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An Advertisement
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The Frobenius Problem

The Frobenius problem is the following: given positive integers
x1, x2, . . . , xn with gcd(x1, x2, . . . , xn) = 1, compute the largest
integer not representable as a non-negative integer linear
combination of the xi .
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The Frobenius Problem

The Frobenius problem is the following: given positive integers
x1, x2, . . . , xn with gcd(x1, x2, . . . , xn) = 1, compute the largest
integer not representable as a non-negative integer linear
combination of the xi .

This largest integer is sometimes denoted g(x1, . . . , xn).

The restriction gcd(x1, x2, . . . , xn) = 1 is necessary for the
definition to be meaningful, for otherwise every non-negative
integer linear combination is divisible by this gcd.

5 / 139



The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:
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The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

At McDonald’s, Chicken McNuggets are available in packs of

either 6, 9, or 20 nuggets. What is the largest number of

McNuggets that one cannot purchase?
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The Chicken McNuggets Problem

Answer: 43.
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The Chicken McNuggets Problem

Answer: 43.

To see that 43 is not representable, observe that we can choose
either 0, 1, or 2 packs of 20. If we choose 0 or 1 packs, then we
have to represent 43 or 23 as a linear combination of 6 and 9,
which is impossible. So we have to choose two packs of 20. But
then we cannot get 43.
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The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
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The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6

11 / 139



The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
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The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
47 = 1 · 20 + 3 · 9 + 0 · 6
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The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
47 = 1 · 20 + 3 · 9 + 0 · 6
48 = 0 · 20 + 0 · 9 + 8 · 6
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The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
47 = 1 · 20 + 3 · 9 + 0 · 6
48 = 0 · 20 + 0 · 9 + 8 · 6
49 = 2 · 20 + 1 · 9 + 0 · 6

and every larger number can be written as a multiple of 6 plus one
of these numbers.
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History of the Frobenius problem

I Problem discussed by Frobenius (1849–1917) in his lectures in
the late 1800’s — but Frobenius never published anything

16 / 139



History of the Frobenius problem

I Problem discussed by Frobenius (1849–1917) in his lectures in
the late 1800’s — but Frobenius never published anything

I A related problem was discussed by Sylvester in 1882: he gave
a formula for h(x1, x2, . . . , xn), the total number of
non-negative integers not representable as a linear
combination of the xi , in the case n = 2
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History of the Frobenius problem

I Problem discussed by Frobenius (1849–1917) in his lectures in
the late 1800’s — but Frobenius never published anything

I A related problem was discussed by Sylvester in 1882: he gave
a formula for h(x1, x2, . . . , xn), the total number of
non-negative integers not representable as a linear
combination of the xi , in the case n = 2

I Applications of the Frobenius problem occur in number
theory, automata theory, sorting algorithms, etc.
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Research on the Frobenius problem

I Formulas for g where dimension is bounded
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Research on the Frobenius problem

I Formulas for g where dimension is bounded

I Upper and lower bounds for g

I Formulas for g in special cases

I Complexity of computing g
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Formulas for g

In the case where n = 2, we have g(x , y) = xy − x − y .
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24 / 139



Formulas for g

In the case where n = 2, we have g(x , y) = xy − x − y .

Proof. Suppose xy − x − y is representable as ax + by .

Then, taking the result modulo x , we have −y ≡ by (mod x), so
b ≡ −1 (mod x).
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Proof. Suppose xy − x − y is representable as ax + by .

Then, taking the result modulo x , we have −y ≡ by (mod x), so
b ≡ −1 (mod x).

Similarly, modulo y , we get −x ≡ ax , so a ≡ −1 (mod y).
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Formulas for g

In the case where n = 2, we have g(x , y) = xy − x − y .

Proof. Suppose xy − x − y is representable as ax + by .

Then, taking the result modulo x , we have −y ≡ by (mod x), so
b ≡ −1 (mod x).

Similarly, modulo y , we get −x ≡ ax , so a ≡ −1 (mod y).

But then ax + by ≥ (y − 1)x + (x − 1)y = 2xy − x − y , a
contradiction.
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Formulas for g

In the case where n = 2, we have g(x , y) = xy − x − y .

Proof. Suppose xy − x − y is representable as ax + by .

Then, taking the result modulo x , we have −y ≡ by (mod x), so
b ≡ −1 (mod x).

