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Ubiquity

Some objects in mathematics, such as

π = 3.14159 · · ·

and
e = 2.71828 · · ·

have the uncanny ability to pop up in the most unexpected places.
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Ubiquity

Augustus de Morgan, in his book A Budget of Paradoxes, writes:

More than thirty years ago I had a friend, now long gone... One
day, explaining to him how it should be ascertained what the
chance is of the survivors of a large number of persons now alive
lying between given limits of number at the end of a certain time, I
came, of course upon the introduction of π, which I could only
describe as the ratio of the circumference of a circle to its diameter.
“Oh, my dear friend! that must be a delusion; what can the circle
have to do with the numbers alive at the end of a given time?”
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The Thue-Morse Sequence

The Thue-Morse sequence

t = (tn)n≥0 = 0 1 1 0 1 0 0 1 1 0 0 1 0 · · ·

is another ubiquitous mathematical object.

It comes up in algebra, number theory, combinatorics, topology,
and many other areas.

It has many different but equivalent definitions.
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Axel Thue (1863–1922)
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Marston Morse (1892–1977)
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The Thue-Morse Sequence

Define a sequence of strings of 0’s and 1’s as follows:

X0 = 0

Xn+1 = Xn Xn

where x means change all the 0’s in x to 1’s and vice-versa.

For example, we find

X0 = 0

X1 = 01

X2 = 0110

X3 = 01101001

X4 = 0110100110010110
...

Then limn→∞ Xn = t.
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Another Definition

Given a number n we can write it in base 2,

n =
∑

0≤i≤k

ai2
i .

For example,

43 = 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

We define the “sum of digits” function s2(n) to be the sum of the
ai . So

s2(43) = 1 + 0 + 1 + 0 + 1 + 1 = 4.
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Then tn = s2(n) mod 2.

Let’s prove this by induction. It’s evidently true for n = 0. Now
assume it is true for all n′ < n.

I Define k by 2k ≤ n < 2k+1.

I Then tn is the n’th symbol of Xk+1 = XkXk .

I So it is the (n − 2k)’th symbol of Xk .

I In other words, tn = (tn−2k + 1) mod 2.

I By induction we have
tn−2k = s2(n − 2k) mod 2.

I Since 2k ≤ n < 2k+1, we have s2(n) = s2(n − 2k) + 1.

I It follows that tn = s2(n) mod 2.

The definition in terms of s2(n) is good because we can efficiently
compute tn without having to compute t0, t1, . . . , tn−1.

9 / 55



Another Definition

Here’s another definition of the Thue-Morse sequence.

A morphism is a map h on strings that satisfies the identity
h(xy) = h(x)h(y) for all strings x , y .

Define the Thue-Morse morphism µ(0) = 01, µ(1) = 10. Then

µ(0) = 01

µ2(0) = µ(µ(0)) = 0110

µ3(0) = 01101001

µ4(0) = 0110100110010110

Then µn(0) = Xn.
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Let’s prove µn(0) = Xn by induction on n. Actually, it turns out to
be easier to prove this together with the claim µn(1) = Xn.

These claims are clearly true for n = 0. Now assume they are true
for n; let’s prove them for n + 1. We have

µn+1(0) = µn(µ(0))

= µn(01)

= µn(0)µn(1)

= Xn Xn

= Xn+1.

Similarly

µn+1(1) = µn(µ(1))

= µn(10)

= µn(1)µn(0)

= Xn Xn

= Xn+1.
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Repetitions in Strings

A square is a string of the form xx . Examples in English include

mama

murmur

hotshots

A word is squarefree if it contains no subword (block of
consecutive symbols) that is a square. Note that squarefree is
not squarefree, but square is.

A cube is a string of the form xxx . Examples in English include

hahaha

shshsh

A word is cubefree if it contains no subword that is a cube.
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More Repetitions in Strings

A fourth power is a string of the form xxxx . The only example I
know of in English is

tratratratra

which is an extinct lemur from Madagascar.

An overlap is a string of the form axaxa where a is a single letter
and x is a string. Examples in English include

alfalfa

entente

A word is overlap-free if it contains no word that is an overlap.
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Repetitions in Strings

Theorem. There are no squarefree strings of 0’s and 1’s of length
≥ 4.

Proof. Assume x is squarefree and |x | ≥ 4. Then without loss of
generality we may assume the first symbol of x is 0. Then the
second symbol must be 1, for otherwise we would have the square
00. Then the third symbol must be 0, for otherwise we would have
the square 11. Thus the first three symbols are 010, and whatever
symbol we choose next gives a square. Contradiction.

