The Separating Words Problem

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
https://www.cs.uwaterloo.ca/ shallit

/ 54



The Simplest Computational Problem?

Imagine a stupid computing device with very limited powers...

What is the simplest computational problem you could ask it to
solve?



The Simplest Computational Problem?

- not the addition of two numbers
- not sorting

- it's telling two inputs apart - distinguishing them
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Our Computational Model: the DFA

Our computational model is the deterministic finite automaton,
or DFA.

It consists of

> @, a finite nonempty set of states
> qo, an initial state
» [, a set of final states

> §, a transition function that tells you how inputs move the
machine from one state to another



An example of a DFA

— initial state has sourceless incoming arrow
— final states are denoted by double circles

— a word is accepted if it labels a path from the initial state to a
final state; otherwise it is rejected



DFA versus NFA

An automaton is deterministic if, for each state and input symbol,
there is only one possible state that can be entered next. We call
this a DFA.

Otherwise it is nondeterministic. We call this an NFA.



Example of an NFA

This NFA accepts all words having a 1 in a position that is 4 spots
from the right end.



We want to know how many states suffice to tell one length-n
input from another.

On average, it's easy — but how about in the worst case?

Motivation: a classical problem from the early days of automata
theory:

Given two automata, how long a word do we need to distinguish
them?



More precisely, given two DFA's My and M5, with m and n states,
respectively, with L(M;) # L(M,), what is a good bound on the
length of the shortest word accepted by one but not the other?

» The cross-product construction gives an upper bound of
mn — 1 (make a DFA for L(My) N L(M>))

» But an upper bound of m+ n — 2 follows from the usual
algorithm for minimizing automata

» Furthermore, this bound is best possible.

» For NFA's the bound is exponential in m and n



Separating Words with Automata

Our problem is the inverse problem: given two distinct words, how
big an automaton do we need to separate them?

That is, given two words w and x of length < n, what is the
smallest number of states in any DFA that accepts one word, but

not the other?

Call this number sep(w, x).

10 /54



A machine M separates the word w from the word x if M accepts
w and rejects x, or vice versa.

For example, the machine below separates 0010 from 1000.

However, no 2-state DFA can separate these two words. So
sep(1000,0010) = 3.
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Separating Words of Different Length

Easy case: if the two words are of different lengths, both < n, we
can separate them with a DFA of size O(log n).

For by the prime number theorem, if k # m, and k, m < n then
there is a prime p = O(log n) such that k # m (mod p).

So we can accept one word and reject the other by using a cycle
mod p, and the appropriate residue class.

12 /54



Separating Words of Different Length

Example: suppose |w| =22 and |x| = 52. Then |w| =1 (mod 7)
and |x| = 3 (mod 7). So we can accept w and reject x with a DFA
that uses a cycle of size 7, as follows:
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Separating Words with Different Prefix

For the remainder of the talk, then, we only consider the case
where |w| = |x].

We can separate w from x using d + O(1) states if they differ in
some position d from the start, since we can build a DFA to accept
words with a particular prefix of length d.
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Separating Words with Different Prefix

For example, to separate

01010011101100110000

from
01001111101011100101

we can build a DFA to recognize words that begin with 0101:

0 1 0 1
0,1

(Transitions to a dead state omitted.)
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Separating Words With Different Suffix

Similarly, we can separate w from x using d + O(1) states if they
differ in some position d from the end.

The idea is to build a pattern-recognizer for the suffix of w of
length d, ending in an accepting state if the suffix is recognized.
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Separating Words With Different Suffix

For example, to separate
11111010011001010101

from
11111011010010101101

we can build a DFA to recognize those words that end in 0101:
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Separating Words With Differing Number of 1's

Can we separate two words having differing numbers of 1's?

Yes. By the prime number theorem, if |w|, |x| = n, and w and x
have k and m 1's, respectively, then there is a prime p = O(log n)
such that kK # m (mod n).

So we can separate w from x just by counting the number of 1's,
modulo p.
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Separating Words with Differing Number of Patterns

Similarly, we can separate two length-n words w, x using
O(d log n) states if there is a pattern of length d occurring a
differing number of times in w and x.
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Separation of Very Similar Words

The Hamming distance between w and x is the number of

positions where they differ.

If the Hamming distance between w and x is small, say < d, we

can separate two length-n words using O(d log n) states.

The idea is as follows:

<= [ I [ ] |
y=L_ o J[ J[ ] |
1T j i iI j ICT/

Let i1, o, ..., ig be the positions where x and y differ.
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Separation of Very Similar Words

Now consider N = (i, — i1)(i3 — i1) -+ (ig — i1). Then
0<N<ndl.