Similarly, modulo y , we get −x ≡ ax , so a ≡ −1 (mod y).

But then ax + by ≥ (y − 1)x + (x − 1)y = 2xy − x − y , a
contradiction.

So xy − x − y is not representable.
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Formulas for g

To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x .
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Formulas for g

To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x . Then a simple calculation
shows that (c − 1)y + (d − 1)x = xy − x − y + 1, so this gives a
representation for g(x , y) + 1.
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Formulas for g

To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x . Then a simple calculation
shows that (c − 1)y + (d − 1)x = xy − x − y + 1, so this gives a
representation for g(x , y) + 1.

To get a representation for larger numbers, we use the extended
Euclidean algorithm to find integers e, f such that ex − fy = 1.
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To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x . Then a simple calculation
shows that (c − 1)y + (d − 1)x = xy − x − y + 1, so this gives a
representation for g(x , y) + 1.

To get a representation for larger numbers, we use the extended
Euclidean algorithm to find integers e, f such that ex − fy = 1.
We just add the appropriate multiple of this equation, reducing, if
necessary, by (−y)x + xy or yx + (−x)y if a coefficient becomes
negative.
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Formulas for g

To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x . Then a simple calculation
shows that (c − 1)y + (d − 1)x = xy − x − y + 1, so this gives a
representation for g(x , y) + 1.

To get a representation for larger numbers, we use the extended
Euclidean algorithm to find integers e, f such that ex − fy = 1.
We just add the appropriate multiple of this equation, reducing, if
necessary, by (−y)x + xy or yx + (−x)y if a coefficient becomes
negative.

For example, for (x , y) = [13, 19], we find [2, 10] · [x , y ] = 216.
Also [3,−2] · [x , y ] = 1. To get a representation for 217, we just
add these two vectors to get [5, 8].
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Formulas for g

For 3 numbers, more complicated (but still polynomial-time)
algorithms have been given by Greenberg and Davison.
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Formulas for g

For 3 numbers, more complicated (but still polynomial-time)
algorithms have been given by Greenberg and Davison.

Kannan has given a polynomial-time algorithm for any fixed
dimension, but the time depends at least exponentially on the
dimension and the algorithm is very complicated.
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Computational Complexity of g

Raḿırez-Alfonśın has proven that computing g is NP-hard under
Turing-reductions, by reducing from the integer knapsack problem.
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Computational Complexity of g

Raḿırez-Alfonśın has proven that computing g is NP-hard under
Turing-reductions, by reducing from the integer knapsack problem.

The integer knapsack problem is, given x1, x2, . . . , xn, and a target
t, do there exist non-negative integers ai such that
∑

1≤i≤n aixi = t.
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Computational Complexity of g

Raḿırez-Alfonśın has proven that computing g is NP-hard under
Turing-reductions, by reducing from the integer knapsack problem.

The integer knapsack problem is, given x1, x2, . . . , xn, and a target
t, do there exist non-negative integers ai such that
∑

1≤i≤n aixi = t.

His reduction requires 3 calls to a subroutine for the Frobenius
number g .
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Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.
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Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination.
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Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination. Then r is representable if and only if at
least one of r − a1, r − a2, . . . , r − an is representable.
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A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination. Then r is representable if and only if at
least one of r − a1, r − a2, . . . , r − an is representable. Now group
the numbers in blocks of size an, and write a 1 if the number is
representable, 0 otherwise.