But how about over larger alphabets?
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Existence of squarefree words

Are there large squarefree words over three symbols?

A backtracking algorithm gives

0102012021 · · ·

and seems to go on forever.

But how can we prove that there exists an infinite squarefree word?

This is what Thue did.

The Thue-Morse word plays a critical role.
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The Thue-Morse word is overlap-free

As a first step let’s show that t is overlap-free: it contains no
subword of the form axaxa, with a a single letter and x a string.

Theorem
The Thue-Morse infinite word t is overlap-free.

Proof. Observe that t2n = tn and t2n+1 = 1− tn for n ≥ 0.

Assume, contrary to what we want to prove, that t contains an
overlap.
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tkt0

k
︷ ︸︸ ︷

m
︷ ︸︸ ︷

· · ·xxau aa

tk+2mtk+m

t = v

Figure: Hypothesized overlap in t

Then we would be able to write t = uaxaxav for some finite strings
u, x , an infinite string v, and a letter a.

In other words, we would have tk+j = tk+j+m for 0 ≤ j ≤ m, where
m = |ax | and k = |u|. Assume m ≥ 1 is as small as possible. Then
there are two cases: (i) m is even; and (ii) m is odd.
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(i) If m is even, then let m = 2m′. Again there are two cases: (a)
k is even; and (b) k is odd.

(a) If k is even, then let k = 2k ′. Then we know tk+j = tk+j+m

for 0 ≤ j ≤ m, so it is certainly true that tk+2j ′ = tk+2j ′+m for
0 ≤ j ′ ≤ m/2. Hence t2k ′+2j ′ = t2k ′+2j ′+2m′ for 0 ≤ j

′ ≤ m′, and
so tk ′+j ′ = tk ′+j ′+m′ for 0 ≤ j

′ ≤ m′. But this contradicts the
minimality of m.

(b) If k is odd, then let k = 2k ′ + 1. Then as before we have
tk+2j ′ = tk+2j ′+m for 0 ≤ j ′ ≤ m/2.
Hence t2k ′+2j ′+1 = t2k ′+2j ′+2m′+1 for 0 ≤ j ′ ≤ m′, and so
tk ′+j ′ = tk ′+j ′+m′ for 0 ≤ j

′ ≤ m′, again contradicting the
minimality of m.
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(ii) If m is odd, then there are three cases:

(a) m ≥ 5;

(b) m = 3; and

(c) m = 1.

For n ≥ 1, we define bn = (tn + tn−1) mod 2.
Note that b4n+2 = (t4n+2 + t4n+1) mod 2.
Since the base-2 representations of 4n+ 2 and 4n+ 1 are identical,
except that the last two bits are switched, we have t4n+2 = t4n+1,
and so b4n+2 = 0.
On the other hand, b2n+1 = (t2n+1 + t2n) mod 2, and the base-2
representations of 2n + 1 and 2n are identical except for the last
bit; hence b2n+1 = 1.
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(a) m odd, ≥ 5. We have bk+j = bk+j+m for 1 ≤ j ≤ m. Since
m ≥ 5, we can choose j such that k + j ≡ 2 (mod 4). Then for
this value of k + j , we have from above that bk+j = 0, but
k + j +m is odd, so bk+j+m = 1, a contradiction.

(b) m = 3. Again, bk+j = bk+j+3 for 1 ≤ j ≤ 3. Choose j such
that k + j ≡ 2 or 3 (mod 4). If k + j ≡ 2 (mod 4), then the
reasoning of the previous case applies. Otherwise
k + j ≡ 3 (mod 4), and then bk+j = 1, while bk+j+3 = 0.

(c) m = 1. Then tk = tk+1 = tk+2. Hence t2n = t2n+1 for
n = dk/2e, a contradiction.

This completes the proof.
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Using the fact that t is overlap-free, we may now construct a
squarefree infinite word over the alphabet Σ3 = {0, 1, 2}.

Theorem
For n ≥ 1, define cn to be the number of 1’s between the nth and
(n + 1)st occurrence of 0 in the word t. Set c = c1c2c3 · · · . Then
c = 210201 · · · is an infinite squarefree word over the alphabet Σ3.

