
The Separating Words Problem

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

https://www.cs.uwaterloo.ca/~shallit

1 / 54

The Simplest Computational Problem?

Imagine a stupid computing device with very limited powers...

What is the simplest computational problem you could ask it to
solve?

2 / 54

The Simplest Computational Problem?

- not the addition of two numbers

- not sorting

- it’s telling two inputs apart - distinguishing them

3 / 54

Our Computational Model: the DFA

Our computational model is the deterministic finite automaton,
or DFA.

It consists of

◮ Q, a finite nonempty set of states

◮ q0, an initial state

◮ F , a set of final states

◮ δ, a transition function that tells you how inputs move the
machine from one state to another

4 / 54

An example of a DFA

0, 1

0

1

0 1

– initial state has sourceless incoming arrow

– final states are denoted by double circles

– a word is accepted if it labels a path from the initial state to a
final state; otherwise it is rejected

5 / 54

DFA versus NFA

An automaton is deterministic if, for each state and input symbol,
there is only one possible state that can be entered next. We call
this a DFA.

Otherwise it is nondeterministic. We call this an NFA.

6 / 54

Example of an NFA

0, 1

0, 10, 10, 11

This NFA accepts all words having a 1 in a position that is 4 spots
from the right end.

7 / 54

Motivation

We want to know how many states suffice to tell one length-n
input from another.

On average, it’s easy — but how about in the worst case?

Motivation: a classical problem from the early days of automata
theory:

Given two automata, how long a word do we need to distinguish
them?

8 / 54

Motivation

More precisely, given two DFA’s M1 and M2, with m and n states,
respectively, with L(M1) 6= L(M2), what is a good bound on the
length of the shortest word accepted by one but not the other?

◮ The cross-product construction gives an upper bound of
mn − 1 (make a DFA for L(M1) ∩ L(M2))

◮ But an upper bound of m + n − 2 follows from the usual
algorithm for minimizing automata

◮ Furthermore, this bound is best possible.

◮ For NFA’s the bound is exponential in m and n

9 / 54

Separating Words with Automata

Our problem is the inverse problem: given two distinct words, how
big an automaton do we need to separate them?

That is, given two words w and x of length ≤ n, what is the
smallest number of states in any DFA that accepts one word, but
not the other?

Call this number sep(w , x).

10 / 54

Separation

A machine M separates the word w from the word x if M accepts
w and rejects x , or vice versa.

For example, the machine below separates 0010 from 1000.

0, 1

0

1

0 1

However, no 2-state DFA can separate these two words. So
sep(1000, 0010) = 3.

11 / 54

Separating Words of Different Length

Easy case: if the two words are of different lengths, both ≤ n, we
can separate them with a DFA of size O(log n).

For by the prime number theorem, if k 6= m, and k ,m ≤ n then
there is a prime p = O(log n) such that k 6≡ m (mod p).

So we can accept one word and reject the other by using a cycle
mod p, and the appropriate residue class.

12 / 54

Separating Words of Different Length

Example: suppose |w | = 22 and |x | = 52. Then |w | ≡ 1 (mod 7)
and |x | ≡ 3 (mod 7). So we can accept w and reject x with a DFA
that uses a cycle of size 7, as follows:

0. 1

0. 1

0. 1 0. 1

0. 1

0. 1

0. 1

13 / 54

Separating Words with Different Prefix

For the remainder of the talk, then, we only consider the case
where |w | = |x |.

We can separate w from x using d + O(1) states if they differ in
some position d from the start, since we can build a DFA to accept
words with a particular prefix of length d .

14 / 54

Separating Words with Different Prefix

For example, to separate

01010011101100110000

from
01001111101011100101

we can build a DFA to recognize words that begin with 0101:

0, 1
1010

(Transitions to a dead state omitted.)

15 / 54

Separating Words With Different Suffix

Similarly, we can separate w from x using d + O(1) states if they
differ in some position d from the end.

The idea is to build a pattern-recognizer for the suffix of w of
length d , ending in an accepting state if the suffix is recognized.

16 / 54

Separating Words With Different Suffix

For example, to separate

11111010011001010101

from
11111011010010101101

we can build a DFA to recognize those words that end in 0101:

0

0

1

1 0

1

1010

17 / 54

Separating Words With Differing Number of 1’s

Can we separate two words having differing numbers of 1’s?