42 / 139



Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination. Then r is representable if and only if at
least one of r − a1, r − a2, . . . , r − an is representable. Now group
the numbers in blocks of size an, and write a 1 if the number is
representable, 0 otherwise. Clearly if j is representable, so is j + an,
so each consecutive block has 1’s in the same positions as the
previous, plus maybe some new 1’s.
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representable, 0 otherwise. Clearly if j is representable, so is j + an,
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previous, plus maybe some new 1’s. In fact, new 1’s must appear
in each consecutive block, until it is full of 1’s, for otherwise the
Frobenius number would be infinite.
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so each consecutive block has 1’s in the same positions as the
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in each consecutive block, until it is full of 1’s, for otherwise the
Frobenius number would be infinite. So we need to examine at
most an blocks.
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Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination. Then r is representable if and only if at
least one of r − a1, r − a2, . . . , r − an is representable. Now group
the numbers in blocks of size an, and write a 1 if the number is
representable, 0 otherwise. Clearly if j is representable, so is j + an,
so each consecutive block has 1’s in the same positions as the
previous, plus maybe some new 1’s. In fact, new 1’s must appear
in each consecutive block, until it is full of 1’s, for otherwise the
Frobenius number would be infinite. So we need to examine at
most an blocks. Once a block is full, every subsequent number is
representable.
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Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose a1 < a2 < · · · < an. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination. Then r is representable if and only if at
least one of r − a1, r − a2, . . . , r − an is representable. Now group
the numbers in blocks of size an, and write a 1 if the number is
representable, 0 otherwise. Clearly if j is representable, so is j + an,
so each consecutive block has 1’s in the same positions as the
previous, plus maybe some new 1’s. In fact, new 1’s must appear
in each consecutive block, until it is full of 1’s, for otherwise the
Frobenius number would be infinite. So we need to examine at
most an blocks. Once a block is full, every subsequent number is
representable. Thus we have shown g(a1, a2, . . . , an) < a2n.
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Applications of the Frobenius Number

I Shell sort - a sorting algorithm devised by D. Shell in 1959.

48 / 139



Applications of the Frobenius Number

I Shell sort - a sorting algorithm devised by D. Shell in 1959.

I Basic idea: arrange list in j columns; sort columns; decrease j ;
repeat
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Shellsort Example

Start with 10 5 12 13 4 6 9 11 8 1 7
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Shellsort Example

Start with 10 5 12 13 4 6 9 11 8 1 7
Arrange in 5 columns:

10 5 12 13 4
6 9 11 8 1
7
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Shellsort Example

Start with 10 5 12 13 4 6 9 11 8 1 7
Arrange in 5 columns:

10 5 12 13 4
6 9 11 8 1
7

Sort each column:

6 5 11 8 1
7 9 12 13 4
10

52 / 139



Shellsort Example

Now arrange in 3 columns:

6 5 11
8 1 7
9 12 13
4 10
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Shellsort Example

Now arrange in 3 columns:

6 5 11
8 1 7
9 12 13
4 10

Sort each column:

4 1 7
6 5 11
8 10 13
9 12
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Shellsort Example

Finally, sort the remaining elements:
1 4 5 6 7 8 9 10 11 12 13
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Choosing the Increments in Shellsort

I Running time depends on increments
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I Original version used increments a power of 2, but this gives
quadratic running time.
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I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used.
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I Running time depends on increments

I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)
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Choosing the Increments in Shellsort

I Running time depends on increments

I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)

I It is O(n4/3) if increments 1, 8, 23, 77, . . . are used
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Choosing the Increments in Shellsort

I Running time depends on increments

I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)

I It is O(n4/3) if increments 1, 8, 23, 77, . . . are used (Numbers
of the form 4j+1 + 3 · 2j + 1).
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Choosing the Increments in Shellsort

I Running time depends on increments

I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)

I It is O(n4/3) if increments 1, 8, 23, 77, . . . are used (Numbers
of the form 4j+1 + 3 · 2j + 1).

I It is O(n(log n)2) if increments
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, . . . are used
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Choosing the Increments in Shellsort

I Running time depends on increments

I Original version used increments a power of 2, but this gives
quadratic running time.

I It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)

I It is O(n4/3) if increments 1, 8, 23, 77, . . . are used (Numbers
of the form 4j+1 + 3 · 2j + 1).

I It is O(n(log n)2) if increments
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, . . . are used (Numbers of the
form 2i3j).

63 / 139



Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).
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Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i ] is the number of
elements in a[i − r ], a[i − 2r ], . . . that are greater than a[i ].
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Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i ] is the number of
elements in a[i − r ], a[i − 2r ], . . . that are greater than a[i ]. But if
x is a linear combination of r1, r2, . . . , rt , then a[i − x ] < a[i ], since
the file is r1, r2, . . . , rt-sorted.
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Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i ] is the number of
elements in a[i − r ], a[i − 2r ], . . . that are greater than a[i ]. But if
x is a linear combination of r1, r2, . . . , rt , then a[i − x ] < a[i ], since
the file is r1, r2, . . . , rt-sorted. Thus the number of steps to insert
a[i ] is ≤ the number of multiples of r that are not linear
combinations of r1, r2, . . . , rt .
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Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i ] is the number of
elements in a[i − r ], a[i − 2r ], . . . that are greater than a[i ]. But if
x is a linear combination of r1, r2, . . . , rt , then a[i − x ] < a[i ], since
the file is r1, r2, . . . , rt-sorted. Thus the number of steps to insert
a[i ] is ≤ the number of multiples of r that are not linear
combinations of r1, r2, . . . , rt . This number is ≤ g(r1, r2, . . . , rt)/r .
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The Frobenius Problem and NFA to DFA Conversion