Proof. First, observe that c is over the alphabet {0, 1, 2}. For if
there were three or more 1’s between two consecutive occurrences
of 0 in t, then t would not be overlap-free, a contradiction.
Next, assume that c is not squarefree. Then it contains a square of
the form xx , with x = x1x2 · · · xn and n ≥ 1. Then, from the
definition of c, the word t would contain a subword of the form

01x101x20 · · · 01xn01x101x20 · · · 01xn0

which constitutes an overlap, a contradiction.
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Avoidability in Words

Thue’s result is just the first step in a large and active theory:
avoidability in words.

Obvious generalization: avoid fractional powers. We say x is a p/q
power if x is of length p and period q. Thus outshout is an
8/5-power.

The critical exponent of a word w is the supremum over all α, such
that w contains an α-power.
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Recent Results in Avoidability

Some recent results:

I (Karhumäki & JOS) There are only polynomially many binary
words of length n that avoid α-powers, for α ≤ 7/3;

I (Karhumäki & JOS) There are exponentially many binary
words of length n that avoid (7/3 + ε)-powers.

I (Rampersad) The Thue-Morse word and its complement are
the only words that are the fixed points of a non-trivial
morphism and avoid α-powers for 2 < α ≤ 7/3.

I (Brown, Rampersad, Vasiga, & JOS) If you change any finite
number of bits in the Thue-Morse word, it has an overlap.

I (Krieger) The critical exponent for uniform binary morphisms
is rational, and for non-erasing morphisms is algebraic.

I (Kreiger & JOS) For each real α > 1 there exists an infinite
word with α as critical exponent.
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More About Thue-Morse: An Amazing Infinite Product

Consider the sequence

1

2
,

1/2

3/4
,

1/2
3/4

5/6
7/8

,

1/2
3/4

5/6
7/8

/

9/10
11/12

13/14
15/16

, · · ·

What does this converge to?
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An Amazing Infinite Product

We find

1

2

.
= .500

1/2

3/4
= 2/3

.
= .666

1/2
3/4

5/6
7/8

= 7/10
.
= .700

Numerically, the limit seems to be 0.7071 · · · .

Let’s prove that this sequence converges to
√

2
2 .
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An Amazing Infinite Product

First, we observe that the limit is

∏

n≥0

(
2n + 1

2n + 2

)(−1)tn

(1)

where tn is the sum of the bits (mod 2) in the binary expansion of
n.
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An Amazing Infinite Product

We now use a trick of Allouche: let

P =
∏

n≥0

(
2n + 1

2n + 2

)(−1)tn

and define

Q =
∏

n≥1

(
2n

2n + 1

)(−1)tn

.

Clearly

PQ =
1

2

∏

n≥1

(
n

n + 1

)(−1)tn

.
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An Amazing Infinite Product

Now break this infinite product into separate products over odd
and even indices; we find

PQ =
1

2

∏

n≥1

(
n

n + 1

)(−1)tn

=
1

2

∏

n≥0

(
2n + 1

2n + 2

)(−1)t2n+1
∏

n≥1

(
2n

2n + 1

)(−1)tn

=
1

2
P−1Q.

It follows that P2 = 1
2 .

But how about Q? Is it irrational? Transcendental?
I offer $25 for the ansewr to this question.
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The Multigrades Problem

The multigrades problem is the following: let I and J be disjoint
sets. Can one find “short” solutions to the system of equations

∑

i∈I

ik =
∑

j∈J

jk

for k = 0, 1, 2, . . . , t?

For example, one solution for t = 2 is the identity

0k + 3k + 5k + 6k = 1k + 2k + 4k + 7k

for k = 0, 1, 2.

In 1851, the French mathematician Étienne Prouhet gave the
following general solution.
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The Multigrades Problem

Theorem
The Thue-Morse sequence t = (tn)n≥0 has the following property.

Define

I = {0 ≤ i < 2N : ti = 0}

J = {0 ≤ j < 2N : tj = 1}

Then for 0 ≤ k < N we have

∑

i∈I

ik =
∑

j∈J

jk .

For example, for N = 3 we have the partition obtained before:

0k + 3k + 5k + 6k = 1k + 2k + 4k + 7k

for k = 0, 1, 2.
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The Multigrades Problem

Proof.
We actually prove a more general theorem by induction on N. We
prove that if p is any polynomial of degree < N, then

∑

0≤i<2N

ti =0

p(i) =
∑

0≤j<2N

tj=1

p(j)

The desired result then follows by successively considering the case
p(i) = 1, p(i) = i , p(i) = i2, etc.