Yes. By the prime number theorem, if |w |, |x | = n, and w and x

have k and m 1’s, respectively, then there is a prime p = O(log n)
such that k 6≡ m (mod n).

So we can separate w from x just by counting the number of 1’s,
modulo p.

18 / 54

Separating Words with Differing Number of Patterns

Similarly, we can separate two length-n words w , x using
O(d log n) states if there is a pattern of length d occurring a
differing number of times in w and x .

19 / 54

Separation of Very Similar Words

The Hamming distance between w and x is the number of
positions where they differ.

If the Hamming distance between w and x is small, say < d , we
can separate two length-n words using O(d log n) states.

The idea is as follows:

x =

y =

1 ni1 i2 i3 i4

· · ·

· · ·

id

1

0

Let i1, i2, . . . , id be the positions where x and y differ.
20 / 54

Separation of Very Similar Words

Now consider N = (i2 − i1)(i3 − i1) · · · (id − i1). Then
0 < N < nd−1.

So N is not divisible by some prime p = O(logN) = O(d log n).

So ij 6≡ i1 (mod p) for 2 ≤ j ≤ d .

Now count the number, modulo 2, of 1’s occurring in positions
congruent to i1 (mod p).

These positions do not include any of i2, i2, . . . , id , by the way we
chose p, and the two words agree in all other positions.

So x contains exactly one more 1 in these positions than w does,
and hence we can separate the two words using O(d log n) states.

21 / 54

The Separation Number

◮ Let
S(n) := max

|w|=|x|=n
w 6=x

sep(w , x),

the smallest number of states required to separate any two
words of length n.

◮ The separation problem was first studied by Goralcik and
Koubek 1986, who proved S(n) = o(n).

◮ In 1989 Robson obtained the best known upper bound:
S(n) = O(n2/5(log n)3/5).

22 / 54

Dependence on Alphabet Size

For equal-length words, S(n) doesn’t depend on alphabet size
(provided it is at least 2).

To see this, let Sk(n) be the maximum number of states needed to
separate two length-n words over an alphabet of size k .

Suppose x , y are distinct words of length n over an alphabet Σ of
size k > 2.

Then x and y must differ in some position, say for a 6= b,

x = x ′ a x ′′

y = y ′ b y ′′.

23 / 54

Dependence on Alphabet Size

x = x ′ a x ′′

y = y ′ b y ′′.

Map a to 0, b to 1 and assign all other letters arbitrarily to either 0
or 1.

This gives two new distinct binary words X and Y of the same
length.

If X and Y can be separated by an m-state DFA, then so can x

and y , by renaming transitions to be over Σ instead of 0 and 1.

Thus Sk(n) ≤ S2(n). But clearly S2(n) ≤ Sk(n), since every binary
word can be considered as a word over a larger alphabet. So
Sk(n) = S2(n).

24 / 54

Robson’s Upper Bound

Robson’s upper bound of O(n2/5(log n)3/5) is hard to explain. But
he also proved:

Theorem (Robson, 1996). We can separate words by computing
the parity of the number of 1’s occurring in positions congruent to
i (mod j), for i , j = O(

√
n).

This gives the bound S(n) = O(n1/2).

Open Problem 1: Improve Robson’s bound of O(n2/5(log n)3/5)
on S(n).

25 / 54

Robson’s proof

Idea of the proof:

Fix an integer N.

Consider all the squarefree positive integers ≤ N.

For each such integer n, consider all the numbers a that are
relatively prime to n.

For each such pair (a, n) construct a machine Ma,n of O(n) states
that accepts if the number of 1’s occurring in positions congruent
to a (mod n) is odd and rejects otherwise.

26 / 54

Robson’s proof (2)

There are
t(N) :=

∑

n≤N

µ(n)2ϕ(n)

such machines, and one can prove that this number is
asymptotically CN2, where C

.
= 0.214. Here µ is the Möbius

function and ϕ is the Euler totient function.

We argue that for each pair of strings x , y of length ≤ t(N)− 1
there is a machine Ma,n in the set above that distinguishes them.