As is well-known, when converting an NFA of n states to an
equivalent DFA via the subset construction, 2n states are sufficient.
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As is well-known, when converting an NFA of n states to an
equivalent DFA via the subset construction, 2n states are sufficient.

What may be less well-known is that this construction is optimal in
the case of a binary or larger input alphabet, in that there exist
languages L that can be accepted by an NFA with n states, but no
DFA with < 2n states accepts L.
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The Frobenius Problem and NFA to DFA Conversion

As is well-known, when converting an NFA of n states to an
equivalent DFA via the subset construction, 2n states are sufficient.

What may be less well-known is that this construction is optimal in
the case of a binary or larger input alphabet, in that there exist
languages L that can be accepted by an NFA with n states, but no
DFA with < 2n states accepts L.

However, for unary languages, the 2n bound is not attainable.
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Unary NFA to DFA Conversion

It can be proved that approximately e
√

n log n states are necessary
and sufficient in the worst case to go from a unary n-state NFA to
a DFA.
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Unary NFA to DFA Conversion

It can be proved that approximately e
√

n log n states are necessary
and sufficient in the worst case to go from a unary n-state NFA to
a DFA.

Chrobak showed that any unary n-state NFA can be put into a
certain normal form, where there is a “tail” of < n2 states, followed
by a single nondeterministic state which has branches into different
cycles, where the total number of states in all the cycles is ≤ n.
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Unary NFA to DFA Conversion

It can be proved that approximately e
√

n log n states are necessary
and sufficient in the worst case to go from a unary n-state NFA to
a DFA.

Chrobak showed that any unary n-state NFA can be put into a
certain normal form, where there is a “tail” of < n2 states, followed
by a single nondeterministic state which has branches into different
cycles, where the total number of states in all the cycles is ≤ n.

The bound of n2 for the number of states in the tail comes from
the bound we have already seen on the Frobenius problem.

74 / 139



An Exercise

Use the Frobenius problem on two variables to show that the
language

Ln = {ai : i 6= n}
can be accepted by an NFA with O(

√
n) states.
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Related Problems

As we already have seen, Sylvester published a paper in 1882 where
he defined h(x1, x2, . . . , xn) to be the total number of integers not
representable as an integer linear combination of the xi .
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Related Problems

As we already have seen, Sylvester published a paper in 1882 where
he defined h(x1, x2, . . . , xn) to be the total number of integers not
representable as an integer linear combination of the xi .

He also gave the formula h(x1, x2) =
1
2(x1 − 1)(x2 − 1).

There is a very simple proof of this formula. Consider all the
numbers between 0 and (x1 − 1)(x2 − 1). Then it is not hard to
see that every representable number in this range is paired with a
non-representable number via the map c → c ′, where
c ′ = (x1 − 1)(x2 − 1)− c − 1, and vice-versa.
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Related Problems

As we already have seen, Sylvester published a paper in 1882 where
he defined h(x1, x2, . . . , xn) to be the total number of integers not
representable as an integer linear combination of the xi .

He also gave the formula h(x1, x2) =
1
2(x1 − 1)(x2 − 1).

There is a very simple proof of this formula. Consider all the
numbers between 0 and (x1 − 1)(x2 − 1). Then it is not hard to
see that every representable number in this range is paired with a
non-representable number via the map c → c ′, where
c ′ = (x1 − 1)(x2 − 1)− c − 1, and vice-versa.

However, the complexity of computing h is apparently still open
(but see next slide)
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Computing h is NP-hard

After my talk at DLT ’08, Pawel Gawrychowski pointed out the
following very simple argument that computing h is NP-hard:

Theorem. h(a1, a2, . . . , ak) = h(a1, a2, . . . , ak , d) if and only iff d

can be expressed as a non-negative integer linear combination of
the ai .

