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The FrobeniusProblem

integer not representableas a non-negativeintegerlinea
combinationof the x;.
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The FrobeniusProblem

The Frobenius problem is the following: given positive integers

integernot representableas a non-negativeintegerlinea
combinationof the ;.

de nition to be meaningful,for otherwiseeverynon-negative
integer linea combinationis divisibleby this gcd.
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The Chiclen McNuggetsProblem

A famousproblemin elementay arithmetic books:

6 Piece Chicken
McNuggets:Meal

At McDonald's, Chiclen McNuggetsare availablein packsof
either 6, 9, or 20 nuggets. What is the largest number of
McNuggetsthat one cannotpurchase?
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The Chiclen McNuggetsProblem

Answer: 43.

To seethat 43 is not refresentable pbservethat we can choose
eitherO, 1, or 2 packsof 20. If we chooseO or 1 packs,then we
haveto represent43 or 23 asa linea combinationof 6 and 9,
which is impossible.So we haveto choosetwo packsof 20. But
then we cannotget 43.
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The Chiclen McNuggetsExample

To seethat everylarger number is regresentable note that

44 1¢20+ 0¢9+ 4¢6
45 = 0¢20+ 3¢9+ 3¢6
46 = 2¢20+ 0¢9+ 1¢6
47 = 1¢20+ 3¢9+ 0¢6
48 = 0¢20+ 0¢9+ 8¢6
49 = 2¢20+ 1¢9+ 0¢6

and everylarger number can be written as a multiple of 6 plusone
of thesenumbers.
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Histay of the Frobeniusproblem

I Problemdiscussedy Frobenius(1849{1917)in his lecturesin
the late 1800's| but Frobeniusneverpublishedanything
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Histay of the Frobeniusproblem

I A related problemwas discussedy Sylvesterin 1882: he gave

non-negativeintegersnot representableas a linea
combinationof the ¥;, in the casen = 2

I Applicationsof the Frobeniusproblemoccurin number

theary, automatatheary, sating algaithms, etc.
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Reserch on the Frobeniusproblem

I Formulasfor g wheredimensionis bounded
I Upper and lower boundsfor g

I Formulasfor g in specialcases

I Complexiy of computingg
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Formulasfor g

In the casewheren = 2, we haveg(x;y) = xyi Xi V.

Proof. Suppmpsexy i X i y isrepesentableasax+ by.

Then, taking the result modulo x, we havej y ~ by (mod x), so
b~ j 1(mod x).

Similaly, moduloy, wegetj x° ax, soa” j 1 (mody).

But thenax+ by ., (yi 1)x+ (xj L)y=2xyj Xij vy, a
contradiction.

Soxyij Xj Y isnotregesentable.

11/ 54



Formulasfor g

To prove everyintegerlargerthan xy | x i y isrepesentablejet
c=xitmody andd = yi  mod x.

Then a simplecalculationshaws that

(ci I)y+ (dj I)x=xyi xj y+ 1,sothis givesa
representationfor g(x;y) + 1.

To get a representationfor larger numbers, we usethe extended
Euclideanalgaithm to nd integerse;f suchthat exj fy = 1.
We just add the appropriate multiple of this equation,reducing,if
necess®, by (j y)x + xy or yx + (j x)y if a coetcient becomes
negative.

For example for [x;y] = [13;19], we nd [2; 10]¢[x;y] = 216.
Also[3;j 2] ¢[x;y] = 1. To get a representationfor 217, we just
add thesetwo vectas to get [5; 8].
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Formulasfor g

For 3 numbers, more complicated(but still polynomial-time)
algaithms havebeengivenby Greenlerg and Davison.

Kannanhasgivena polynomial-timealgaithm for any xed
dimension but the time dependsat leastexponentiallyon the
dimensionand the algaithm is very complicated.
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ComputationalComplexiy of g

Ranfrez-Alfon§n hasproventhat computingg is NP-had under
Turing-reductions by reducingfrom the integer knapsackproblem.

fgrgett, do there exist non-negativeintegersa; suchthat
1i.n@X =17

His reductionrequires3 callsto a sulbroutine for the Frobenius
number g.
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Upper boundfor the Frobeniusnumkber

A simpleupper bound can be obtainedby dynamicprogramming.

Supmsex; < X; < ¢¢¢< x,. Considertesting eachnumber
0;1;2;:::in turn to seeif it is reresentableas a non-negative
integerlinea combinationof the x;.

