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An Advertisement

Just out from Cambridge University Press!Order your copy today!
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The FrobeniusProblem

The Frobenius problem is the following: givenpositive integers
x1; x2; : : : ; xn with gcd(x1; x2; : : : ; xn) = 1, computethe largest
integernot representableas a non-negativeinteger linear
combinationof the xi .
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The FrobeniusProblem

The Frobenius problem is the following: givenpositive integers
x1; x2; : : : ; xn with gcd(x1; x2; : : : ; xn) = 1, computethe largest
integernot representableas a non-negativeinteger linear
combinationof the xi .

This largest integer is sometimesdenotedg(x1; : : : ; xn).

The restriction gcd(x1; x2; : : : ; xn) = 1 is necessary for the
de¯nition to be meaningful,for otherwiseeverynon-negative
integer linear combinationis divisibleby this gcd.
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The Chicken McNuggetsProblem

A famousproblemin elementary arithmetic books:

At McDonald's,Chicken McNuggetsare availablein packsof
either 6, 9, or 20 nuggets.What is the largestnumber of
McNuggetsthat onecannot purchase?
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The Chicken McNuggetsProblem

Answer: 43.

To seethat 43 is not representable,observethat we can choose
either 0, 1, or 2 packsof 20. If we choose0 or 1 packs,then we
haveto represent43 or 23 as a linear combinationof 6 and 9,
which is impossible.So we haveto choosetwo packsof 20. But
then we cannot get 43.
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The Chicken McNuggetsExample

To seethat everylarger number is representable,note that

44 = 1 ¢20+ 0 ¢9 + 4 ¢6

45 = 0 ¢20+ 3 ¢9 + 3 ¢6

46 = 2 ¢20+ 0 ¢9 + 1 ¢6

47 = 1 ¢20+ 3 ¢9 + 0 ¢6

48 = 0 ¢20+ 0 ¢9 + 8 ¢6

49 = 2 ¢20+ 1 ¢9 + 0 ¢6

and everylarger number can be written as a multiple of 6 plus one
of thesenumbers.
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History of the Frobeniusproblem

I Problemdiscussedby Frobenius(1849{1917) in his lecturesin
the late 1800's| but Frobeniusneverpublishedanything
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History of the Frobeniusproblem

I A relatedproblemwasdiscussedby Sylvesterin 1882: he gave
a formula for h(x1; x2; : : : ; xn), the total number of
non-negativeintegersnot representableas a linear
combinationof the xi , in the casen = 2

I Applicationsof the Frobeniusproblemoccur in number
theory, automata theory, sorting algorithms, etc.
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Research on the Frobeniusproblem

I Formulasfor g wheredimensionis bounded
I Upper and lower boundsfor g
I Formulasfor g in specialcases
I Complexity of computingg
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Formulasfor g

In the casewheren = 2, we haveg(x; y) = xy ¡ x ¡ y.

Proof. Supposexy ¡ x ¡ y is representableas ax + by.

Then, taking the result modulo x, we have¡ y ´ by (mod x), so
b ´ ¡ 1 (mod x).

Similarly, modulo y, we get ¡ x ´ ax, so a ´ ¡ 1 (mod y).

But then ax + by ¸ (y ¡ 1)x + (x ¡ 1)y = 2xy ¡ x ¡ y, a
contradiction.

So xy ¡ x ¡ y is not representable.
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Formulasfor g

To proveeveryinteger larger than xy ¡ x ¡ y is representable,let
c = x¡ 1 mod y and d = y ¡ 1 mod x.
Then a simplecalculationshows that
(c ¡ 1)y + (d ¡ 1)x = xy ¡ x ¡ y + 1, so this givesa
representationfor g(x; y) + 1.

To get a representationfor larger numbers,we usethe extended
Euclideanalgorithm to ¯nd integerse; f suchthat ex ¡ fy = 1.
We just add the appropriate multiple of this equation,reducing,if
necessary, by (¡ y)x + xy or yx + (¡ x)y if a coe±cient becomes
negative.

For example,for [x; y] = [13; 19], we ¯nd [2; 10]¢[x; y] = 216.
Also [3; ¡ 2] ¢[x; y] = 1. To get a representationfor 217, we just
add thesetwo vectors to get [5; 8].
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Formulasfor g

For 3 numbers,more complicated(but still polynomial-time)
algorithms havebeengivenby Greenberg and Davison.

Kannanhasgivena polynomial-timealgorithm for any ¯xed
dimension,but the time dependsat leastexponentiallyon the
dimensionand the algorithm is very complicated.