Step 1: First we define a map from binary strings x (of any length)
to binary strings of length t(N). This map res(x) encodes the
result (accept = 1, reject = 0) of each machine on the input x .
We define an equivalence relation on strings by writing x ≡ y if
res(x) = res(y).

27 / 54

Robson’s proof (3)

Step 2: We argue that the equivalence relation ≡ has 2t(N)

equivalence classes. This is done in two parts:

(a) first, we show how to construct, for all pairs (a, n) a word x

such that res(x) has exactly one 1 in the position corresponding to
the machine Ma,n.

Let P =
∏

p≤N p be the product of all primes ≤ N. For each
squarefree n ≤ N, construct a word of length P with all 0’s, except
that we put a 1 in any position that is equal to
– either 0 or a modulo each of the primes dividing n, and
– equal to 0 modulo P/n.

We claim this string has the desired properties.

28 / 54

Robson’s proof (4)

(b) second, we argue that for two strings x , y of the same length,
we have res(x ⊕ y) = res(x)⊕ res(y), where ⊕ is XOR.

Example: let N = 6. Then P = 2 · 3 · 5 = 30.

Here are the strings corresponding to res(x) having exactly one 1
in the position corresponding to each machine:

(a, n) x res(x)

(0,1) 100000000000000000000000000000 1000000000
(1,2) 100000000000000100000000000000 0100000000
(1,3) 100000000010000000000000000000 0010000000
(2,3) 100000000000000000001000000000 0001000000
(1,5) 100000100000000000000000000000 0000100000
(2,5) 100000000000100000000000000000 0000010000
(3,5) 100000000000000000100000000000 0000001000
(4,5) 100000000000000000000000100000 0000000100
(1,6) 100000000010000100000000010000 0000000010
(5,6) 100001000000000100001000000000 0000000001

29 / 54

Robson’s proof (5)

Thus, for example, to get the vector of all 1’s as the result res(x)
we just XOR all the strings above together:

x = 000001100000100100100000110000

res(x) = 1111111111

Step 3: We let w0 be the shortest string such that w0 ≡ ǫ and w0

has at least one 1. Note that w0 ends with 1.

Example: for N = 6 this shortest word is w0 = 11111011111.

30 / 54

Robson’s proof (6)

It is easy to see that every string of the form w00
i is also

equivalent to the empty word. Slightly harder is to show that every
string of the form 0iw0 is also equivalent to the empty word.

Step 4: We argue that every equivalence class of ≡ has a word of
length |w0| − 1.

Take any shortest element x of an equivalence class. If
|x | ≤ |w0| − 1, append 0’s on the right to get a word of the right
length. If |x | ≥ |w0|, and ends with 0, deleting the 0 gives an
equivalent shorter word, a contradiction. So x ends with 1. Now
consider x ⊕ 0|x |−|w0|w0. This is also equivalent to the empty word,
but ends with 0, so we can delete the 0 on the right end of
x ⊕ 0|x |−|w0|w0 to get an equivalent shorter word, a contradiction.

31 / 54

Robson’s proof (7)

Step 5: Show |w0| − 1 = T (N): Every equivalence class of ≡ has
exactly one word of length |w0| − 1. For if there were two such
words, their XOR would be equivalent to the empty word,
contradicting the definition of w0. So each of the 2|w0|−1 words of
length |w0| − 1 are inequivalent under ≡. But there are 2T (N)

equivalence classes. So T (N) = |w0| − 1.

Step 6: We now know that any two words of the same length
< |w0| are separated by at least one machine in our list, for
otherwise by forming the XOR we would have have a word
equivalent to the empty word of length < |w0|.
Step 7: Two words of length ≤ T (N) can be distinguished by a
machine on our list. Each machine has O(N) states and
T (N) ∼ CN2. So this gives O(

√
N) separation.

32 / 54

Lower Bounds

Let’s now turn to lower bounds.

◮ Claim: S(n) = Ω(log n).
◮ To see this, consider the two words

0t−1+lcm(1,2,...,t)1t−1 and 0t−11t−1+lcm(1,2,...,t).

Proof in pictures:

0-tail

0-cycle

1-tail

1-cycle

33 / 54

Lower Bounds

So no t-state machine can distinguish these words.

Now lcm(1, 2, . . . , t) = et+o(t) by the prime number theorem, and
the lower bound S(n) = Ω(log n) follows.

