
The Frobenius Problem and Its Generalizations

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/~shallit

1 / 1

The Frobenius Problem

The Frobenius problem is the following: given positive integers
x1, x2, . . . , xn with gcd(x1, x2, . . . , xn) = 1, compute the largest
integer not representable as a non-negative integer linear
combination of the xi .

2 / 1

The Frobenius Problem

The Frobenius problem is the following: given positive integers
x1, x2, . . . , xn with gcd(x1, x2, . . . , xn) = 1, compute the largest
integer not representable as a non-negative integer linear
combination of the xi .

This largest integer is sometimes denoted g(x1, . . . , xn).

The restriction gcd(x1, x2, . . . , xn) = 1 is necessary for the
definition to be meaningful, for otherwise every non-negative
integer linear combination is divisible by this gcd.

3 / 1

The Chicken McNuggets Problem

A famous problem in elementary arithmetic books:

At McDonald’s, Chicken McNuggets are available in packs of

either 6, 9, or 20 nuggets. What is the largest number of

McNuggets that one cannot purchase?

4 / 1

The Chicken McNuggets Problem

Answer: 43.

To see that 43 is not representable, observe that we can choose
either 0, 1, or 2 packs of 20. If we choose 0 or 1 packs, then we
have to represent 43 or 23 as a linear combination of 6 and 9,
which is impossible. So we have to choose two packs of 20. But
then we cannot get 43.

5 / 1

The Chicken McNuggets Example

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
47 = 1 · 20 + 3 · 9 + 0 · 6
48 = 0 · 20 + 0 · 9 + 8 · 6
49 = 2 · 20 + 1 · 9 + 0 · 6

and every larger number can be written as a multiple of 6 plus one
of these numbers.

6 / 1

History of the Frobenius problem

◮ Problem discussed by Frobenius (1849–1917) in his lectures in
the late 1800’s — but Frobenius never published anything

7 / 1

History of the Frobenius problem

◮ A related problem was discussed by Sylvester in 1882: he gave
a formula for h(x1, x2, . . . , xn), the total number of
non-negative integers not representable as a linear
combination of the xi , in the case n = 2

◮ Applications of the Frobenius problem occur in number
theory, automata theory, sorting algorithms, etc.

8 / 1

Research on the Frobenius problem

◮ Formulas for g where dimension is bounded

◮ Upper and lower bounds for g

◮ Formulas for g in special cases

◮ Complexity of computing g

◮ Average-case behavior of g

9 / 1

Formulas for g

In the case where n = 2, we have g(x , y) = xy − x − y .

Proof. Suppose xy − x − y is representable as ax + by .

Then, taking the result modulo x , we have −y ≡ by (mod x), so
b ≡ −1 (mod x).

Similarly, modulo y , we get −x ≡ ax , so a ≡ −1 (mod y).

But then ax + by ≥ (y − 1)x + (x − 1)y = 2xy − x − y , a
contradiction.

So xy − x − y is not representable.

10 / 1

Formulas for g

To prove every integer larger than xy − x − y is representable, let
c = x−1 mod y and d = y−1 mod x .
Then a simple calculation shows that
(c − 1)x + (d − 1)y = xy − x − y + 1, so this gives a
representation for g(x , y) + 1.

To get a representation for larger numbers, we use the extended
Euclidean algorithm to find integers e, f such that ex − fy = 1.
We just add the appropriate multiple of this equation, reducing, if
necessary, by (−y)x + xy or yx + (−x)y if a coefficient becomes
negative.

For example, for [x , y] = [13, 19], we find [2, 10] · [x , y] = 216.
Also [3,−2] · [x , y] = 1. To get a representation for 217, we just
add these two vectors to get [5, 8].

11 / 1

Formulas for g

For 3 numbers, more complicated (but still polynomial-time)
algorithms have been given by Greenberg and Davison
(independently).

Kannan has given a polynomial-time algorithm for any fixed
dimension, but the time depends at least exponentially on the
dimension and the algorithm is very complicated.

12 / 1

Computational Complexity of g

Raḿırez-Alfonśın has proven that computing g is NP-hard under
Turing-reductions, by reducing from the integer knapsack problem.

The integer knapsack problem is, given x1, x2, . . . , xn, and a
target t, do there exist non-negative integers ai such that
∑

1≤i≤n aixi = t ?

His reduction requires 3 calls to a subroutine for the Frobenius
number g .