13 / 54



ComputationalComplexity of g

Ram¶³rez-Alfons¶³n hasproventhat computingg is NP-hard under
Turing-reductions,by reducingfrom the integerknapsackproblem.

The integer knapsack problem is, givenx1; x2; : : : ; xn, and a
target t , do there exist non-negativeintegersai suchthatP

1· i · n ai xi = t ?

His reductionrequires3 calls to a subroutine for the Frobenius
number g.
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Upper boundfor the Frobeniusnumber

A simpleupper bound can be obtainedby dynamicprogramming.

Supposex1 < x2 < ¢¢¢< xn. Considertesting eachnumber
0; 1; 2; : : : in turn to seeif it is representableas a non-negative
integer linear combinationof the xi .
Then r is representableif and only if at leastoneof
r ¡ x1; r ¡ x2; : : : ; r ¡ xn is representable.Now group the numbers
in blocks of sizexn, and write a 1 if the number is representable,0
otherwise.Clearly if j is representable,so is j + xn, so each
consecutiveblock has1's in the samepositionsas the previous,
plus maybe somenew 1's. In fact, new 1's must appear in each
consecutiveblock, until it is full of 1's, for otherwisethe Frobenius
number would be in¯nite. So we needto examineat most xn

blocks. Oncea block is full, everysubsequentnumber is
representable.Thus we haveshown g(x1; x2; : : : ; xn) < x2

n .
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Applicationsof the FrobeniusNumber

I Shellsort - a sorting algorithm devisedby D. Shell in 1959.
I Basicidea: arrangelist in j columns;sort columns;decreasej ;

repeat

16 / 54



Shellsort Example

Start with 10 5 12 13 4 6 9 11 8 1 7
Arrangein 5 columns:

10 5 12 13 4
6 9 11 8 1
7

Sort eachcolumn:

6 5 11 8 1
7 9 12 13 4
10
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Shellsort Example

Now arrangein 3 columns:

6 5 11
8 1 7
9 12 13
4 10

Sort eachcolumn:

4 1 7
6 5 11
8 10 13
9 12
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Shellsort Example

We now have
4 1 7 6 5 11 8 10 13 9 12.

Finally, sort the remainingelements:
1 4 5 6 7 8 9 10 11 12 13
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Choosingthe Incrementsin Shellsort

I Runningtime dependson increments
I Original versionusedincrementsa power of 2, but this gives

quadratic running time.
I It is O(n3=2) if increments1; 3; 7; 15; 31; : : : are used. (Powers

of 2, minus1.)
I It is O(n4=3) if increments1; 8; 23; 77; : : : are used(Numbers

of the form 4j +1 + 3 ¢2j + 1).
I It is O(n(logn)2) if increments

1; 2; 3; 4; 6; 9; 8; 12; 18; 27; 16; 24; : : : are used(Numbersof the
form 2i 3j ).
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Shellsort and the FrobeniusProblem

Theorem. The number of stepsrequiredto r -sort a ¯le a[1::N]
that is alreadyr1; r2; : : : ; rt -sorted is · N

r g(r1; r2; : : : ; rt ):

Proof. The number of stepsto insert a[i ] is the number of
elementsin a[i ¡ r ]; a[i ¡ 2r ]; : : : that are greaterthan a[i ].
But if x is a linear combinationof r1; r2; : : : ; rt , then
a[i ¡ x] < a[i ], sincethe ¯le is r1; r2; : : : ; rt -sorted.
Thus the number of stepsto insert a[i ] is · the number of
multiplesof r that are not linear combinationsof r1; r2; : : : ; rt .
This number is · g(r1; r2; : : : ; rt )=r .
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The FrobeniusProblemandNFA to DFA Conversion

I A deterministic¯nite automaton(DFA) is a simplemodel of a
computer

I It consistsof a ¯nite set of statesand transitionsbetweenthe
states

I At eachstep, the machineentersa new state basedon its
current state and the symbol being scanned

I If an input string causesthe machineto enter a \¯nal state",
it is accepted;otherwiseit is rejected
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Exampleof a DFA

1

1
0

0
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Nondeterminism- NFA

I A generalizationof the DFA is the NFA - nondeterministic
¯nite automaton

I Heretransitionson a symbol go to a set of states,not just a
singlestate

I A string x is acceptedif somepath labeledx leadsto a ¯nal
state.

24 / 54



Exampleof an NFA

1

0

1

0

0, 1
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The FrobeniusProblemandNFA to DFA Conversion

When convertingan NFA of n statesto an equivalentDFA via the
subsetconstruction,2n statesare su±cient by the \subset
construction".

