
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The Fine-Wilf theorem

Let w and x be nonempty words. Lety € w{w, x}* and
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(a) y and z agree on a prefix of length at least
lw| + [x| — ged(|wl, [x]);
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(c) = (a): Trivial.
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The Fine-Wilf theorem

Theorem

Let w and x be nonempty words. Lety € w{w, x}* and
z € x{w, x}*. Then the following conditions are equivalent:
(a) y and z agree on a prefix of length at least

[w| + |x| — ged(|wl, |x]);

(b) wx = xw;

() y=z

(c) = (a): Trivial.
We'll prove (a) = (b) and (b) = (¢).
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Fine-Wilf: The proof

Proof.
(a) y and z agree on a prefix of length at least
[w| + |x] — ged(w], |x]) = (b) wx = xw
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Fine-Wilf: The proof

Proof.
(a) y and z agree on a prefix of length at least

wl+ Ix| — ged(|wl, [x]) == (b) wx = xw

We prove the contrapositive. Suppose wx # xw.
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Fine-Wilf: The proof

Proof.
(a) y and z agree on a prefix of length at least
[w| + |x] — ged(w], |x]) = (b) wx = xw

We prove the contrapositive. Suppose wx # xw.

Then we prove that y and z differ at a position
< [w] + [x] — ged(|wl, |x]).
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Fine-Wilf: The proof

Proof.
(a) y and z agree on a prefix of length at least
[w| + |x] — ged(w], |x]) = (b) wx = xw

We prove the contrapositive. Suppose wx # xw.

Then we prove that y and z differ at a position
< [w] + [x] — ged(|wl, |x]).

The proof is by induction on |w| + |x]|.
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Fine-Wilf: The proof

Proof.
(a) y and z agree on a prefix of length at least
[w| + |x] — ged(w], |x]) = (b) wx = xw

We prove the contrapositive. Suppose wx # xw.

Then we prove that y and z differ at a position
< [w] + [x] — ged(|wl, |x]).

The proof is by induction on |w| + |x]|.

The base case is |w| + |x| = 2. Then |w| = |x| =1, and
lw| + |x| — ged(Jw], |x]) = 1. Since wx # xw, we must have
w = a, x = b with a # b. Then y and z differ at the first position.
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Now assume the result is true for |w| + [x| < k.
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Now assume the result is true for |w| + |x| < k.
We prove it for |w| + |x| = k.

If [w| = |x| then y and z must disagree at the |w|'th position or
earlier, for otherwise w = x and wx = xw; since
|w| < |w|+ |x| — ged(|w], |x]) = |w|, the result follows.
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We prove it for |w| + |x| = k.

If [w| = |x| then y and z must disagree at the |w|'th position or
earlier, for otherwise w = x and wx = xw; since
|w| < |w|+ |x| — ged(|w], |x]) = |w|, the result follows.

So, without loss of generality, assume |w| < |x|.

79 /201



Now assume the result is true for |w| + |x| < k.
We prove it for |w| + |x| = k.

If [w| = |x| then y and z must disagree at the |w|'th position or
earlier, for otherwise w = x and wx = xw; since
lw| < |w| + |x| — ged(|w|, |x]) = |w|, the result follows.

So, without loss of generality, assume |w| < |x|.

If w is not a prefix of x, then y and z disagree on the |w|'th
position or earlier, and again |w| < |w| + |x| — ged(|w], |x])-
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Now assume the result is true for |w| + |x| < k.
We prove it for |w| + |x| = k.

If [w| = |x| then y and z must disagree at the |w|'th position or
earlier, for otherwise w = x and wx = xw; since
lw| < |w| + |x| — ged(|w|, |x]) = |w|, the result follows.

So, without loss of generality, assume |w| < |x|.

If w is not a prefix of x, then y and z disagree on the |w|'th
position or earlier, and again |w| < |w| + |x| — ged(|w], |x])-

So w is a proper prefix of x.
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Now assume the result is true for |w| + |x| < k.
We prove it for |w| + |x| = k.