34 / 54

Separating Words With Automata

Some data:

n S(n) n S(n)

1 2 10 4
2 2 11 4
3 2 12 4
4 3 13 4
5 3 14 4
6 3 15 4
7 3 16 4
8 3 17 4
9 3 18 5

35 / 54

Separating a Word from Its Reverse

Maybe it’s easier to separate a word w from its reverse wR , than
the general case of two words.

However, no better upper bound is known.

We still have a lower bound of Ω(log n) for this problem:

Consider separating

w = 0t−110t−1+lcm(1,2,...t)

from
wR = 0t−1+lcm(1,2,...t)10t−1.

Then no DFA with ≤ t states can separate w from wR .

36 / 54

Reverses of Two Words

◮ Must sep(wR , xR) = sep(w , x)?

◮ No, for w = 1000, x = 0010, we have

sep(w , x) = 3

◮ but
sep(wR , xR) = 2.

Open Problem 2: Is

∣

∣

∣
sep(x ,w)− sep(xR ,wR)

∣

∣

∣

unbounded?

37 / 54

Separating a Word from Its Conjugates

◮ Two words w ,w ′ are conjugates if one is a cyclic shift of the
other.

◮ For example, the English words enlist and listen are
conjugates

◮ Is the separating words problem any easier if restricted to
pairs of conjugates?

◮ There is still a lower bound of Ω(log n) for this problem, as
given by

w = 0t−110t−1+lcm(1,2,...t)1

and
w ′ = 0t−1+lcm(1,2,...t)10t−11.

38 / 54

Separation by NFA’s

◮ We can define nsep(w , x) in analogy with sep: the number of
states in the smallest NFA accepting w but rejecting x .

◮ Now there is an asymmetry in the inputs: nsep(w , x) need
not equal nsep(x ,w).

◮ For example, the following 2-state NFA accepts w = 000100
and rejects x = 010000, so nsep(w , x) ≤ 2.

0

0, 1

0

◮ But there is no 2-state NFA accepting x and rejecting w , so
nsep(x ,w) ≥ 3.

39 / 54

Separation by NFA’s

◮ Do NFA’s give more power?

◮ Yes,
sep(0001, 0111) = 3

but
nsep(0001, 0111) = 2.

40 / 54

More Variations on Separating Words

Is
sep(x ,w)/nsep(x ,w)

unbounded?

Yes.

Consider once again the words

w = 0t−1+lcm(1,2,...,t)1t−1 and x = 0t−11t−1+lcm(1,2,...,t)

where t = n2 − 3n + 2, n ≥ 4.

41 / 54

We know from before that any DFA separating these words must
have at least t + 1 = n2 − 3n + 3 states.

Now consider the following NFA M:

0 0 0 0 0

0

0
0 0 0 0

0

1

loop of states

loop of n-1 states

n

The language accepted by this NFA is {0a : a ∈ A}1∗, where A is
the set of all integers representable by a non-negative integer linear
combination of n and n − 1.

42 / 54

0 0 0 0 0

0

0
0 0 0 0

0

1

loop of states

loop of n-1 states

n

But t − 1 = n2 − 3n + 1 6∈ A (compute mod n − 1 and mod n).

On the other hand, every integer ≥ t is in A. Hence
w = 0t−1+lcm(1,2,...,t)1t−1 is accepted by M but
x = 0t−11t−1+lcm(1,2,...,t) is not.

M has 2n = Θ(
√
t) states, so

sep(x ,w)/nsep(x ,w) ≥
√
t = Ω(

√

log |x |), which is unbounded.
43 / 54

Lower Bound for Nondeterministic Separation

Theorem. No NFA of n states can separate

0n
2
1n

2+lcm(1,2,...,n)

from
0n

2+lcm(1,2,...,n)1n
2
.

Proof. We use the same argument as for DFA’s, and the fact
(Chrobak) that any unary n-state NFA can be simulated by a DFA
with with a “tail” of at most n2 states and a cycle of size dividing
lcm(1, 2, . . . , n).

This gives a lower bound of Ω(log n) on nondeterministic
separation.

44 / 54

Nondeterministic Separation of Reversed Words

A result of Sarah Eisenstat (MIT), May 2010:

Theorem. We have nsep(w , x) = nsep(wR , xR).