So N is not divisible by some prime p = O(log N) = O(d log n).
So ij# iy (mod p) for 2 < j < d.

Now count the number, modulo 2, of 1's occurring in positions
congruent to i1 (mod p).

These positions do not include any of ip, ip, ..., iy, by the way we
chose p, and the two words agree in all other positions.

So x contains exactly one more 1 in these positions than w does,

and hence we can separate the two words using O(d log n) states.
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The Separation Number

> Let
S(n) := | m‘aﬁ sep(w, x),

w#x

the smallest number of states required to separate any two
words of length n.

» The separation problem was first studied by Goralcik and
Koubek 1986, who proved S(n) = o(n).

» In 1989 Robson obtained the best known upper bound:
S(n) = O(n*/>(log n)3/%).
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Dependence on Alphabet Size

For equal-length words, S(n) doesn't depend on alphabet size
(provided it is at least 2).

To see this, let Sk(n) be the maximum number of states needed to
separate two length-n words over an alphabet of size k.

Suppose x, y are distinct words of length n over an alphabet ¥ of
size k > 2.

Then x and y must differ in some position, say for a # b,

/ "
= X ax

— y/ b yl/‘
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Dependence on Alphabet Size

= x’ax”
. / "
= y by".

Map ato 0, b to 1 and assign all other letters arbitrarily to either 0
or 1.

This gives two new distinct binary words X and Y of the same
length.

If X and Y can be separated by an m-state DFA, then so can x
and y, by renaming transitions to be over ¥ instead of 0 and 1.

Thus Sk(n) < Sa(n). But clearly Sx(n) < Sk(n), since every binary
word can be considered as a word over a larger alphabet. So

Se(n) = Sa(n).
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Robson's Upper Bound

Robson's upper bound of O(n?/(log n)3/%) is hard to explain. But
he also proved:

Theorem (Robson, 1996). We can separate words by computing
the parity of the number of 1's occurring in positions congruent to

i (mod j), for i,j = O(y/n).

This gives the bound S(n) = O(n'/?).

Open Problem 1: Improve Robson's bound of O(n?/5(log n)3/%)
on 5(n).
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Robson’s proof

Idea of the proof:
Fix an integer N.
Consider all the squarefree positive integers < N.

For each such integer n, consider all the numbers a that are
relatively prime to n.

For each such pair (a, n) construct a machine M, , of O(n) states
that accepts if the number of 1's occurring in positions congruent
to a (mod n) is odd and rejects otherwise.
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Robson's proof (2)

There are
t(N) ==Y u(n)’p(n)
n<N
such machines, and one can prove that this number is
asymptotically CN?, where C = 0.214. Here p is the Mdbius
function and ¢ is the Euler totient function.

We argue that for each pair of strings x, y of length < t(N) — 1
there is a machine M, ,, in the set above that distinguishes them.

Step 1: First we define a map from binary strings x (of any length)
to binary strings of length t(/N). This map res(x) encodes the
result (accept = 1, reject = 0) of each machine on the input x.
We define an equivalence relation on strings by writing x = y if

res(x) = res(y).
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Robson’s proof (3)

Step 2: We argue that the equivalence relation = has 2t(N)
equivalence classes. This is done in two parts:

(a) first, we show how to construct, for all pairs (a, n) a word x
such that res(x) has exactly one 1 in the position corresponding to
the machine M, ,.

Let P = HP<N p be the product of all primes < N. For each
squarefree n < N, construct a word of length P with all 0's, except
that we put a 1 in any position that is equal to

— either 0 or a modulo each of the primes dividing n, and

— equal to 0 modulo P/n.

We claim this string has the desired properties.
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Robson's proof (4)

(b) second, we argue that for two strings x, y of the same length,
we have res(x @ y) = res(x) @ res(y), where & is XOR.

Example: let N =6. Then P=2-3.5 = 30.

Here are the strings corresponding to res(x) having exactly one 1
in the position corresponding to each machine:

(a, n) x res(x)

(0,1) | 100000000000000000000000000000 | 1000000000
(1,2) | 100000000000000100000000000000 | 0100000000
(1,3) | 100000000010000000000000000000 | 0010000000
(2,3) | 100000000000000000001000000000 | 0001000000
(1,5) | 100000100000000000000000000000 | 0000100000
(
(
(
(
(

2,5) | 100000000000100000000000000000 | 0000010000
3,5) | 100000000000000000100000000000 | 0000001000
4,5) | 100000000000000000000000100000 | 0000000100
1,6) | 100000000010000100000000010000 | 0000000010
5,6) | 100001000000000100001000000000 | 0000000001
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Robson’s proof (5)

Thus, for example, to get the vector of all 1's as the result res(x)
we just XOR all the strings above together:

x = 000001100000100100100000110000
res(x) = 1111111111

Step 3: We let wy be the shortest string such that wy = € and wy
has at least one 1. Note that wy ends with 1.