If [w| = |x| then y and z must disagree at the |w|'th position or
earlier, for otherwise w = x and wx = xw; since
lw| < |w| + |x| — ged(|w|, |x]) = |w|, the result follows.

So, without loss of generality, assume |w| < |x|.

If w is not a prefix of x, then y and z disagree on the |w|'th
position or earlier, and again |w| < |w| + |x| — ged(|w], |x])-

So w is a proper prefix of x.
Write x = wt for some nonempty word t.

Now any common divisor of |w| and |x| must also divide
|x| — |w| = |t|, and similarly any common divisor of both |w| and

|t| must also divide |w| + |t| = |x|. So ged(|w], |x]).= gecd(|w], |t]).
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contradiction.

Now wt # tw, for otherwise we have wx = wwt = wiw = xw, a
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Now wt # tw, for otherwise we have wx = wwt = witw = xw, a
contradiction.

Theny=ww--- and z= wt---. By induction (since
|w| + [t| < k) w™ly and w1z disagree at position
|w| + |t| — ged(|wl], |t]) or earlier.



Now wt # tw, for otherwise we have wx = wwt = witw = xw, a
contradiction.

Theny=ww--- and z= wt---. By induction (since

|w| + [t| < k) w™ly and w1z disagree at position

|w| + |t| — ged(|wl], |t]) or earlier.

Hence y and z disagree at position

2lw| + |t| — ged(|wl, |t]) = |w| + |x| — gcd(|w], |x|) or earlier.
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(b) = (c): If wx = xw, then by the theorem of
Lyndon-Schiitzenberger, both w and x are in u™ for some word u.
Hencey=u“=2z. N
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Finite Sturmian words

The proof also implies a way to get words that optimally “almost
commute”, in the sense that xw and wx should agree on as long a
segment as possible.
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For each m, n > 1 there exist words x, w of length m, n,
respectively, such that xw and wx agree on a prefix of length
m + n — ged(m, n) — 1 but differ at position m + n — gcd(m, n).
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These are the finite Sturmian words.
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Finite Sturmian words

The proof also implies a way to get words that optimally “almost
commute”, in the sense that xw and wx should agree on as long a
segment as possible.

Theorem

For each m, n > 1 there exist words x, w of length m, n,
respectively, such that xw and wx agree on a prefix of length
m + n — ged(m, n) — 1 but differ at position m + n — gcd(m, n).

These are the finite Sturmian words.

Many authors have worked on generalizations to multiple periods:
Castelli, Mignosi, & Restivo, Simpson & Tijdeman, Constantinescu
& llie, ...
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Patterns and pattern avoidance

The story begins with Axel Thue in 1906.
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The story begins with Axel Thue in 1906.

He noticed that over a 2-letter alphabet, every word of length > 4
contains a square: either 02, 12, (01)? or (10)2.
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factors at all. Such a word is called squarefree.
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contains a square: either 02, 12, (01)? or (10)2.
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factors at all. Such a word is called squarefree.

The easiest way to construct such a sequence was found by Thue
in 1912 (and rediscovered many times).
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Patterns and pattern avoidance

The story begins with Axel Thue in 1906.

He noticed that over a 2-letter alphabet, every word of length > 4
contains a square: either 02, 12, (01)? or (10)2.

But over a 3-letter alphabet, it is possible to create arbitrarily long
words (or — what is equivalent — an infinite word) with no square
factors at all. Such a word is called squarefree.

The easiest way to construct such a sequence was found by Thue
in 1912 (and rediscovered many times).

It is based on the Thue-Morse sequence.
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The Thue-Morse morphism

Morphism: a map h from ¥* to A* such that

h(xy) = h(x)h(y).
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The Thue-Morse morphism

Morphism: a map h from ¥* to A* such that

h(xy) = h(x)h(y).