What may be lesswell-known is that this constructionis optimal in
the caseof a binary or larger input alphabet, in that there exist
languagesL that can be acceptedby an NFA with n states,but no
DFA with < 2n statesacceptsL.

However,for unary (1-letter) languages,the 2n bound is not
attainable.
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Unary NFA to DFA Conversion

It can be provedthat approximately e
p

n log n statesare necessary
and su±cient in the worst caseto go from a unary n-state NFA to
a DFA.

Chrobakshowed that any unary n-state NFA can be put into a
certainnormal form, wherethere is a \tail" of < n2 states,followed
by a singlenondeterministicstate which hasbranchesinto di®erent
cycles,wherethe total number of statesin all the cyclesis · n.

The bound of n2 for the number of statesin the tail comesfrom
the bound we havealreadyseenon the Frobeniusproblem.
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An Exercise

Usethe Frobeniusproblemon two variablesto show that the
language

Ln = f ai : i 6= ng

can be acceptedby an NFA with O(
p

n) states.
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RelatedProblems

As we alreadyhaveseen,Sylvesterpublisheda paper in 1882where
he de¯ned h(x1; x2; : : : ; xn) to be the total number of integersnot
representableas an integer linear combinationof the xi .

He alsogavethe formula h(x1; x2) = 1
2(x1 ¡ 1)(x2 ¡ 1).

There is a very simpleproof of this formula. Considerall the
numbersbetween0 and (x1 ¡ 1)(x2 ¡ 1). Then it is not hard to
seethat everyrepresentablenumber in this rangeis pairedwith a
non-representablenumber via the map c ! c0, where
c0 = (x1 ¡ 1)(x2 ¡ 1) ¡ c ¡ 1, and vice-versa.
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Computingh is NP-hard

Computingh is NP-hard:

Theorem. h(x1; x2; : : : ; xk ) = h(x1; x2; : : : ; xk ; d) if and only i® d
can be expressedas a non-negativeinteger linear combinationof
the xi .

It follows that the integerknapsackproblem(known to be
NP-complete)can be reducedto the problemof computingh, and
so computingh is alsoNP-hard (under Turing reductions).
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The Local PostageStampProblem

In this problem,we are givena set of denominations
1 = x1; x2; : : : ; xk of stamps,and an envelope that can contain at
most t stamps.We want to determinethe smallestamount of
postagewe cannot provide. Call it Nt (x1; x2; : : : ; xk ).

For example,N3(1; 4; 7; 8) = 25.
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The Local PostageStampProblem

Many papershavebeenwritten about this problem,especially in
Germanyand Norway. Algorithms havebeengivenfor many
specialcases.

Alter and Barnett asked (1980) if Nt (x1; x2; : : : ; xk ) can be
\expressedby a simpleformula".

The answer is, probablynot. I provedcomputingNt (x1; x2; : : : ; xk )
is NP-hard in 2001.

32 / 54



The GlobalPostage-StampProblem

The globalpostage-stampproblemis yet anothervariant: now we
are givena limit t on the number of stampsto be used,and an
integerk, and the goal is to ¯nd a set of k denominations
x1; x2; : : : ; xk that maximizesNt (x1; x2; : : : ; xk ).

The complexity of this problemis unknown.
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The Optimal CoinChangeProblem

Yet anothervariant is the optimal changeproblem: herewe are
givena bound on the number of distinct coin denominationswe
can use(but allowing arbitrarily many of eachdenomination),and
we want to ¯nd a set that minimizesthe averagenumber of coins
neededto make eachamount in somerange.

For example,in the US we currently use4 denominationsfor
changeunder1 dollar: 1, 5, 10, and 25. Thesecan make
changefor everyamount between0 and 99, with an average
cost of 4.7 coinsper amount.

It turns out that the systemof denominations(1; 5; 18; 25) is
optimal, with an averagecost of only 3.89 coinsper amount.
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Improvingthe CurrentCoinSystem

You could alsoask,what singledenominationcould we add to the
current systemto improve its e±ciency in makingchange?

The answer is, add a 32-centpiece.

In Canada,wherethere are 1-dollar and 2-dollar coins,the best
coin to add is an 83-centpiece.
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Improvingthe JapaneseSystem
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Japanusesa systembasedon 1 and 5: there are coinsof 1 yen, 5
yen, 10 yen, 50 yen, 100 yen, and 500 yen. But switchingto 1 and
3 (or 1 and 4) would decreasethe averagenumber of coinsused.
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Generalizingthe FrobeniusProblemto Words

Before, we had de¯ned g(x1; x2; : : : ; xk ) to be the largest integer
not representableas a non-negativeinteger linear combinationof
the xi .