The base case is N = 1. Then p is a constant, the result clearly
follows.
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The Multigrades Problem

Proof.
Now assume the result true for all polynomials of degree < N.
We try to prove it for a polynomial p(x) of degree N.
Consider the polynomial p(x + 2N)− p(x).
If

p(x) = aNx
N + aN−1x

N−1 + · · ·+ a1x + a0,

then p(x + 2N) = aN(x + 2N)N+ smaller degree terms, which by
the binomial theorem, is aN(x

N+ smaller degree terms).
So p(x + 2N)− p(x) is actually a polynomial of degree < N. So
we can apply induction to it. We get
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The Multigrades Problem

∑

0≤i<2N

ti =0

(

p(i + 2N)− p(i)
)

=
∑

0≤j<2N

tj=1

(

p(j + 2N)− p(j)
)

So, rearranging, we get

∑

0≤i<2N

ti =0

p(i + 2N) +
∑

0≤j<2N

tj=1

p(j)

=
∑

0≤j<2N

tj=1

p(j + 2N) +
∑

0≤i<2N

ti =0

p(i).

Hence ∑

0≤i<2N+1

ti =0

p(i) =
∑

0≤j<2N+1

tj=1

p(j).

We’re done.
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An Exercise

Exercise: find the appropriate generalization for bases larger than 2.
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An Open Problem

The Thue-Morse partition of {0, 1, . . . , 2N − 1} is not the unique
partition such that

∑

i∈I

ik =
∑

j∈J

jk

for k = 0, 1, . . . ,N − 1.

But is it the partition that minimizes
∣
∣
∣
∑

i∈I i
N −

∑

j∈J j
N
∣
∣
∣?

And if so, is it unique?
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Another Definition

Yet another definition of the Thue-Morse sequence t can be given
in terms of power series. Let X be an indeterminate. We have

∏

i≥0

(1− X 2i

) = (1− X )(1− X 2)(1− X 4) · · ·

= 1− X − X 2 + X 3 − X 4 · · ·

=
∑

j≥0

(−1)tjX j .

36 / 55



Another Definition

Something even more interesting arises when we consider Laurent
series over GF (2), the finite field with two elements. Basically, we
do all arithmetic operations as usual, but reduce modulo 2.

For example, consider the Laurent series

G (X ) = X−1 + X−2 + X−4 + X−8 + · · · .

It turns out that this series is algebraic over GF (2)(X ). By this we
mean that G is the analogue of an algebraic number, a number
satisfying an algebraic equation.
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Formal Power Series

Let’s try to find the equation that

G (X ) = X−1 + X−2 + X−4 + X−8 + · · ·

satisfies.

What is G (X )2? If we compute it over the integers, we get

X−2 + 2X−3 + X−4 + 2X−5 + 2X−6 + X−8 + 2X−9 + · · · .

Reduced mod 2, this is just

X−2 + X−4 + X−8 + X−16 + · · · .

More generally, if we have a power series H(X ), then
H(X )p = H(X p) over GF (p), where p is a prime number.
To see this, it suffices to remember that

(a+ b)p ≡ ap + bp (mod p).
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Formal Power Series

For G (X ) = X−1 + X−2 + X−4 + X−8 + · · · we get
G (X )2 = G (X )− X−1, and so

G 2 + G + X−1 = 0.

Thus G is quadratic.
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The Thue-Morse Power Series

Theorem
Let F (X ) =

∑

n≥0 tnX
−n. Then, over GF (2), the Laurent series F

satisfies a quadratic equation with coefficients that are polynomials

in X . More precisely, we have

(1 + X )3F 2 + X (1 + X )2F + X 2 = 0. (2)
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The Thue-Morse Power Series

Proof.

F =
∑

n≥0

tnX
−n

=
∑

n≥0

t2nX
−2n +

∑

n≥0

t2n+1X
−2n−1

=
∑

n≥0

tnX
−2n + X−1

∑

n≥0

(1 + tn)X
−2n

= F 2 + X−1

(
X 2

1 + X 2
+ F 2

)

=

(
1 + X

X

)

F 2 +
X

1 + X 2

=

(
1 + X

X

)

F 2 +
X

(1 + X )2
.
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The Thue-Morse Power Series

We have

F =

(
1 + X

X

)

F 2 +
X

(1 + X )2
.

Hence, multiplying through by X (1 + X )2, we obtain

(1 + X )3F 2 + X (1 + X )2F + X 2 = 0.