Example: for N = 6 this shortest word is wp = 11111011111.
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Robson’s proof (6)

It is easy to see that every string of the form w0’ is also
equivalent to the empty word. Slightly harder is to show that every
string of the form 0'wy is also equivalent to the empty word.

Step 4: We argue that every equivalence class of = has a word of
length |wo| — 1.

Take any shortest element x of an equivalence class. If

|x| < |wp| — 1, append 0’s on the right to get a word of the right
length. If [x| > |wg|, and ends with 0, deleting the 0 gives an
equivalent shorter word, a contradiction. So x ends with 1. Now
consider x @ 0XI=Iwolyy - This is also equivalent to the empty word,
but ends with 0, so we can delete the 0 on the right end of

x @ 0XI=Iwolyy to get an equivalent shorter word, a contradiction.
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Robson's proof (7)

Step 5: Show |wp| —1 = T(N): Every equivalence class of = has
exactly one word of length |wy| — 1. For if there were two such
words, their XOR would be equivalent to the empty word,
contradicting the definition of wy. So each of the 2/“0/=1 words of
length |wg| — 1 are inequivalent under =. But there are 27(V)
equivalence classes. So T(N) = |wp| — 1.

Step 6: We now know that any two words of the same length
< |wp| are separated by at least one machine in our list, for
otherwise by forming the XOR we would have have a word
equivalent to the empty word of length < |wyp].

Step 7: Two words of length < T(N) can be distinguished by a
machine on our list. Each machine has O(N) states and
T(N) ~ CN?. So this gives O(v/N) separation.
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Let's now turn to lower bounds.

» Claim: S(n) = Q(log n).
» To see this, consider the two words

0t—1+1cm(1,2,...,t) 1t—1 Ot—llt—1+1cm(1,2,...,t)

and

Proof in pictures:

Q 1-cycle
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So no t-state machine can distinguish these words.

Now lem(1,2, ..., t) = ett°() by the prime number theorem, and
the lower bound S(n) = Q(log n) follows.
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Separating Words With Automata

Some data:

~
S
~

10
11
12
13
14
15
16
17
18

n
wwwwwwmww’;
n
U'I-b-b-b-b-b-b-b-b?

O© 00 NO 1B WN HS
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Separating a Word from Its Reverse

Maybe it's easier to separate a word w from its reverse w”, than
the general case of two words.

However, no better upper bound is known.
We still have a lower bound of Q(log n) for this problem:

Consider separating

W = Ot—l 10t—1+lcm(1,2,...t)

from
WR — Of—l—‘rlcm(l,Z,...t) 10[’—1.

Then no DFA with < t states can separate w from wF.
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Reverses of Two Words

» Must sep(wR, xR) = sep(w, x)?
» No, for w = 1000, x = 0010, we have

sep(w,x) =3
> but

sep(wf xF) = 2.

Open Problem 2: Is
sep(x, w) — sep(x®, wF)

unbounded?
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Separating a Word from Its Conjugates

» Two words w, w’ are conjugates if one is a cyclic shift of the
other.

» For example, the English words enlist and listen are
conjugates

> Is the separating words problem any easier if restricted to
pairs of conjugates?

» There is still a lower bound of Q(log n) for this problem, as
given by
W= 0t7110t71+lcm(1,2,...t)1

and
W _Ot 1+lcm( )10t 11
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Separation by NFA's

» We can define nsep(w, x) in analogy with sep: the number of
states in the smallest NFA accepting w but rejecting x.

» Now there is an asymmetry in the inputs: nsep(w, x) need
not equal nsep(x, w).

» For example, the following 2-state NFA accepts w = 000100
and rejects x = 010000, so nsep(w, x) < 2.

0,1
~CL e
0
» But there is no 2-state NFA accepting x and rejecting w, so

nsep(x, w) > 3.
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Separation by NFA's

» Do NFA's give more power?

> Yes,
sep(0001,0111) =3

but
nsep(0001,0111) = 2.
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More Variations on Separating Words

sep(x, w)/nsep(x, w)

unbounded?

Yes.

Consider once again the words

Ot—llt—1+lcm(1,2,...,t)

W = 0t—1+lcm(1,2,...,t)1t—1 and x =

where t = n? —3n+2, n> 4.
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We know from before that any DFA separating these words must
have at least t + 1 = n® — 3n + 3 states.