We can now replacethe integersxi with words (strings of symbols
overa ¯nite alphabet §), and ask,what is the right generalization
of the Frobeniusproblem?

37 / 54



Generalizingthe FrobeniusProblemto Words

There are severalpossibleanswers.

One is as follows:

Insteadof non-negativeinteger linear combinationsof the xi , we
could considerthe regular expressions

x¤
1x¤

2 ¢¢¢x¤
k

or
f x1; x2; : : : ; xkg¤:
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Generalizingthe FrobeniusProblemto Words

Insteadof the condition that gcd(x1; x2; : : : ; xk ) = 1, which was
usedto ensurethat the number of unrepresentableintegersis
¯nite, we could demandthat

§ ¤ ¡ x¤
1x¤

2 ¢¢¢x¤
k

or
§ ¤ ¡ f x1; x2; : : : ; xkg¤

be ¯nite, or in other words, that

x¤
1x¤

2 ¢¢¢x¤
k

or
f x1; x2; : : : ; xkg¤

be co-¯nite.
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Generalizingthe FrobeniusProblemto Words

And insteadof looking for the largestnon-representableinteger,we
could ask for the length of the longest word not in

x¤
1x¤

2 ¢¢¢x¤
k

or
f x1; x2; : : : ; xkg¤:
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x¤
1x¤

2 ¢¢¢x¤
k

Theorem. Let x1; x2; : : : ; xk 2 § + . Then x¤
1x¤

2 ¢¢¢x¤
k is co-¯nite if

and only if j§ j = 1 and gcd(jx1j; : : : ; jxk j) = 1.

Proof. Let Q = x¤
1x¤

2 ¢¢¢x¤
k .

If j§ j = 1 and gcd(jx1j; : : : ; jxk j) = 1, then everysu±ciently long
unary word can be obtainedby concatenationsof the xi , so Q is
co-¯nite.

For the other direction, supposeQ is co-¯nite. If j§ j = 1, let
gcd(jx1j; : : : ; jxk j) = d. If d > 1, Q containsonly words of length
divisibleby d, and so is not co-¯nite. So d = 1.
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x¤
1x¤

2 ¢¢¢x¤
k

Henceassumej§ j ¸ 2, and let a; b be distinct letters in §.

Let ` = max1· i · k jxi j, the length of the longestword amongthe
xi .

Let Q0 = ((a2` b2` )k )+ . Then we claim that Q0 \ Q = ; .

For if noneof the xi consistsof powersof a singleletter, then the
longestblock of consecutiveidentical letters in any word in Q is
< 2`, so no word in Q0 can be in Q.
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x¤
1x¤

2 ¢¢¢x¤
k

Otherwise,say someof the xi consistof powersof a singleletter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2` or more consecutiveidentical letters in w. (Here
\maximal" meanssucha block is delimitedon both sidesby either
the beginningor end of the word, or a di®erentletter.)

Clearly n(w) · k.

But n(w0) ¸ 2k for any word w0 in Q0. Thus Q is not co-¯nite, as
it omits all the words in Q0.
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f x1; x2; : : : ; xkg¤

Supposemax1· i · k jxi j = n.

We can obtain an exponentialupper bound on length of the
longestomitted word, as follows:

Givenx1; x2; : : : ; xk , createa DFA accepting§ ¤ ¡ f x1; x2; : : : ; xkg¤.
This DFA keepstrack of the last n ¡ 1 symbols seen,togetherwith
markers indicating all positionswithin thosen ¡ 1 symbols wherea
partial factorization of the input into the xi could end.

Sincethis DFA acceptsa ¯nite language,the longestword it
acceptsis boundedby the number of states.
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f x1; x2; : : : ; xkg¤

But is this exponentialupper bound attainable?

Yes.

My student Zhi Xu hasrecentlyproduceda classof examples
f x1; x2; : : : ; xkg in which the length of the longestword is n, but
the longestword in § ¤ ¡ f x1; x2; : : : ; xkg¤ is exponential in n.
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f x1; x2; : : : ; xkg¤: Zhi Xu's Examples

Let r (n; k; l ) denotethe word of length l representingn in basek,
possiblywith leadingzeros.For example,r (3; 2; 3) = 011.