The fact that F is not a rational function is an easy consequence
of the overlap-free property of the sequence t.
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Thue-Morse and Continued Fractions

Recall that an expression of the form

a0 +
1

a1 +
1

a2 + · · ·+
1

an

is called a continued fraction.
It is usually abbreviated as [a0, a1, a2, . . . , an].
We can also consider infinite expressions of the form

a0 +
1

a1 +
1

a2 + · · ·

which is abbreviated [a0, a1, a2, . . .].
The terms ai are positive integers, except for a0, which may be any
integer.
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Thue-Morse and Continued Fractions

A continued fraction where the terms include 0 can be converted
into the ordinary form using the identity

[. . . , a, 0, b, . . .] = [. . . , a+ b, . . .].
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Thue-Morse and Continued Fractions

Now consider the continued fraction where the terms are the
Thue-Morse sequence:

[0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .].

Using the collapsing rule gives

[0, 1, 2, 1, 1, 2, . . .].

This number is transcendental.

The terms of this continued fraction, disregarding the initial 0,
form the run-lengths of the symbols in the Thue-Morse sequence.
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An Open Problem

Characterize all infinite sequences of 0’s and 1’s such that when 0’s
are collapsed, the result is the run lengths of the original sequence,
shifted by one.
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The Thue-Morse Sequence and Chess

According to official rule (10.12) of the game of chess, a player can
claim a draw if “at least 50 consecutive moves have been made by
each side without the capture of any piece and without the
movement of any pawn”. Actually, this is not enough for certain
positions, such as King + Rook + Bishop versus King + 2
Knights, so the rule also stipulates that “This number of 50 moves
can be increased for certain positions, provided that this increase in
number and these positions have been clearly announced by the
organisers before the event starts.”
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The Thue-Morse Sequence and Chess

Another rule (10.10) allows a draw to be claimed if the same
position occurs for the third time. By “same position” we mean
that the pieces are in the same position, including the rights to
castle or capture a pawn en passant. Without these two rules,
infinite games are clearly possible. However, can rule (10.10) be
weakened and still disallow infinite chess games?
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The Thue-Morse Sequence and Chess

Consider the following alternative rule: a draw occurs if the same
sequence of moves occurs twice in succession and is immediately
followed by the first move of a third repetition.
Can an infinite game of chess occur under this rule?

The question was answered by Max Euwe, the Dutch chess master
(and world champion from 1935–1937) in 1929.

Figure: Max Euwe (1901–1981)
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The Thue-Morse Sequence and Chess

Euwe’s construction used the Thue-Morse sequence! (He
discovered it independently.)

One way to do this is to take the Thue-Morse sequence and map 0

to a sequence of moves, and 1 to another sequence of moves. For
example, one way is as follows:

0 →
Ng1− f3 Ng8− f6

Nf3− g1 Nf6− g8

1 →
Nb1− c3 Nb8− c6

Nc3− b1 Nc6− b8
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The Thue-Morse Sequence and Music

The Thue-Morse sequence has even been used in composing music!

Tom Johnson, a Paris-based composer, has used the Thue-Morse
sequence and other sequences formed by iterated morphisms, in his
work.

Figure: Tom Johnson
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The Thue-Morse Sequence and Music

& œb œ ‰ œ# œ ‰ œ œ œ œ ‰ œ œ œ œ œ œ œ œ ‰
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

& œ# œ œb œ œ œ œ œ œ œ œ œ œ œ œ œ ‰
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

Figure: Composition by Tom Johnson
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Per Nørg̊ard
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Per Nørg̊ard

Some compositions based on the “infinity series”

0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2,−1,−3, 4, 1, . . .

defined by

c0 = 0

c2n = −cn

c2n+1 = cn + 1.

Note that cn ≡ tn (mod 2).
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For Further Reading

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences:
Theory, Applications, Generalizations, Cambridge University Press,
2003.

Jean-Paul Allouche and Jeffrey Shallit, The ubiquitous
Prouhet-Thue-Morse sequence, in C. Ding, T. Helleseth, and H.
Niederreiter, eds., Sequences and Their Applications: Proceedings
of SETA ’98, Springer-Verlag, 1999, pp. 1-16. Also available at

http://www.cs.uwaterloo.ca/~shallit/papers.html

http://www.swets.nl/jnmr/vol24 2.html

http://tom.johnson.org

http://www.pernoergaard.dk
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