It follows that the integer knapsack problem (known to be
NP-complete) can be reduced to the problem of computing h, and
so computing h is also NP-hard.
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The Local Postage Stamp Problem

In this problem, we are given a set of denominations
1 = x1, x2, . . . , xk of stamps, and an envelope that can contain at
most t stamps. We want to determine the smallest amount of
postage we cannot provide. Call it Nt(x1, x2, . . . , xk).
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For example, N3(1, 4, 7, 8) = 25.
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postage we cannot provide. Call it Nt(x1, x2, . . . , xk).

For example, N3(1, 4, 7, 8) = 25.

Many papers have been written about this problem, especially in
Germany and Norway. Algorithms have been given for many
special cases.
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most t stamps. We want to determine the smallest amount of
postage we cannot provide. Call it Nt(x1, x2, . . . , xk).

For example, N3(1, 4, 7, 8) = 25.

Many papers have been written about this problem, especially in
Germany and Norway. Algorithms have been given for many
special cases.

Alter and Barnett asked (1980) if Nt(x1, x2, . . . , xk) can be
“expressed by a simple formula”.
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The Local Postage Stamp Problem

In this problem, we are given a set of denominations
1 = x1, x2, . . . , xk of stamps, and an envelope that can contain at
most t stamps. We want to determine the smallest amount of
postage we cannot provide. Call it Nt(x1, x2, . . . , xk).

For example, N3(1, 4, 7, 8) = 25.

Many papers have been written about this problem, especially in
Germany and Norway. Algorithms have been given for many
special cases.

Alter and Barnett asked (1980) if Nt(x1, x2, . . . , xk) can be
“expressed by a simple formula”.

The answer is, probably not. I proved computing Nt(x1, x2, . . . , xk)
is NP-hard in 2001.
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The Global Postage-Stamp Problem

The global postage-stamp problem is yet another variant: now we
are given a limit t on the number of stamps to be used, and an
integer k, and the goal is to find a set of k denominations
x1, x2, . . . , xk that maximizes Nt(x1, x2, . . . , xk).
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The Global Postage-Stamp Problem

The global postage-stamp problem is yet another variant: now we
are given a limit t on the number of stamps to be used, and an
integer k, and the goal is to find a set of k denominations
x1, x2, . . . , xk that maximizes Nt(x1, x2, . . . , xk).

The complexity of this problem is unknown.
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The Optimal Coin Change Problem

Yet another variant is the optimal change problem: here we are
given a bound on the number of distinct coin denominations we
can use (but allowing arbitrarily many of each denomination), and
we want to find a set that minimizes the average number of coins
needed to make each amount in some range.
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The Optimal Coin Change Problem

Yet another variant is the optimal change problem: here we are
given a bound on the number of distinct coin denominations we
can use (but allowing arbitrarily many of each denomination), and
we want to find a set that minimizes the average number of coins
needed to make each amount in some range.

For example, in Canada we currently use 4 denominations for
change: 1, 5, 10, and 25. These can make change for every
amount between 0 and 99, with an average cost of 4.7 coins per
amount.
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The Optimal Coin Change Problem

Yet another variant is the optimal change problem: here we are
given a bound on the number of distinct coin denominations we
can use (but allowing arbitrarily many of each denomination), and
we want to find a set that minimizes the average number of coins
needed to make each amount in some range.

For example, in Canada we currently use 4 denominations for
change: 1, 5, 10, and 25. These can make change for every
amount between 0 and 99, with an average cost of 4.7 coins per
amount.

It turns out that the system of denominations (1, 5, 18, 25) is
optimal, with an average cost of only 3.89 coins per amount.
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Improving the Current Coin System

You could also ask, what single denomination could we add to the
current system to improve its efficiency in making change?
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Improving the Current Coin System

You could also ask, what single denomination could we add to the
current system to improve its efficiency in making change?

The answer is, add a 32-cent piece.
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Improving the Current Coin System

You could also ask, what single denomination could we add to the
current system to improve its efficiency in making change?

The answer is, add a 32-cent piece.