13 / 1

Upper bound for the Frobenius number

A simple upper bound can be obtained by dynamic programming.

Suppose x1 < x2 < · · · < xn. Consider testing each number
0, 1, 2, . . . in turn to see if it is representable as a non-negative
integer linear combination of the xi .
Then r is representable if and only if at least one of
r − x1, r − x2, . . . , r − xn is representable. Now group the numbers
in blocks of size xn, and write a 1 if the number is representable, 0
otherwise. Clearly if j is representable, so is j + xn, so each
consecutive block has 1’s in the same positions as the previous,
plus maybe some new 1’s. In fact, new 1’s must appear in each
consecutive block, until it is full of 1’s, for otherwise the Frobenius
number would be infinite. So we need to examine at most xn
blocks. Once a block is full, every subsequent number is
representable. Thus we have shown g(x1, x2, . . . , xn) < x2n .

14 / 1

More bounds for the Frobenius number

Erdős and Graham:

g(x1, x2, . . . , xn) ≤ 2xn

⌊x1

n

⌋

− x1.

Davison:

g(x1, x2, x3) ≥
√
3x1x2x3 − (x1 + x2 + x3)

15 / 1

Applications of the Frobenius Number

◮ Shell sort - a sorting algorithm devised by D. Shell in 1959.

◮ Basic idea: arrange list in j columns; sort columns; decrease j ;
repeat

16 / 1

Shellsort Example

Start with 10 5 12 13 4 6 9 11 8 1 7
Arrange in 5 columns:

10 5 12 13 4
6 9 11 8 1
7

Sort each column:

6 5 11 8 1
7 9 12 13 4
10

17 / 1

Shellsort Example

Now arrange in 3 columns:

6 5 11
8 1 7
9 12 13
4 10

Sort each column:

4 1 7
6 5 11
8 10 13
9 12

18 / 1

Shellsort Example

We now have
4 1 7 6 5 11 8 10 13 9 12.

Finally, sort the remaining elements:
1 4 5 6 7 8 9 10 11 12 13

19 / 1

Choosing the Increments in Shellsort

◮ Running time depends on increments

◮ Original version used increments a power of 2, but this gives
quadratic running time.

◮ It is O(n3/2) if increments 1, 3, 7, 15, 31, . . . are used. (Powers
of 2, minus 1.)

◮ It is O(n4/3) if increments 1, 8, 23, 77, . . . are used (Numbers
of the form 4j+1 + 3 · 2j + 1).

◮ It is O(n(log n)2) if increments
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, . . . are used (Numbers of the
form 2i3j).

20 / 1

Shellsort and the Frobenius Problem

Theorem. The number of steps required to r -sort a file a[1..N]
that is already r1, r2, . . . , rt-sorted is ≤ N

r
g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i] is the number of
elements in a[i − r], a[i − 2r], . . . that are greater than a[i].
But if x is a linear combination of r1, r2, . . . , rt , then
a[i − x] < a[i], since the file is r1, r2, . . . , rt-sorted.
Thus the number of steps to insert a[i] is ≤ the number of
multiples of r that are not linear combinations of r1, r2, . . . , rt .
This number is ≤ g(r1, r2, . . . , rt)/r .

21 / 1

The Frobenius Problem and NFA to DFA Conversion

◮ A deterministic finite automaton (DFA) is a simple model of a
computer

◮ It consists of a finite set of states and transitions between the
states

◮ At each step, the machine enters a new state based on its
current state and the symbol being scanned

◮ If an input string causes the machine to enter a “final state”,
it is accepted; otherwise it is rejected

22 / 1

Example of a DFA

1

1
0

0

23 / 1

Nondeterminism - NFA

◮ A generalization of the DFA is the NFA - nondeterministic
finite automaton

◮ Here transitions on a symbol go to a set of states, not just a
single state

◮ A string x is accepted if some path labeled x leads to a final
state.

24 / 1

Example of an NFA

1

0

1

0

0, 1

25 / 1

The Frobenius Problem and NFA to DFA Conversion

When converting an NFA of n states to an equivalent DFA via the
subset construction, 2n states are sufficient by the “subset
construction”.

What may be less well-known is that this construction is optimal in
the case of a binary or larger input alphabet, in that there exist
languages L that can be accepted by an NFA with n states, but no
DFA with < 2n states accepts L.

However, for unary (1-letter) languages, the 2n bound is not
attainable.