Proof. Let M be an NFA with the smallest number of states
accepting w and rejecting x . Now make a new NFA M ′ with initial
state equal to any one element of δ(q0,w) and final state q0, and
all other transitions of M reversed. Then M ′ accepts wR . But M ′

rejects xR . For if it accepted xR then M would also accept x ,
which it doesn’t.

45 / 54

Open Questions about Nondeterministic Separation

Open Problem 3: Find better bounds on nsep(w , x) for
|w | = |x | = n, as a function of n.

Open Problem 4: Find better bounds on sep(w , x)/nsep(w , x).

46 / 54

Permutation Automata

Instead of arbitrary automata, we could restrict our attention to
automata where each letter induces a permutation of the states
(“permutation automata”).

For an n-state automaton, the action of each letter can be viewed
as an element of Sn, the symmetric group on n elements.

Turning the problem around, then, we could ask: what is the
shortest pair of distinct equal-length binary words w , x , such that
for all morphisms σ : {0, 1}∗ → Sn we have σ(w) = σ(x)?

You might suspect that the answer is lcm(1, 2, . . . , n).

But for n = 4, here is a shorter pair (of length 11): 00000011011
and 11011000000.

47 / 54

A Problem in Groups

Now if σ(w) = σ(x) for all σ, then (if we define σ(x−1) = σ(x)−1)
σ(wx−1) = the identity permutation for all σ.

Call any nonempty word y over the letters 0, 1, 0−1, 1−1 an
identical relation if σ(y) = the identity for all morphisms σ.

We say y is nontrivial if y contains no occurrences of 00−1 and
11−1.

What is the length ℓ of the shortest nontrivial identical relation
over Sn?

Recently Gimadeev and Vyalyi proved ℓ = 2O(
√
n log n).

48 / 54

Separation by Context-Free Grammars

◮ Given two words w , x , what’s the smallest CFG generating w

but not x?

◮ Size of grammar is measured by number of productions

◮ Problem: right-hand sides can be arbitrarily complicated

◮ Solution: Use CFG’s in Chomsky normal form (CNF), where
all productions are of the form A → BC or A → a.

49 / 54

Separation by Context-Free Grammars

In 1999 Currie, Petersen, Robson and JOS proved:

◮ If |w | 6= |x | then there is a CFG in CNF with O(log log n)
productions separating w from x . Furthermore, this bound is
optimal.

◮ Idea: again, if w and x are of different lengths, both ≤ n,
there is a prime p = O(log n) such that i = |w | 6≡ |x | (mod
p).

◮ We can generate Σp in O(log p) productions in a CFG.

◮ So we can generate (Σp)∗Σi in O(log log n) productions.

◮ There is a matching lower bound.

50 / 54

More on Context-Free Separation

◮ If |w | = |x | there is a CFG in CNF with O(log n) productions
separating w from x .

◮ There is a lower bound of Ω(log n
log log n).

◮ Upper bound is similar to before

◮ For the lower bound, we use a counting argument.

Open Problem 5: Find matching upper and lower bounds in the
case |w | = |x |.

51 / 54

Dessert: Another Kind of Separation

Suppose you have regular languages R1,R2 with R1 ⊆ R2 and
R2 − R1 infinite.

Then it is easy to see that there is a regular language R3 such that
R1 ⊆ R3 ⊆ R2 such that R2 − R3 and R3 − R1 are both infinite.

This is a kind of topological separation property.

52 / 54

Another Kind of Separation

In 1980, Bucher asked:

Open Problem 6: Is the same true for context-free languages?

That is, given context-free languages L1, L2 with L1 ⊆ L2 and
L2 − L1 infinite, need there be a context-free language L3 such
that L1 ⊆ L3 ⊆ L2 such that L2 − L3 and L3 − L1 are both infinite?

53 / 54

For Further Reading

◮ J. M. Robson, Separating words with machines and groups,
RAIRO Info. Theor. Appl. 30 (1996), 81–86.

◮ J. Currie, H. Petersen, J. M. Robson, and J. Shallit,
Separating words with small grammars, J. Autom. Lang.

Combin. 4 (1999), 101–110.

54 / 54