Now consider the following NFA M:
0 (>O,<> (O —()
/mof n states

loopof n-1 states

The language accepted by this NFA is {07 : a € A}1*, where A is
the set of all integers representable by a non-negative integer linear
combination of n and n— 1.
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0 90
/opof n states

loopof n-1 states

1
Butt—1=n>—-3n+1¢ A (compute mod n— 1 and mod n).
On the other hand, every integer > t is in A. Hence

w = ot~ 1Hlem(1.2,..6) 111 ig 5ccepted by M but

x — 0t—11t—1+lcm(1,2,...7t) is not.

M has 2n = ©(1/t) states, so

sep(x, w)/nsep(x, w) > v/t = Q(y/log |x|), which is unbounded.
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Lower Bound for Nondeterministic Separation

Theorem. No NFA of n states can separate

On21n2+1cm(1,2,.,.,n)

from

0n2+lcm(1,2,...,n) ]_n2

Proof. We use the same argument as for DFA’s, and the fact
(Chrobak) that any unary n-state NFA can be simulated by a DFA
with with a “tail” of at most n? states and a cycle of size dividing
lem(1,2,...,n).

This gives a lower bound of Q(log n) on nondeterministic
separation.
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Nondeterministic Separation of Reversed Words

A result of Sarah Eisenstat (MIT), May 2010:
Theorem. We have nsep(w, x) = nsep(w”, xF).

Proof. Let M be an NFA with the smallest number of states
accepting w and rejecting x. Now make a new NFA M’ with initial
state equal to any one element of 6(qo, w) and final state qg, and
all other transitions of M reversed. Then M’ accepts wR. But M’
rejects xR. For if it accepted x® then M would also accept x,
which it doesn’t.
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Open Questions about Nondeterministic Separation

Open Problem 3: Find better bounds on nsep(w, x) for
|w| = |x| = n, as a function of n.

Open Problem 4: Find better bounds on sep(w, x)/nsep(w, x).
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Permutation Automata

Instead of arbitrary automata, we could restrict our attention to
automata where each letter induces a permutation of the states
(“permutation automata”).

For an n-state automaton, the action of each letter can be viewed
as an element of S, the symmetric group on n elements.

Turning the problem around, then, we could ask: what is the
shortest pair of distinct equal-length binary words w, x, such that
for all morphisms o : {0,1}* — S, we have o(w) = o(x)?

You might suspect that the answer is lem(1,2, ..., n).

But for n = 4, here is a shorter pair (of length 11): 00000011011
and 11011000000.
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A Problem in Groups

Now if o(w) = o(x) for all o, then (if we define o(x~1) = o(x)71)
o(wx~1) = the identity permutation for all .

Call any nonempty word y over the letters 0,1,071, 171 an
identical relation if o(y) = the identity for all morphisms o.

We say y is nontrivial if y contains no occurrences of 00~* and
111

What is the length ¢ of the shortest nontrivial identical relation
over 5,7

Recently Gimadeev and Vyalyi proved ¢ = 20(vnlogn)
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Separation by Context-Free Grammars

v

Given two words w, x, what's the smallest CFG generating w
but not x?

v

Size of grammar is measured by number of productions

v

Problem: right-hand sides can be arbitrarily complicated

v

Solution: Use CFG's in Chomsky normal form (CNF), where
all productions are of the form A — BC or A — a.
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Separation by Context-Free Grammars

In 1999 Currie, Petersen, Robson and JOS proved:

> If |w| # |x| then there is a CFG in CNF with O(log log n)
productions separating w from x. Furthermore, this bound is
optimal.

> ldea: again, if w and x are of different lengths, both < n,
there is a prime p = O(log n) such that i = |w| # |x| (mod
p).

» We can generate XP in O(log p) productions in a CFG.

» So we can generate (ZP)*L’ in O(loglog n) productions.

» There is a matching lower bound.
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More on Context-Free Separation

v

If |w| = |x| there is a CFG in CNF with O(log n) productions
separating w from x.

log n )
loglogn/"

v

There is a lower bound of Q(

v

Upper bound is similar to before

v

For the lower bound, we use a counting argument.

Open Problem 5: Find matching upper and lower bounds in the
case |w| = |x|.
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Dessert: Another Kind of Separation

Suppose you have regular languages Ry, R> with Ry C R» and
R> — Ry infinite.

Then it is easy to see that there is a regular language R3 such that
R1 € R3 C Ry such that R, — R3 and R3 — R; are both infinite.

This is a kind of topological separation property.
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Another Kind of Separation

In 1980, Bucher asked:
Open Problem 6: Is the same true for context-free languages?
That is, given context-free languages L1, Lo with L; C Ly and

L, — Ly infinite, need there be a context-free language L3 such
that L1 C L3 C L, such that L, — L3 and L3 — L7 are both infinite?
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