Thenr is reresentablaf and only if at leastone of

in blocks of sizex,, and write a 1 if the number is representable0
otherwise.Clealy if j is representablesoisj + x,, soeach
consecutiveblock has1's in the samepositionsasthe previous,
plus maybe somenew 1's. In fact, new1's must appea in each
consecutiveblock, until it is full of 1's, for otherwisethe Frobenius
number would be in nite. Sowe needto examineat most X,
blocks. Oncea block is full, everysubsequentumber is
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Applicationsof the FrobeniusNumber

I Shellsat - a sating algaithm devisedby D. Shellin 1959.

| Basicidea: arrangelist in j columns;sat columns;decreasg;
repeat
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Shellsaa Example

Start with 105121346911817
Arrangein 5 columns:

10 5 12 13 4
6 9 11 8 1
7

Sat eachcolumn:

»

5 11 8 1
7 9 12 13
10

IS
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Shellsaa Example

Now arrangein 3 columns:

[N
\]

12 13
10

A O 00O

Sat eachcolumn:

11
10 13
12

© 00 o~
(@)

18/ 54



Shellsaa Example

We now have
4176511810139 12.

Finally sat the remainingelements:
145678910111213
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Chaosingthe Incrementsn Shellsa

I Runningtime dependson increments

I Original versionusedincrementsa power of 2, but this gives
gquadraticrunning time.

I 1t is O(n%?) if incrementsl; 3; 7;15; 31; : : : are used. (Powers
of 2, minus1.)

It is O(n*®) if incrementsl; 8; 23,77, ::: are used(Numbers
of the form 4*1 + 3¢2 + 1).

I 1t is O(n(logn)?) if increments
1,2,3,4,6;9;8;12 18,27, 16, 24; : : : are used(Numbersof the
form 2'3).
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Shellsat andthe FrobeniusProblem

Theorem. The number of stepsrequiredto r-sat a le a[1::N]

Proof. The number of stepsto insertd[i] is the number of
elementsin ali j r];ali j 2r];::: that are greaterthan a|i].
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The FrobeniusProblemand NFA to DFA Conversion

I A deterministic nite automaton (DFA) is a simplemodel of a
computer

I It consistsof a nite setof statesand transitionsbetweenthe
states

I At eachstep, the machineentersa new state basedon its
current state and the symiol being scanned

I If an input string causeshe machineto entera\ nal state",
it is accepted;otherwiseit is rejected
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Exampleof a DFA
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Nondeterminism NFA

I A generalizationof the DFA is the NFA - nondeterministic
“nite automaton

I Heretransitionson a symiol go to a set of states, not just a
singlestate

I A string x is acceptedif somepath labeledx leadsto a nal
state.
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Exampleof an NFA
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The FrobeniusProblemand NFA to DFA Conversion

When convertingan NFA of n statesto an equivalentDFA via the
subsetconstruction, 2" statesare sutcient by the \subset
construction®.

What may be lesswell-knawvn is that this constructionis optimal in
the caseof a binary or larger input alphalet, in that there exist
languaged. that can be acceptedby an NFA with n states,but no
DFA with < 2" statesacceptsL.

However, for unary (1-letter) languagesthe 2" bound is not
attainable.
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Unay NFA to DFA Conversion

. Potoen
It can be provedthat approximatelye "'°9" statesare necessgy
and suzcient in the worst caseto go from a unay n-state NFA to
a DFA.

Chrobakshaved that any unary n-state NFA canbe put into a
certainnarmal form, wherethereis a \tail" of < n? states, followed
by a singlenondeterministicstate which hasbranchesinto di®erent
cycles,wherethe total number of statesin all the cyclesis - n.

The bound of n? for the number of statesin the tail comesfrom
the bound we havealreadyseenon the Frobeniusproblem.
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An Exercise

Usethe Frobeniusproblemon two variablesto shawv that the
language

n=fa :i6ng
can be acceptedby an NFA with O( P n) states.
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RelatedProblems

As we alreadyhaveseen,Sylvestermpublisheda paper in 1882where
representableas an integerlinea combinationof the x;.
He alsogavethe formula h(xy; x2) = %(xl i Dx2i 1).