26 / 1

Unary NFA to DFA Conversion

It can be proved that approximately e
√
n log n states are necessary

and sufficient in the worst case to go from a unary n-state NFA to
a DFA.

Chrobak showed that any unary n-state NFA can be put into a
certain normal form, where there is a “tail” of < n2 states, followed
by a single nondeterministic state which has branches into different
cycles, where the total number of states in all the cycles is ≤ n.

The bound of n2 for the number of states in the tail comes from
the bound we have already seen on the Frobenius problem.

27 / 1

An Exercise

Use the Frobenius problem on two variables to show that the
language

Ln = {ai : i 6= n}
can be accepted by an NFA with O(

√
n) states.

28 / 1

Related Problems

As we already have seen, Sylvester published a paper in 1882 where
he defined h(x1, x2, . . . , xn) to be the total number of integers not
representable as an integer linear combination of the xi .

He also gave the formula h(x1, x2) =
1
2(x1 − 1)(x2 − 1).

There is a very simple proof of this formula. Consider all the
numbers between 0 and (x1 − 1)(x2 − 1). Then it is not hard to
see that every representable number in this range is paired with a
non-representable number via the map c → c ′, where
c ′ = (x1 − 1)(x2 − 1)− c − 1, and vice-versa.

29 / 1

Computing h is NP-hard

Computing h is NP-hard:

Theorem. h(x1, x2, . . . , xk) = h(x1, x2, . . . , xk , d) if and only iff d

can be expressed as a non-negative integer linear combination of
the xi .

It follows that the integer knapsack problem (known to be
NP-complete) can be reduced to the problem of computing h, and
so computing h is also NP-hard (under Turing reductions).

30 / 1

The Local Postage Stamp Problem

In this problem, we are given a set of denominations
1 = x1, x2, . . . , xk of stamps, and an envelope that can contain at
most t stamps. We want to determine the smallest amount of
postage we cannot provide. Call it Nt(x1, x2, . . . , xk).

For example, N3(1, 4, 7, 8) = 25.
31 / 1

The Local Postage Stamp Problem

Many papers have been written about this problem, especially in
Germany and Norway. Algorithms have been given for many
special cases.

Alter and Barnett asked (1980) if Nt(x1, x2, . . . , xk) can be
“expressed by a simple formula”.

The answer is, probably not. I proved computing Nt(x1, x2, . . . , xk)
is NP-hard in 2001.

32 / 1

The Global Postage-Stamp Problem

The global postage-stamp problem is yet another variant: now we
are given a limit t on the number of stamps to be used, and an
integer k , and the goal is to find a set of k denominations
x1, x2, . . . , xk that maximizes Nt(x1, x2, . . . , xk).

The complexity of this problem is unknown.

33 / 1

The Optimal Coin Change Problem

Yet another variant is the optimal change problem: here we are
given a bound on the number of distinct coin denominations we
can use (but allowing arbitrarily many of each denomination), and
we want to find a set that minimizes the average number of coins
needed to make each amount in some range.

For example, in the US we currently use 4 denominations for
change under 1 dollar: 1¢, 5¢, 10¢, and 25¢. These can make
change for every amount between 0¢ and 99¢, with an average
cost of 4.7 coins per amount.

It turns out that the system of denominations (1, 5, 18, 25) is
optimal, with an average cost of only 3.89 coins per amount.

34 / 1

Improving the Current Coin System

You could also ask, what single denomination could we add to the
current system to improve its efficiency in making change?

The answer is, add a 32-cent piece.

In Canada, where there are 1-dollar and 2-dollar coins, the best
coin to add is an 83-cent piece.

35 / 1

Improving the Euro coin system

Europe uses a system of coins based on 1, 2, 5:

1, 2, 5, 10, 20, 50, 100, 200, . . .

This may seem natural, but a small change to

1, 3, 4, 10, 30, 40, 100, 300, 400, . . .

would significantly decrease the average number of coins per
transaction.

36 / 1

Improving the Euro coin system

This new system has the following advantages:

◮ Change can still be made on a digit-by-digit basis. For
example, to make change for 348, first do the hundreds digit
(getting 300), then the tens (getting 40), and then the ones
(getting 4+4).

◮ The greedy algorithm can be used in all cases but one. The
exception is that 6 = 3+3 and not 4+1+1. (Similarly, 60 =
30+30, etc.)

◮ Assuming the uniform distribution of change denominations,
on all scales (10, 100, 1000, etc.) the new system is about 6%
better.