For Canada, where 1-dollar and 2-dollar coins are in general
circulation, the best coin to add is an 83-cent piece.
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circulation, the best coin to add is an 83-cent piece.
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Improving the Japanese System
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Japan uses a system based on 1 and 5: there are coins of 1 yen, 5
yen, 10 yen, 50 yen, 100 yen, and 500 yen. But switching to 1 and
3 (or 1 and 4) would decrease the average number of coins used.
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Generalizing the Frobenius Problem to Words

Before, we had defined g(x1, x2, . . . , xk) to be the largest integer
not representable as a non-negative integer linear combination of
the xi .
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Generalizing the Frobenius Problem to Words

Before, we had defined g(x1, x2, . . . , xk) to be the largest integer
not representable as a non-negative integer linear combination of
the xi .

We can now replace the integers xi with words (strings of symbols
over a finite alphabet Σ), and ask, what is the right generalization
of the Frobenius problem?
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Generalizing the Frobenius Problem to Words

There are several possible answers.

98 / 139



Generalizing the Frobenius Problem to Words

There are several possible answers.

One is as follows:

Instead of non-negative integer linear combinations of the xi , we
could consider the regular expressions

x∗1x
∗
2 · · · x∗k
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Generalizing the Frobenius Problem to Words

There are several possible answers.

One is as follows:

Instead of non-negative integer linear combinations of the xi , we
could consider the regular expressions

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗.
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Generalizing the Frobenius Problem to Words

Instead of the condition that gcd(x1, x2, . . . , xk) = 1, which was
used to ensure that there the number of unrepresentable integers is
finite, we could demand that

Σ∗ − x∗1 x
∗
2 · · · x∗k

or
Σ∗ − {x1, x2, . . . , xk}∗

be finite, or in other words, that

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗

be co-finite.
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Generalizing the Frobenius Problem to Words

And instead of looking for the largest non-representable integer, we
could ask for the length of the longest word not in

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗.
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x∗
1x∗

2 · · · x∗
k

Theorem. Let x1, x2, . . . , xk ∈ Σ+. Then x∗1 x
∗
2 · · · x∗k is co-finite if

and only if |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1.

Proof. Let Q = x∗1 x
∗
2 · · · x∗k .
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x∗
1x∗

2 · · · x∗
k

Theorem. Let x1, x2, . . . , xk ∈ Σ+. Then x∗1 x
∗
2 · · · x∗k is co-finite if

and only if |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1.

Proof. Let Q = x∗1 x
∗
2 · · · x∗k .

If |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1, then every sufficiently long
unary word can be obtained by concatenations of the xi , so Q is
co-finite.
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x∗
1x∗

2 · · · x∗
k

Theorem. Let x1, x2, . . . , xk ∈ Σ+. Then x∗1 x
∗
2 · · · x∗k is co-finite if

and only if |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1.

Proof. Let Q = x∗1 x
∗
2 · · · x∗k .

If |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1, then every sufficiently long
unary word can be obtained by concatenations of the xi , so Q is
co-finite.

For the other direction, suppose Q is co-finite. If |Σ| = 1, let
gcd(|x1|, . . . , |xk |) = d . If d > 1, Q contains only words of length
divisible by d , and so is not co-finite. So d = 1.
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x∗
1x∗

2 · · · x∗
k

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ.
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x∗
1x∗

2 · · · x∗
k

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ.

Let ` = max1≤i≤k |xi |, the length of the longest word among the
xi .
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x∗
1x∗

2 · · · x∗
k

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ.

Let ` = max1≤i≤k |xi |, the length of the longest word among the
xi .

Let Q ′ = ((a2`b2`)k)+. Then we claim that Q ′ ∩ Q = ∅.
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x∗
1x∗

2 · · · x∗
k

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ.

Let ` = max1≤i≤k |xi |, the length of the longest word among the
xi .

Let Q ′ = ((a2`b2`)k)+. Then we claim that Q ′ ∩ Q = ∅.

For if none of the xi consists of powers of a single letter, then the
longest block of consecutive identical letters in any word in Q is
< 2`, so no word in Q ′ can be in Q.
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x∗
1x∗

2 · · · x∗
k

Otherwise, say some of the xi consist of powers of a single letter.
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x∗
1x∗

2 · · · x∗
k

Otherwise, say some of the xi consist of powers of a single letter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2` or more consecutive identical letters in w . (Here
“maximal” means such a block is delimited on both sides by either
the beginning or end of the word, or a different letter.)
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x∗
1x∗

2 · · · x∗
k

Otherwise, say some of the xi consist of powers of a single letter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2` or more consecutive identical letters in w . (Here
“maximal” means such a block is delimited on both sides by either
the beginning or end of the word, or a different letter.)