Thue-Morse morphism: 1(0) = 01; p(1) = 10.
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The Thue-Morse morphism

Morphism: a map h from ¥* to A* such that

h(xy) = h(x)h(y).

Thue-Morse morphism: 1(0) = 01; p(1) = 10.

If ¥ = A then we can iterate h.

98

201



The Thue-Morse morphism

Morphism: a map h from ¥* to A* such that

h(xy) = h(x)h(y).

Thue-Morse morphism: 1(0) = 01; p(1) = 10.

If ¥ = A then we can iterate h.
i

. ——
We write h' = h(h(h(---))).
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Morphic words

If a nonerasing morphism has the property that h(a) = ax, then
iterating h produces an infinite word

h*(a) = ax h(x) h*(x) h3(x) - - - .
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Morphic words

If a nonerasing morphism has the property that h(a) = ax, then
iterating h produces an infinite word

h*(a) = ax h(x) h*(x) h3(x) - - - .

If we do this with © we get the Thue-Morse word:
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Morphic words

If a nonerasing morphism has the property that h(a) = ax, then
iterating h produces an infinite word

h*(a) = ax h(x) h*(x) h3(x) - - - .

If we do this with © we get the Thue-Morse word:

t = 1¥(0) =0110100110010110- - - .
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Morphic words

If a nonerasing morphism has the property that h(a) = ax, then
iterating h produces an infinite word

h*(a) = ax h(x) h?(x) h3(x) - - - .
If we do this with © we get the Thue-Morse word:

t = 1¥(0) =0110100110010110- - - .

Also rediscovered by Marston Morse, Max Euwe, Solomon Arshon,
and the Danish composer Per Ngrgard.
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Properties of the Thue-Morse word

An overlap is a word of the form axaxa, where a is a single letter
and x is a word.
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and x is a word.

An example in English is alfalfa (take x = 1f).
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Properties of the Thue-Morse word

An overlap is a word of the form axaxa, where a is a single letter
and x is a word.

An example in English is alfalfa (take x = 1f).

Thus an overlap is just slightly more than a square.
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Properties of the Thue-Morse word

An overlap is a word of the form axaxa, where a is a single letter
and x is a word.

An example in English is alfalfa (take x = 1f).
Thus an overlap is just slightly more than a square.

It is also called a 2 power.
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Properties of the Thue-Morse word

An overlap is a word of the form axaxa, where a is a single letter
and x is a word.

An example in English is alfalfa (take x = 1f).
Thus an overlap is just slightly more than a square.

It is also called a 2 power.

Theorem

The Thue-Morse word t is overlap-free.



From overlap-free to squarefree

We can construct a squarefree word from t, as follows:
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From overlap-free to squarefree

We can construct a squarefree word from t, as follows:

Count the number of 1's in t between consecutive 0's:
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From overlap-free to squarefree

We can construct a squarefree word from t, as follows:
Count the number of 1's in t between consecutive 0's:

We get:
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From overlap-free to squarefree

We can construct a squarefree word from t, as follows:
Count the number of 1's in t between consecutive 0's:
We get:
2 1 0 2 0 1 2 1 0 1 2

P s S S N N N s T T T S T
0110 1 0 0110 01011010 01011 ---
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From overlap-free to squarefree

We can construct a squarefree word from t, as follows:
Count the number of 1's in t between consecutive 0's:
We get:
2 1 0 2 0 1 2 1 0 1 2

P s S S N N N s T T T S T
0110 1 0 0110 01011010 01011 ---

[y

This is squarefree, as a square in this word implies and overlap in
the Thue-Morse word.

113 /201



Enumeration of power-free words

How many squarefree words are there?
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Enumeration of power-free words

How many squarefree words are there?

Infinite - countable or uncountable
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Enumeration of power-free words

How many squarefree words are there?
Infinite - countable or uncountable

Finite - polynomially-many or exponentially-many of length n?
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Enumeration of power-free words

How many squarefree words are there?