Thereis a very simpleproof of this formula. Considerall the
numbersbetween0 and (X1 j 1)(X2i 1). Thenit is not hard to
seethat everyrepresentablenumber in this rangeis pairedwith a
non-repesentablenumber viathe mapc ! ¢ where

c%= (x1i D(x2i 1)ij ci 1, andvice-versa.
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Computingh is NP-had

Computingh is NP-hard:

Theorem. h(Xg;X2;:::;Xk) = h(Xq;X2;:::;%; d) if andonly i®d
can be expressedas a non-negativeintegerlinea combinationof
the x;.

It follows that the integerknapsackproblem (known to be
NP-complete)can be reducedto the problemof computingh, and
so computingh is alsoNP-had (under Turing reductions).
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The Local PostageStampProblem

In this problem, we are givena set of denominations

For example,N3(1;4;7;8) = 25.
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The Local PostageStampProblem

Many papers havebeenwritten about this problem, esgeciallyin
Germanyand Norway. Algorithms havebeengivenfor many
special cases.

is NP-had in 2001.
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The GlobalPostage-StamgProblem

The global postage-stampproblemis yet anothervariant: now we
are givena limit t on the number of stampsto be used,and an
integerk, andthe goalisto nd a setof k denominations

The complexiy of this problemis unknown.
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The Optimal Coin ChangeProblem

Yet anothervariant is the optimal changeproblem: herewe are
givena bound on the number of distinct coin denominationswe
canuse(but allowing arbitrarily many of eachdenomination),and
we want to nd a setthat minimizesthe averagenumber of coins
neededto make eachamountin somerange.

For example,in the US we currently use4 denominationsfor
changeunderl dollar: 1, 5, 10, and 25. Thesecan make
changefor everyamountbetween0 and 99, with an average
cost of 4.7 coinsper amount.

It turns out that the systemof denominationg1;5; 18; 25) is
optimal, with an averagecost of only 3.89 coinsper amount.

34/ 54



Improvingthe CurrentCoin System

You could alsoask, what singledenominationcould we add to the
current systemto improveits exciency in making change?

The ansver is, add a 32-centpiece.

In Canada,wherethere are 1-dolla and 2-dolla coins,the best
cointo addis an 83-centpiece.
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Improvingthe Japanesé&ystem

Japanusesa systembasedon 1 and 5: there are coinsof 1 yen, 5
yen, 10 yen, 50 yen, 100 yen, and 500 yen. But switchingto 1 and
3 (or 1 and 4) would decreasehe averagenumber of coinsused.
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Generalizinghe FrobeniusProblemto Words

Befae, we had de ned g(x1; x2;:::;Xk) to be the largestinteger
not representableas a non-negativeinteger linea combinationof
the x;.

We can now replacethe integersx; with words (strings of symbols
overa nite alphaket 8), and ask,what is the right generalization
of the Frobeniusproblem?
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Generalizinghe FrobeniusProblemto Words

There are severalpossibleansvers.
Oneis asfollows:

Insteadof non-negativeintegerlinea combinationsof the x;, we
could considerthe regula expgessions

X7X5 GCexy

or
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Generalizinghe FrobeniusProblemto Words

usedto ensurethat the number of unrepesentablentegersis
“nite, we could demandthat

8% XrX5 CCOx.
or
8% fxiXe i xg"
be Tnite, or in other words, that

X7X5 GCexy

or

be co- nite.
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Generalizinghe FrobeniusProblemto Words

And insteadof looking for the largest non-regesentableinteger, we
could askfor the length of the longest word not in

X1 X5 CeeX,

or
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unay word can be obtainedby concatenationof the x;, soQ is
co- nite.

For the other direction, supseQ is co- nite. If j§] = 1, let

divisibleby d, and sois not co- nite. Sod = 1.
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Henceassumg§j, 2, andlet a;b be distinct lettersin §.

Let " = max. i. k jXij, the length of the longestword amongthe
Xj .

Let Q%= ((a® b%)k)*. Thenwe claimthat Q°\ Q = ;.

For if noneof the x; consistsof powersof a singleletter, then the
longestblock of consecutivadentical lettersin any word in Q is
< 2, sonoword in Q%canbein Q.
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Otherwise,say someof the x; consistof powersof a singleletter.

Take any word w in Q, and count the number n(w) of maximal
blocks of 2° or more consecutivedentical lettersin w. (Here
\maximal" meanssucha block is delimited on both sidesby either
the beginningor end of the word, or a di®erentletter.)

Clealy n(w) - k.

But n(w9 , 2k for anyword w%in Q% Thus Q is not co- nite, as
it omits all the words in Q° O
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Suppsemax. . k jXij = n.