◮ If one assumes change denominations are distributed by
Benford’s law, the new system is about 7% better up to 10,
about 6% better up to 100, and about 6% better up to 1000.

37 / 1

Generalizing the Frobenius Problem to Words

Before, we had defined g(x1, x2, . . . , xk) to be the largest integer
not representable as a non-negative integer linear combination of
the xi .

We can now replace the integers xi with words (strings of symbols
over a finite alphabet Σ), and ask, what is the right generalization
of the Frobenius problem?

38 / 1

Generalizing the Frobenius Problem to Words

There are several possible answers.

One is as follows:

Instead of non-negative integer linear combinations of the xi , we
could consider the regular expressions

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗.

39 / 1

Generalizing the Frobenius Problem to Words

Instead of the condition that gcd(x1, x2, . . . , xk) = 1, which was
used to ensure that the number of unrepresentable integers is
finite, we could demand that

Σ∗ − x∗1x
∗
2 · · · x∗k

or
Σ∗ − {x1, x2, . . . , xk}∗

be finite, or in other words, that

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗

be co-finite.

40 / 1

Generalizing the Frobenius Problem to Words

And instead of looking for the largest non-representable integer, we
could ask for the length of the longest word not in

x∗1x
∗
2 · · · x∗k

or
{x1, x2, . . . , xk}∗.

41 / 1

x∗1x
∗
2 · · · x∗k

Theorem. Let x1, x2, . . . , xk ∈ Σ+. Then x∗1x
∗
2 · · · x∗k is co-finite if

and only if |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1.

Proof. Let Q = x∗1x
∗
2 · · · x∗k .

If |Σ| = 1 and gcd(|x1|, . . . , |xk |) = 1, then every sufficiently long
unary word can be obtained by concatenations of the xi , so Q is
co-finite.

For the other direction, suppose Q is co-finite. If |Σ| = 1, let
gcd(|x1|, . . . , |xk |) = d . If d > 1, Q contains only words of length
divisible by d , and so is not co-finite. So d = 1.

42 / 1

x∗1x
∗
2 · · · x∗k

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ.

Let ℓ = max1≤i≤k |xi |, the length of the longest word among the
xi .

Let Q ′ = ((a2ℓb2ℓ)k)+. Then we claim that Q ′ ∩ Q = ∅.

For if none of the xi consists of powers of a single letter, then the
longest block of consecutive identical letters in any word in Q is
< 2ℓ, so no word in Q ′ can be in Q.

43 / 1

x∗1x
∗
2 · · · x∗k

Otherwise, say some of the xi consist of powers of a single letter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2ℓ or more consecutive identical letters in w . (Here
“maximal” means such a block is delimited on both sides by either
the beginning or end of the word, or a different letter.)

Clearly n(w) ≤ k .

But n(w ′) ≥ 2k for any word w ′ in Q ′. Thus Q is not co-finite, as
it omits all the words in Q ′.

44 / 1

{x1, x2, . . . , xk}∗

Suppose max1≤i≤k |xi | = n.

We can obtain an exponential upper bound on length of the
longest omitted word, as follows:

Given x1, x2, . . . , xk , create a DFA accepting Σ∗−{x1, x2, . . . , xk}∗.
This DFA keeps track of the last n− 1 symbols seen, together with
markers indicating all positions within those n− 1 symbols where a
partial factorization of the input into the xi could end.

Since this DFA accepts a finite language, the longest word it
accepts is bounded by the number of states.

45 / 1

{x1, x2, . . . , xk}∗

But is this exponential upper bound attainable?

Yes.

My student Zhi Xu has recently produced a class of examples
{x1, x2, . . . , xk} in which the length of the longest word is n, but
the longest word in Σ∗ − {x1, x2, . . . , xk}∗ is exponential in n.

46 / 1

{x1, x2, . . . , xk}∗: Zhi Xu’s Examples

Let r(n, k , l) denote the word of length l representing n in base k ,
possibly with leading zeros. For example, r(3, 2, 3) = 011.

Let T (m, n) = {r(i , |Σ|, n −m)02m−nr(i + 1, |Σ|, n −m) : 0 ≤
i ≤ |Σ|n−m − 2}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T (m, n). Then S∗ is
co-finite and the longest words not in S∗ are of length g(m, l),
where l = m|Σ|n−m + n −m.