Infinite - countable or uncountable

Finite - polynomially-many or exponentially-many of length n?
Same question can be asked for the overlap-free words.

For overlap-free words over {0, 1} there is a factorization theorem
of Restivo and Salemi that implies only polynomially-many of
length n.
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Enumeration of power-free words

How many squarefree words are there?

Infinite - countable or uncountable

Finite - polynomially-many or exponentially-many of length n?
Same question can be asked for the overlap-free words.

For overlap-free words over {0, 1} there is a factorization theorem
of Restivo and Salemi that implies only polynomially-many of
length n.

For squarefree words over {0, 1,2} there are exponentially many.
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Dejean’s Conjecture

Given an alphabet ¥ of cardinality k, we can try to find the optimal
(fractional) exponent « avoidable by infinite words over .
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Dejean’s Conjecture

Given an alphabet ¥ of cardinality k, we can try to find the optimal
(fractional) exponent « avoidable by infinite words over .

For k = 2 we have already seen that overlaps are avoidable and
squares are not. So ap = 2.
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Dejean’s Conjecture

Given an alphabet ¥ of cardinality k, we can try to find the optimal
(fractional) exponent « avoidable by infinite words over .

For k = 2 we have already seen that overlaps are avoidable and
squares are not. So ap = 2.

Dejean (1972) showed that aiz = 7/4 and conjectured that
ag =7/5 and oy = k/(k — 1) for k > 5.
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Dejean’s Conjecture

Given an alphabet ¥ of cardinality k, we can try to find the optimal
(fractional) exponent « avoidable by infinite words over .

For k = 2 we have already seen that overlaps are avoidable and
squares are not. So ap = 2.

Dejean (1972) showed that aiz = 7/4 and conjectured that
ag =7/5 and oy = k/(k — 1) for k > 5.

This conjecture has been proven by the combined efforts of
Pansiot, Moulin-Ollagnier, Currie & Mohammad-Noori, Carpi,
Currie & Rampersad, and Rao.
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Dejean’s Conjecture

Given an alphabet ¥ of cardinality k, we can try to find the optimal
(fractional) exponent « avoidable by infinite words over .

For k = 2 we have already seen that overlaps are avoidable and
squares are not. So ap = 2.

Dejean (1972) showed that aiz = 7/4 and conjectured that
ag =7/5 and oy = k/(k — 1) for k > 5.

This conjecture has been proven by the combined efforts of
Pansiot, Moulin-Ollagnier, Currie & Mohammad-Noori, Carpi,
Currie & Rampersad, and Rao.

Still open: many other variants of Dejean where the length of the
period is also taken into account.

124 /201



More general patterns

Instead of avoiding xx or axaxa, we can try to avoid more general
patterns.
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patterns.

“Avoiding the pattern o’ means constructing an infinite word x
such that, for all non-erasing morphisms h, the word h(«) is not a
factor of x.



More general patterns

Instead of avoiding xx or axaxa, we can try to avoid more general
patterns.

“Avoiding the pattern o’ means constructing an infinite word x
such that, for all non-erasing morphisms h, the word h(«) is not a
factor of x.

Not all patterns are avoidable — even if the alphabet is arbitrarily
large.
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More general patterns

Instead of avoiding xx or axaxa, we can try to avoid more general
patterns.

“Avoiding the pattern o’ means constructing an infinite word x
such that, for all non-erasing morphisms h, the word h(«) is not a
factor of x.

Not all patterns are avoidable — even if the alphabet is arbitrarily
large.

For example - it is impossible to avoid xyx, since every sufficiently
long string z will contain three occurrences of some letter a, say

z = rasatau, and then we can let x = a, y = sat, both x and y are
nonempty.
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Avoiding general patterns

Given a pattern, it is decidable (via Zimin's algorithm) if it is
avoidable over some alphabet.
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Avoiding general patterns

Given a pattern, it is decidable (via Zimin's algorithm) if it is
avoidable over some alphabet.