We can obtain an exponential upper bound on length of the
longestomitted word, asfollows:

This DFA keepstrack of the lastnj 1 symbols seen,togetherwith
markersindicating all positionswithin thosenj 1 symiolswherea
partial factorization of the input into the x; could end.

Sincethis DFA acceptsa nite languagethe longestword it
acceptsis boundedby the number of states.
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But is this exponential upper bound attainable?

Yes.

My student Zhi Xu hasrecently produceda classof examples
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Let r(n; k;I) denotethe word of length | representingn in basek,
possiblywith leadingzeros. For example,r(3;2;3) = 011.

Let T(m;n) = fr(i;j§j;nj m)0?™i "r(i + 1;j8j;nj m) : O-
i 8" M 2g.

Theorem. Let m;n be integerswith 0< m< n< 2m and
gcd(m;n) = 1,andletS= 8™+ 8" T(m;n). ThenS" is
co- nite and the longestwords not in S” are of length g(m; 1),
wherel = mj§j"i M+ nj m.

Example. Letm= 3;n= 5;8 = f0;1g. In this case,
| = 3¢22+ 2= 14,S= §3+ §5; f00001010101001y. Thena
longestword not in S” is

0000101001100 00001010011
of length 25 = g(3; 14).
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Countingthe Omitted Words

Zhi Xu hasalsogeneratedsomeexamplesvherethe number of
omitted words is doubly exponentialin n, the length of the longest
word.

Let Tqm;n) = fr(i;j&j;ni m)0?Mi "r(j;j&j;nj m) : 0- i<
j- i8iMMi 1g.
Theorem. Let m;n beintegerswith 0< m < n< 2m and

ged(m;n) = 1,andlet S= §™M+ 8" TYm;n). ThenS®is
co- nite and S° omits at least281" " j j§j" ™ 1 words.

Example. Letm= 3;n= 5;8 = f0;1g. Then
S=8§3+ §%; f0000%000100001%0101Q0101%1001%. Then
S° omits 1712> 11= 2%°; 22; 1 words.
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Other PossibleGeneralizations

Insteadof consideringthe longestword omitted by x;x; ¢¢¢x. or

The state complexiy of a regula languageL is the smallest
number of statesin any DFA that acceptsL. It is written sq(L).

exponentialin both the length of the longestword and the number
of words.
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State Complexy

Theorem. Lett be aninteger, 2, andde ne words as follows:
y = 01' 10
and
Xi = 1ti ij 101i+l
forO- i- tj 2. LetS := fO;xo;X1;:::; %; 2;¥9. Then S has
state complexiy 3t2ti 2 + 2ti 1,

Example. For t = 6 the wordsin S; are 0 and

y 0111110
Xo = 1111101
X; = 1111011
X2 = 1110111
X3 = 1101111
X4 = 1011111
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State Complexy

Usingsimilar ideas,we can alsocreatean exampleachieving
subexponential state complexiy for xyx; ¢¢ex, .

Theorem. Lety and x; be asde ned above. Let
L= (0°x7x; ¢¢exy. 1y®)® wheree = (t + 1)(t j 2)=2+ 2t. Then
sql) , 2t 2

This exampleis due to Jui-Yi Kao.
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Complexy

Theorem. If S, a nite list of words, is representedby either an
NFA or a regula expgessionthen determiningif S” is co- nite is
NP-had andisin PSPACE.

Theorem. If S is a unary language(possiblyin nite) represented
by an NFA, then we candecidein polynomialtime if S” is co- nite.
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Open Problem

We still do not know the complexiy of the following problem:

co- nite.
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Anothergeneralization

De ne gj(as;:::;an) to be the largestinteger havingexactlyj
representationsas a hon-negativeinteger linea combinationof the
integersa;.

It seemgeasonablehat go(¢¢¢) < gi(¢¢¢), but this is not always
true.

We constructeda classof 5-tuplesfor which go(¢¢¢) = n?j O(n),
but gk(Xn) = (6k + 3)nj 1 for all sutciently large n.

Also go(24; 26; 36, 39) = 181 but g;(24; 26; 36; 39) = 175.

Conijecture:for all triples a;; ap; ag of distinct integerswe have
go < 01 < ¢¢C< Q14.

This would be best possible,sinceg;4(8; 9; 15) = 172, but
015(8;9; 15) = 169.
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