Example. Let m = 3, n = 5,Σ = {0, 1}. In this case,
l = 3 · 22 + 2 = 14, S = Σ3 +Σ5 − {00001, 01010, 10011}. Then a
longest word not in S∗ is

00001010011 000 00001010011

of length 25 = g(3, 14).
47 / 1

Counting the Omitted Words

Zhi Xu has also generated some examples where the number of
omitted words is doubly exponential in n, the length of the longest
word.

Let T ′(m, n) = {r(i , |Σ|, n −m)02m−nr(j , |Σ|, n −m) : 0 ≤ i <
j ≤ |Σ|n−m − 1}.

Theorem. Let m, n be integers with 0 < m < n < 2m and
gcd(m, n) = 1, and let S = Σm +Σn − T ′(m, n). Then S∗ is
co-finite and S∗ omits at least 2|Σ|n−m − |Σ|n−m − 1 words.

Example. Let m = 3, n = 5,Σ = {0, 1}. Then
S = Σ3 +Σ5 − {00001, 00010, 00011, 01010, 01011, 10011}. Then
S∗ omits 1712 > 11 = 22

2 − 22 − 1 words.

48 / 1

Other Possible Generalizations

Instead of considering the longest word omitted by x∗1x
∗
2 · · · x∗k or

{x1, x2, . . . , xk}∗, we might consider their state complexity.

The state complexity of a regular language L is the smallest
number of states in any DFA that accepts L. It is written sc(L).

It turns out that the state complexity of {x1, x2, . . . , xk}∗ can be
exponential in both the length of the longest word and the number
of words.

49 / 1

State Complexity

Theorem. Let t be an integer ≥ 2, and define words as follows:

y := 01t−10

and
xi := 1t−i−101i+1

for 0 ≤ i ≤ t − 2. Let St := {0, x0, x1, . . . , xt−2, y}. Then S∗
t has

state complexity 3t2t−2 + 2t−1.

Example. For t = 6 the words in St are 0 and

y = 0111110

x0 = 1111101

x1 = 1111011

x2 = 1110111

x3 = 1101111

x4 = 1011111
50 / 1

State Complexity

Using similar ideas, we can also create an example achieving
subexponential state complexity for x∗1x

∗
2 · · · x∗k .

Theorem. Let y and xi be as defined above. Let
L = (0∗x∗1x

∗
2 · · · x∗n−1y

∗)e where e = (t + 1)(t − 2)/2 + 2t. Then
sc(L) ≥ 2t−2.

This example is due to Jui-Yi Kao.

51 / 1

Complexity

Theorem. If S , a finite list of words, is represented by either an
NFA or a regular expression, then determining if S∗ is co-finite is
NP-hard and is in PSPACE.

Theorem. If S is a unary language (possibly infinite) represented
by an NFA, then we can decide in polynomial time if S∗ is co-finite.

52 / 1

Open Problem

We still do not know the complexity of the following problem:

Given a finite list of words S = {x1, x2, . . . , xk}, determine if S∗ is
co-finite.

53 / 1

Another generalization

Define gj(a1, . . . , an) to be the largest integer having exactly j

representations as a non-negative integer linear combination of the
integers ai .

It seems reasonable that g0(· · ·) < g1(· · ·), but this is not always
true.

We constructed a class of 5-tuples for which g0(· · ·) = n2 − O(n),
but gk(Xn) = (6k + 3)n − 1 for all sufficiently large n.

Also g0(24, 26, 36, 39) = 181 but g1(24, 26, 36, 39) = 175.

Conjecture: for all triples a1, a2, a3 of distinct integers we have
g0 < g1 < · · · < g14.

This would be best possible, since g14(8, 9, 15) = 172, but
g15(8, 9, 15) = 169.

54 / 1

For Further Reading

◮ J. L. Raḿırez Alfonśın, The Diophantine Frobenius Problem,
Oxford University Press, 2005.

◮ J. Shallit, The computational complexity of the local postage
stamp problem, SIGACT News 33 (1) (March 2002), 90–94.

◮ J. Shallit, What this country needs is an 18-cent piece, Math.

Intelligencer 25 (2) (2003), 20–23.

◮ Jui-Yi Kao, J. Shallit, and Zhi Xu, “The Frobenius problem in
a free monoid”, in S. Albers and P. Weil, eds., STACS 2008,

25th Annual Symposium on Theoretical Aspects of Computer

Science, 2008, pp. 421–432.

◮ J. Shallit and J. Stankewicz, Unbounded discrepancy in
Frobenius numbers, INTEGERS 11 (2011), paper #A2.

55 / 1