However, we do not have a general procedure to decide if a given
pattern is avoidable over a fixed alphabet.
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Abelian powers

Instead of avoiding xx, we can consider trying to avoid other kinds
of patterns: the so-called abelian powers.
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Instead of avoiding xx, we can consider trying to avoid other kinds
of patterns: the so-called abelian powers.

An abelian square is a nonempty word of the form xx’, where x’ is
a permutation of x.
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Abelian powers

Instead of avoiding xx, we can consider trying to avoid other kinds
of patterns: the so-called abelian powers.

An abelian square is a nonempty word of the form xx’, where x’ is
a permutation of x.

For example, interessierten is an abelian square in German, as
sierten is a permutation of interes.
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Abelian powers

Instead of avoiding xx, we can consider trying to avoid other kinds
of patterns: the so-called abelian powers.

An abelian square is a nonempty word of the form xx’, where x’ is
a permutation of x.

For example, interessierten is an abelian square in German, as
sierten is a permutation of interes.

In a similar way, we can define abelian cubes as words of the form
xx'x" where both x’ and x” are permutations of x.
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Abelian powers: summary of results

it is possible to avoid abelian squares over a 4-letter alphabet, and
this is optimal;
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Abelian powers: summary of results

it is possible to avoid abelian squares over a 4-letter alphabet, and
this is optimal;

it is possible to avoid abelian cubes over a 3-letter alphabet, and
this is optimal;
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Abelian powers: summary of results

it is possible to avoid abelian squares over a 4-letter alphabet, and
this is optimal;

it is possible to avoid abelian cubes over a 3-letter alphabet, and
this is optimal;

it is possible to avoid abelian fourth powers over a 2-letter
alphabet, and this is optimal.
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Abelian powers: summary of results

it is possible to avoid abelian squares over a 4-letter alphabet, and
this is optimal;

it is possible to avoid abelian cubes over a 3-letter alphabet, and
this is optimal;

it is possible to avoid abelian fourth powers over a 2-letter
alphabet, and this is optimal.

An open problem: is it possible to avoid, over a finite subset of N,
patterns of the form xx” where |x| = |x/| and > x =>_ x?
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Abelian powers: summary of results

it is possible to avoid abelian squares over a 4-letter alphabet, and
this is optimal;

it is possible to avoid abelian cubes over a 3-letter alphabet, and
this is optimal;

it is possible to avoid abelian fourth powers over a 2-letter
alphabet, and this is optimal.

An open problem: is it possible to avoid, over a finite subset of N,
patterns of the form xx” where |x| = |x/| and > x =>_ x?

Also still open: fractional version of abelian powers
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A generalization of abelian powers

involution: h?(x) = x for all words x
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A generalization of abelian powers

involution: h?(x) = x for all words x

involutions can be morphic (h(xy) = h(x)h(y)) or antimorphic
(h(xy) = h(y)h(x))
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A generalization of abelian powers

involution: h?(x) = x for all words x

involutions can be morphic (h(xy) = h(x)h(y)) or antimorphic
(h(xy) = h(y)h(x))

One antimorphism of biological interest: reverse string and apply
map A<~ T, G < C.
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A generalization of abelian powers

involution: h?(x) = x for all words x

involutions can be morphic (h(xy) = h(x)h(y)) or antimorphic
(h(xy) = h(y)h(x))

One antimorphism of biological interest: reverse string and apply
map A<~ T, G < C.

Can avoid some patterns involving involution, but not others
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EXample 1.

abX = Xba.

(O T o«

>

= vao
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Equations in words

Example 1:

abX = Xba.

The only solutions are X € (ab)*a.
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Equations in words

Example 1:

abX = Xba.

The only solutions are X € (ab)*a.
Example 2:

XaXbY = aXYbX
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Equations in words

Example 1:

abX = Xba.