Clearly n(w) ≤ k.
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x∗
1x∗

2 · · · x∗
k

Otherwise, say some of the xi consist of powers of a single letter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2` or more consecutive identical letters in w . (Here
“maximal” means such a block is delimited on both sides by either
the beginning or end of the word, or a different letter.)

Clearly n(w) ≤ k.

But n(w ′) ≥ 2k for any word w ′ in Q ′. Thus Q is not co-finite, as
it omits all the words in Q ′.
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{x1, x2, . . . , xk}∗

Suppose max1≤i≤k |xi | = n.
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{x1, x2, . . . , xk}∗

Suppose max1≤i≤k |xi | = n.

We can obtain an exponential upper bound on length of the
longest omitted word, as follows:
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{x1, x2, . . . , xk}∗

Suppose max1≤i≤k |xi | = n.

We can obtain an exponential upper bound on length of the
longest omitted word, as follows:

Given x1, x2, . . . , xk , create a DFA accepting Σ∗−{x1, x2, . . . , xk}∗.
This DFA keeps track of the last n− 1 symbols seen, together with
markers indicating all positions within those n− 1 symbols where a
partial factorization of the input into the xi could end.
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{x1, x2, . . . , xk}∗

Suppose max1≤i≤k |xi | = n.

We can obtain an exponential upper bound on length of the
longest omitted word, as follows:

Given x1, x2, . . . , xk , create a DFA accepting Σ∗−{x1, x2, . . . , xk}∗.
This DFA keeps track of the last n− 1 symbols seen, together with
markers indicating all positions within those n− 1 symbols where a
partial factorization of the input into the xi could end.

Since this DFA accepts a finite language, the longest word it
accepts is bounded by the number of states.
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{x1, x2, . . . , xk}∗

But is this exponential upper bound attainable?

118 / 139



{x1, x2, . . . , xk}∗

But is this exponential upper bound attainable?

Yes.
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{x1, x2, . . . , xk}∗

But is this exponential upper bound attainable?

Yes.

My student Zhi Xu has recently produced a class of examples
{x1, x2, . . . , xk} in which the length of the longest word is n, but
the longest word in Σ∗ − {x1, x2, . . . , xk}∗ is exponential in n.
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{x1, x2, . . . , xk}∗: Zhi Xu’s Examples

Let r(n, k, l) denote the word of length l representing n in base k,
possibly with leading zeros. For example, r(3, 2, 3) = 011.
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{x1, x2, . . . , xk}∗: Zhi Xu’s Examples

Let r(n, k, l) denote the word of length l representing n in base k,
possibly with leading zeros. For example, r(3, 2, 3) = 011.

Let T (m, n) = {r(i , |Σ|, n −m)02m−nr(i + 1, |Σ|, n −m) : 0 ≤
i ≤ |Σ|n−m − 2}.
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{x1, x2, . . . , xk}∗: Zhi Xu’s Examples

Let r(n, k, l) denote the word of length l representing n in base k,
possibly with leading zeros. For example, r(3, 2, 3) = 011.

Let T (m, n) = {r(i , |Σ|, n −m)02m−nr(i + 1, |Σ|, n −m) : 0 ≤
i ≤ |Σ|n−m − 2}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T (m, n). Then S∗ is
co-finite and the longest words not in S∗ are of length g(m, l),
where l = m|Σ|n−m + n −m.
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{x1, x2, . . . , xk}∗: Zhi Xu’s Examples

Let r(n, k, l) denote the word of length l representing n in base k,
possibly with leading zeros. For example, r(3, 2, 3) = 011.

Let T (m, n) = {r(i , |Σ|, n −m)02m−nr(i + 1, |Σ|, n −m) : 0 ≤
i ≤ |Σ|n−m − 2}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T (m, n). Then S∗ is
co-finite and the longest words not in S∗ are of length g(m, l),
where l = m|Σ|n−m + n −m.

Example. Let m = 3, n = 5,Σ = {0, 1}. In this case,
l = 3 · 22 + 2 = 14, S = Σ3 +Σ5 − {00001, 01010, 10011}. Then a
longest word not in S∗ is

00001010011 000 00001010011

of length 25 = g(3, 14).
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Counting the Omitted Words

Zhi Xu has also generated some examples where the number of
omitted words is doubly exponential in n, the length of the longest
word.
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Counting the Omitted Words

Zhi Xu has also generated some examples where the number of
omitted words is doubly exponential in n, the length of the longest
word.