Let T (m; n) = f r (i ; j§ j; n ¡ m)02m¡ nr (i + 1; j§ j; n ¡ m) : 0 ·
i · j§ jn¡ m ¡ 2g.

Theorem. Let m; n be integerswith 0 < m < n < 2m and
gcd(m; n) = 1, and let S = § m + § n ¡ T (m; n). Then S¤ is
co-¯nite and the longestwords not in S¤ are of length g(m; l ),
wherel = mj§ jn¡ m + n ¡ m.

Example. Let m = 3; n = 5; § = f 0; 1g. In this case,
l = 3¢22 + 2 = 14, S = § 3 + § 5 ¡ f 00001; 01010; 10011g. Then a
longestword not in S¤ is

00001010011000 00001010011

of length 25 = g(3; 14).
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Countingthe Omitted Words

Zhi Xu hasalsogeneratedsomeexampleswherethe number of
omitted words is doublyexponential in n, the length of the longest
word.

Let T 0(m; n) = f r (i ; j§ j; n ¡ m)02m¡ nr (j ; j§ j; n ¡ m) : 0 · i <
j · j§ jn¡ m ¡ 1g.

Theorem. Let m; n be integerswith 0 < m < n < 2m and
gcd(m; n) = 1, and let S = § m + § n ¡ T 0(m; n). Then S¤ is
co-¯nite and S¤ omits at least2j§ jn¡ m

¡ j§ jn¡ m ¡ 1 words.

Example. Let m = 3; n = 5; § = f 0; 1g. Then
S = § 3 + § 5 ¡ f 00001; 00010; 00011; 01010; 01011; 10011g. Then
S¤ omits 1712> 11 = 222

¡ 22 ¡ 1 words.
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Other PossibleGeneralizations

Insteadof consideringthe longestword omitted by x¤
1x¤

2 ¢¢¢x¤
k or

f x1; x2; : : : ; xkg¤, we might considertheir state complexity.

The state complexity of a regular languageL is the smallest
number of statesin any DFA that acceptsL. It is written sc(L).

It turns out that the state complexity of f x1; x2; : : : ; xkg¤ can be
exponential in both the length of the longestword and the number
of words.
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State Complexity

Theorem. Let t be an integer ¸ 2, and de¯ne words as follows:

y := 01t ¡ 10

and
xi := 1t ¡ i ¡ 101i +1

for 0 · i · t ¡ 2. Let St := f 0; x0; x1; : : : ; xt ¡ 2; yg. Then S¤
t has

state complexity 3t 2t ¡ 2 + 2t ¡ 1.

Example. For t = 6 the words in St are 0 and

y = 0111110

x0 = 1111101

x1 = 1111011

x2 = 1110111

x3 = 1101111

x4 = 1011111
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State Complexity

Usingsimilar ideas,we can alsocreatean exampleachieving
subexponentialstate complexity for x¤

1x¤
2 ¢¢¢x¤

k .

Theorem. Let y and xi be as de¯ned above. Let
L = (0¤x¤

1x¤
2 ¢¢¢x¤

n¡ 1y¤)e wheree = (t + 1)(t ¡ 2)=2 + 2t . Then
sc(L) ¸ 2t ¡ 2.

This exampleis due to Jui-Yi Kao.
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Complexity

Theorem. If S, a ¯nite list of words, is representedby either an
NFA or a regular expression,then determiningif S¤ is co-¯nite is
NP-hard and is in PSPACE.

Theorem. If S is a unary language(possiblyin¯nite) represented
by an NFA, then we candecidein polynomialtime if S¤ is co-¯nite.
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Open Problem

We still do not know the complexity of the following problem:

Givena ¯nite list of words S = f x1; x2; : : : ; xkg, determineif S¤ is
co-¯nite.
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Anothergeneralization

De¯ne gj (a1; : : : ; an) to be the largest integerhavingexactly j
representationsas a non-negativeinteger linear combinationof the
integersai .

It seemsreasonablethat g0(¢¢¢) < g1(¢¢¢), but this is not always
true.

We constructeda classof 5-tuplesfor which g0(¢¢¢) = n2 ¡ O(n),
but gk (Xn) = (6k + 3)n ¡ 1 for all su±ciently large n.

Also g0(24; 26; 36; 39) = 181 but g1(24; 26; 36; 39) = 175.

Conjecture:for all triples a1; a2; a3 of distinct integerswe have
g0 < g1 < ¢¢¢< g14.

This would be best possible,sinceg14(8; 9; 15) = 172, but
g15(8; 9; 15) = 169.
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