The only solutions are X € (ab)*a.
Example 2:

XaXbY = aXYbX
The solutions are X = a', Y = (a'bYa’ for i >0,/ > 0.
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Equations in words

Example 3: Fermat's equation for words: x'yJ = z¥
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Equations in words

Example 3: Fermat's equation for words: x'yJ = z¥

The only solutions for i, j, k > 2 are when x, y, z are all powers of
a third word.
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Equations in words

Example 3: Fermat's equation for words: x'yJ = z¥

The only solutions for i, j, k > 2 are when x, y, z are all powers of
a third word.
Example 4:

XYZ = ZVX: many solutions, but not expressible by formula with
integer parameters.
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Equations in words

More generally, given an equation in words and constants, there is
an algorithm (Makanin's algorithm) that is guaranteed to find a
solution if one exists.
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Equations in words

More generally, given an equation in words and constants, there is
an algorithm (Makanin's algorithm) that is guaranteed to find a
solution if one exists.

Satisfiability in PSPACE: Plandowski (2004)
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Equations in words

More generally, given an equation in words and constants, there is
an algorithm (Makanin's algorithm) that is guaranteed to find a
solution if one exists.

Satisfiability in PSPACE: Plandowski (2004)

Finiteness of solutions: Plandowski (2006) but complete proofs not
yet published.
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Kinds of infinite words

pure morphic: obtained by iterating a morphism
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Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

155 / 201



Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

m the Thue-Morse word, obtained by iterating 0 — 01, 1 — 10
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Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

m the Thue-Morse word, obtained by iterating 0 — 01, 1 — 10
m the Fibonacci word, obtained by iterating 0 — 01, 1 — 0
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Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

m the Thue-Morse word, obtained by iterating 0 — 01, 1 — 10
m the Fibonacci word, obtained by iterating 0 — 01, 1 — 0

morphic: obtained by iterating a morphism, then applying a coding
(letter-to-letter morphism)
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Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

m the Thue-Morse word, obtained by iterating 0 — 01, 1 — 10
m the Fibonacci word, obtained by iterating 0 — 01, 1 — 0

morphic: obtained by iterating a morphism, then applying a coding
(letter-to-letter morphism)

fixed point of uniform morphism: like the Thue-Morse word
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Kinds of infinite words

pure morphic: obtained by iterating a morphism

Examples:

m the Thue-Morse word, obtained by iterating 0 — 01, 1 — 10
m the Fibonacci word, obtained by iterating 0 — 01, 1 — 0

morphic: obtained by iterating a morphism, then applying a coding
(letter-to-letter morphism)

fixed point of uniform morphism: like the Thue-Morse word

automatic: image, under a coding, of a fixed point of a uniform
morphism
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Other important infinite words

Sturmian words: exactly n+ 1 factors of length n
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Other important infinite words

Sturmian words: exactly n+ 1 factors of length n
Many other characterizations:
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Other important infinite words

Sturmian words: exactly n+ 1 factors of length n
Many other characterizations:

m balanced: any two words w, x of length n have d(x,y) =1,
where 0(x,y) = [|x[1 — [y/1]
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Other important infinite words

Sturmian words: exactly n+ 1 factors of length n
Many other characterizations:

m balanced: any two words w, x of length n have d(x,y) =1,
where 0(x,y) = [|x[1 — [y/1]

m of the form (|a(n+ 1)+ | — |an+])s>1 for real a, 7y
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Other important infinite words

Sturmian words: exactly n+ 1 factors of length n
Many other characterizations:

m balanced: any two words w, x of length n have d(x,y) =1,
where 0(x,y) = [|x[1 — [y/1]
m of the form (|a(n+ 1)+ | — |an+])s>1 for real a, 7y

Episturmian words: natural generalization of Sturmian words to
larger alphabets
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More infinite words

Toeplitz words: generated by starting with a periodic word with
“holes”; then inserting another periodic word with holes into that,
etc.
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More infinite words

Toeplitz words: generated by starting with a periodic word with
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paper
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More infinite words

Toeplitz words: generated by starting with a periodic word with
“holes”; then inserting another periodic word with holes into that,
etc.