Let T ′(m, n) = {r(i , |Σ|, n −m)02m−nr(j , |Σ|, n −m) : 0 ≤ i <
j ≤ |Σ|n−m − 1}.
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Counting the Omitted Words

Zhi Xu has also generated some examples where the number of
omitted words is doubly exponential in n, the length of the longest
word.

Let T ′(m, n) = {r(i , |Σ|, n −m)02m−nr(j , |Σ|, n −m) : 0 ≤ i <
j ≤ |Σ|n−m − 1}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T ′(m, n). Then S∗ is
co-finite and S∗ omits at least 2|Σ|

n−m − |Σ|n−m − 1 words.
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Counting the Omitted Words

Zhi Xu has also generated some examples where the number of
omitted words is doubly exponential in n, the length of the longest
word.

Let T ′(m, n) = {r(i , |Σ|, n −m)02m−nr(j , |Σ|, n −m) : 0 ≤ i <
j ≤ |Σ|n−m − 1}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T ′(m, n). Then S∗ is
co-finite and S∗ omits at least 2|Σ|

n−m − |Σ|n−m − 1 words.

Example. Let m = 3, n = 5,Σ = {0, 1}. Then
S = Σ3 +Σ5 − {00001, 00010, 00011, 01010, 01011, 10011}. Then
S∗ omits 1712 > 11 = 22

2 − 22 − 1 words.
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Other Possible Generalizations

Instead of considering the longest word omitted by x∗1 x
∗
2 · · · x∗k or

{x1, x2, . . . , xk}∗, we might consider their state complexity.
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Other Possible Generalizations

Instead of considering the longest word omitted by x∗1 x
∗
2 · · · x∗k or

{x1, x2, . . . , xk}∗, we might consider their state complexity.

The state complexity of a regular language L is the smallest
number of states in any DFA that accepts L. It is written sc(L).
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Other Possible Generalizations

Instead of considering the longest word omitted by x∗1 x
∗
2 · · · x∗k or

{x1, x2, . . . , xk}∗, we might consider their state complexity.

The state complexity of a regular language L is the smallest
number of states in any DFA that accepts L. It is written sc(L).

It turns out that the state complexity of {x1, x2, . . . , xk}∗ can be
exponential in both the length of the longest word and the number
of words.
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State Complexity

Theorem. Let t be an integer ≥ 2, and define words as follows:

y := 01t−10

and
xi := 1t−i−101i+1

for 0 ≤ i ≤ t − 2. Let St := {0, x0, x1, . . . , xt−2, y}. Then S∗t has
state complexity 3t2t−2 + 2t−1.
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State Complexity

Theorem. Let t be an integer ≥ 2, and define words as follows:

y := 01t−10

and
xi := 1t−i−101i+1

for 0 ≤ i ≤ t − 2. Let St := {0, x0, x1, . . . , xt−2, y}. Then S∗t has
state complexity 3t2t−2 + 2t−1.

Example. For t = 6 the words in St are 0 and

y = 0111110

x0 = 1111101

x1 = 1111011

x2 = 1110111

x3 = 1101111

x4 = 1011111
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State Complexity

Using similar ideas, we can also create an example achieving
subexponential state complexity for x∗1 x

∗
2 · · · x∗k .
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State Complexity

Using similar ideas, we can also create an example achieving
subexponential state complexity for x∗1 x

∗
2 · · · x∗k .

Theorem. Let y and xi be as defined above. Let
L = (0∗x∗1 x

∗
2 · · · x∗n−1y∗)e where e = (t + 1)(t − 2)/2 + 2t. Then

sc(L) ≥ 2t−2.

This example is due to Jui-Yi Kao.
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Complexity

Theorem. If S , a finite list of words, is represented by either an
NFA or a regular expression, then determining if S∗ is co-finite is
NP-hard and is in PSPACE.

Theorem. If S is a unary language (possibly infinite) represented
by an NFA, then we can decide in polynomial time if S∗ is co-finite.
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Open Problem

We still do not know the complexity of the following problem:
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Open Problem

We still do not know the complexity of the following problem:

Given a finite list of words S = {x1, x2, . . . , xk}, determine if S∗ is
co-finite.
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