Paperfolding words: generated by iterated folding of a piece of
paper

B X, = XnaYnR
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More infinite words

Toeplitz words: generated by starting with a periodic word with
“holes”; then inserting another periodic word with holes into that,
etc.

Paperfolding words: generated by iterated folding of a piece of
paper

B X, = XnaYnR

Kolakoski's word: generated by applying a transducer iteratively
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More infinite words

Toeplitz words: generated by starting with a periodic word with
“holes”; then inserting another periodic word with holes into that,
etc.

Paperfolding words: generated by iterated folding of a piece of
paper

B X, = XnaYnR
Kolakoski's word: generated by applying a transducer iteratively

m The sequence 1221121221 - - - that encodes its own sequence
of run lengths
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Properties of infinite words

recurrence - every factor that occurs, occurs infinitely often
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Properties of infinite words

recurrence - every factor that occurs, occurs infinitely often

uniform recurrence - recurrent, plus distance between two
consecutive occurrences of the same factor of length n is bounded,

for all n
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Subword complexity

“subword” complexity - given an infinite word w, count the
number of distinct factors of length n in w
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Subword complexity

“subword” complexity - given an infinite word w, count the
number of distinct factors of length n in w

m O(n) for automatic sequences
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Subword complexity

“subword” complexity - given an infinite word w, count the
number of distinct factors of length n in w

m O(n) for automatic sequences
m n+ 1 for Sturmian words

m O(n?) for morphic words
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Subword complexity

“subword” complexity - given an infinite word w, count the
number of distinct factors of length n in w

m O(n) for automatic sequences

m n+ 1 for Sturmian words

m O(n?) for morphic words

m A classification of possible growth rates exists
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Automatic sequences

m A deterministic finite automaton with output (DFAQ) is a
6-tuple: (Q,X,9,qo, A, 7), where A is the finite output
alphabet and 7 : Q@ — A is the output mapping.
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Automatic sequences

m A deterministic finite automaton with output (DFAQ) is a
6-tuple: (Q,X,9,qo, A, 7), where A is the finite output
alphabet and 7 : Q@ — A is the output mapping.

m Next, we decide on a integer base k > 2 and represent n as a
string of symbols over the alphabet ¥ = {0,1,2,...,k — 1}.
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Automatic sequences

m A deterministic finite automaton with output (DFAQ) is a
6-tuple: (Q,X,9,qo, A, 7), where A is the finite output
alphabet and 7 : Q@ — A is the output mapping.

m Next, we decide on a integer base k > 2 and represent n as a
string of symbols over the alphabet ¥ = {0,1,2,...,k — 1}.

m To compute f,, given an automaton M, express n in base-k,
say,

drdr—1 - 4d14dg,

and compute

fn=7(0(qo, arar—1--- a1ap)).
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Automatic sequences

m A deterministic finite automaton with output (DFAQ) is a
6-tuple: (Q,X,9,qo, A, 7), where A is the finite output
alphabet and 7 : Q@ — A is the output mapping.

m Next, we decide on a integer base k > 2 and represent n as a
string of symbols over the alphabet ¥ = {0,1,2,...,k — 1}.

m To compute f,, given an automaton M, express n in base-k,
say,

drdr—1 - 4d14dg,

and compute

fn=7(0(qo, arar—1--- a1ap)).

m Any sequence that can be computed in this way is said to be
k-automatic.
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The Thue-Morse automaton

m The word t is computed by the following DFAQ:
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The Thue-Morse automaton

m The word t is computed by the following DFAQ:

O

8o
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Robustness

m the order in which the base-k digits are fed into the
automaton in does not matter (provided it is fixed for all n);
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m other representations also work (such as expansion in
base-(—k));
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Robustness

m the order in which the base-k digits are fed into the
automaton in does not matter (provided it is fixed for all n);

m other representations also work (such as expansion in
base-(—k));
m automatic sequences are closed under many operations, such

as shift, periodic deletion, g-block compression, and g-block
substitution.
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Robustness

the order in which the base-k digits are fed into the
automaton in does not matter (provided it is fixed for all n);

other representations also work (such as expansion in
base-(—k));
automatic sequences are closed under many operations, such

as shift, periodic deletion, g-block compression, and g-block
substitution.

if a symbol in an automatic sequence occurs with well-defined
frequency r, then r is rational.
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Christol’s theorem

Theorem

(CHRISTOL [1980]). Let (un)n>0 be a sequence over

Y ={0,1,...,p—1},
where p is a prime. Then the formal power series

U(X) = > 50 unX" is algebraic over GF(p)[X] if and only if
(un)n>0 s p-automatic.
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.
Then t, = sum of the bits in the binary expansion of n, mod 2.
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Christol’s theorem: example
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Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.

Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -

AX) = Z ton X" + Z tons 1 X2
n>0 n>0
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.

Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -

AX) = Z ton X" + Z tons 1 X2
n>0 n>0

= D XX X X)X

n>0 n>0 n>0
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.

Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -

AX) = Z ton X" + Z tons 1 X2

n>0 n>0
= Z £, X2 + X Z £, X2 + X Z)@”
n>0 n>0 n>0

= AX?) + XAX?) + X/(1 - X?)
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.

Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -

AX) = Z ton X" + Z tons 1 X2

n>0 n>0
= Z £, X2 + X Z £, X2 + X Z)@”
n>0 n>0 n>0

= AX?) + XAX?) + X/(1 - X?)

= AX)(1+X)+X/(1+X)2
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Christol’s theorem: example

Let (tn)n>0 denote the THUE-MORSE sequence.

Then t, = sum of the bits in the binary expansion of n, mod 2.
Also trp = t, and tony1 =ty + 1. If we set A(X) =D~ taX",
then -

AX) = Z ton X" + Z tons 1 X2

n>0 n>0
= Z £, X2 + X Z £, X2 + X Z)@”
n>0 n>0 n>0

= AX?) + XAX?) + X/(1 - X?)

= AX)(1+X)+X/(1+X)2

Hence (1 + X)3A% 4+ (1 + X)?A+ X = 0. e oo



Open Problems

m Is the set of primitive words over {0,1} context-free? (Almost
certainly not.)
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certainly not.)

m What are the frequencies of letters in Kolakoski's word? Do
they exist? Are they equal to 1/27
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Open Problems

m Is the set of primitive words over {0,1} context-free? (Almost
certainly not.)

m What are the frequencies of letters in Kolakoski's word? Do
they exist? Are they equal to 1/27

m Nivat's conjecture: extension of periodicity to 2-dimensional
arrays
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Open Problems

m Is the set of primitive words over {0,1} context-free? (Almost
certainly not.)

m What are the frequencies of letters in Kolakoski's word? Do
they exist? Are they equal to 1/27

m Nivat's conjecture: extension of periodicity to 2-dimensional
arrays

m Is there a word over a finite subset of N that avoids xx’ with

Ix| = |x'| and d_x => x?
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For Further Reading

m M. Lothaire, Combinatorics on Words, Cambridge, 1997
(reprint)

m M. Lothaire, Algebraic Combinatorics on Words, Cambridge,
2002

m M. Lothaire, Applied Combinatorics on Words, Cambridge,
2005

m V. Berthé, M. Rigo, Combinatorics, Automata, and Number
Theory, Cambridge, 2010

m J.-P. Allouche and J. Shallit, Automatic Sequences: Theory,
Applications, Generalizations, Cambridge, 2003.
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