Using Automata to Prove Theorems about Sequences

Jeffrey Shallit

(Joint work with Benoit Cloitre)

School of Computer Science University of Waterloo Waterloo, ON N2L 3G1 Canada shallit@uwaterloo.ca https://cs.uwaterloo.ca/~shallit/

A new use for automata theory

Everybody here knows about using automata for

- pattern-matching
- lexical analysis
- analysis of finite-state systems
- etc.

In this talk, I will discussing using automata in a new way: to discover and *rigorously* prove certain kinds of theorems in number theory, discrete mathematics, and combinatorics on words.

Walnut

The basic idea:

- We can prove results about \mathbb{N} , the natural numbers.
- State the result you want to prove in first-order logic
- *Compile* the first-order logic formula into an automaton accepting the representation of those natural numbers *n* making the formula true
- Deduce the answer by examining the automaton.

We use a free software package called Walnut to do this.

It uses an extension of Presburger arithmetic called Büchi arithmetic.

Walnut has been used in over 80 papers published in the peer-reviewed literature so far. See

```
https://cs.uwaterloo.ca/~shallit/walnut.html.
```

What can you do with Walnut?

People have used Walnut to

- find new, conceptually simple proofs of results for which previously only a long, case-based proof was known;
- find and prove entirely new results;
- improve existing results;
- find counterexamples to published claims;
- resolve previously-unsolved conjectures;
- find counterexamples to conjectures.

Find new, conceptually simple proofs of results for which previously only a long, case-based proof was known

Example: Thue's 1912 result on overlap-free sequences.

An *overlap* is a word of the form axaxa, where a is a single symbol and x is a (possibly empty) block.

Thue proved that the Thue-Morse word

 $\mathbf{t} = 0110100110010110 \cdots$,

the fixed point of 0 \rightarrow 01 and 1 \rightarrow 10, is overlap-free.

Find new, conceptually simple proofs of results for which previously only a long, case-based proof was known

If **t** has an overlap *axaxa*, then it must begin at some position *i* and we must have |ax| = n for some $n \ge 1$:

So an overlap in \mathbf{t} means there are i, n such that

$$(n \ge 1)$$
 and $\mathbf{t}[i..i + n] = \mathbf{t}[i + n..i + 2n]$

or in other words

$$\exists i, n \ (n \ge 1) \ \land \ \forall s \ (0 \le s \le n) \implies \mathbf{t}[i+s] = \mathbf{t}[i+s+n].$$

Find new, conceptually simple proofs of results for which previously only a long, case-based proof was known

This logical formula asserts the existence of an overlap in t:

 $\exists i, n \ (n \ge 1) \ \land \ \forall s \ (0 \le s \le n) \implies \mathbf{t}[i+s] = \mathbf{t}[i+s+n].$

This formula can be translated into Walnut as follows:

```
[Walnut]$ eval hasolap "Ei,n (n>=1) & As (s<=n)
 => T[i+s]=T[i+s+n]";
computed ~:1 states - 35ms
computed ~:2 states - 2ms
-----
FALSE
```

and Walnut returns FALSE. So there is no overlap.

Walnut syntax explained

```
eval hasolap "Ei,n (n>=1) & As (s<=n)
=> T[i+s]=T[i+s+n]";
```

- def defines an automaton for future use
- eval determines if formula with no free variables is TRUE or FALSE
- E is an abbreviation for ∃, "there exists"
- A is an abbreviation for \forall , "for all"
- & is logical AND
- => is logical implication
- ~ is logical NOT
- T is Walnut's way of writing the Thue-Morse sequence

Example: Avoidance of xxx^R .

Can one construct an aperiodic infinite binary word with no instances of the pattern xxx^R ?

Idea: guess that there is an automatic sequence generated by a "small" automaton with the desired property, search for it with breadth-first search, and then verify it with Walnut.

A breadth-first search quickly finds a candidate automaton FB with 8 states.

Find and prove entirely new results

Then we can verify this automaton FB generates a sequence $001001101\cdots$ with the desired property with Walnut as follows:

Improve existing results

Example: unbordered factors of the Thue-Morse word ${\bf t}$ and the Currie-Saari result.

A word w is said to be *bordered* if there exist words x, y with x nonempty such that w = xyx. Otherwise it is *unbordered*.

Currie and Saari were interested in the lengths of unbordered factors of the Thue-Morse word $\boldsymbol{t}.$

They proved: an unbordered factor exists provided $n \neq 1 \pmod{6}$.

However, this criterion is sufficient but not necessary: 00110100101101001011010010110100101 is a factor of length 31 that is unbordered.

We can ask Walnut to create an automaton for the lengths for which unbordered factors exist.

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

Given i, j, n, assert that the length-*n* factors beginning at position *i* and *j* of **t** are the same.

def tmbord "j>=1 & j<n & \$tmfactoreq(i,(i+n)-j,j)":</pre>

Given i, j, n, assert that the length-*n* factor beginning at position *i* has a border of length *j*.

def tmunblength "Ei Aj ~\$tmbord(i,j,n)":

Given n, assert that there is some length-n factor having no borders of any length.

Improve existing results

```
def tmfactoreq "At t<n => T[i+t]=T[j+t]":
def tmbord "j>=1 & j<n & $tmfactoreq(i,(i+n)-j,j)":
def tmunblength "Ei Aj ~$tmbord(i,j,n)":
```

This generates the following automaton:

So we have proved a necessary and sufficient condition: **Theorem.** The Thue-Morse word **t** has an unbordered factor of length *n* if and only if $(n)_2 \notin 1(01^*0)^*10 * 1$.

Find counterexamples to published claims

A paper once claimed that "Every length-k factor of the Thue-Morse word **t** appears as a factor of every length-(8k - 1) factor of **t**."

This claim is false in general. Let's determine those k for which it is true.

def al "Ai,j El (l>=j) & (l+1<=j+7*k) & As (s<k) => T[i+s]=T[l+s]":

Resolve previously-unsolved conjectures

Example: Rampersad's conjecture on generalized paperfolding sequences

A paperfolding sequence $\mathbf{P}_{\mathbf{f}}$ is an infinite binary sequence $p_1 p_2 p_3 \cdots$ specified by an infinite sequence of binary unfolding instructions $f_0 f_1 f_2 \cdots$, as the limit of the infinite words $\mathbf{P}_{f_0 f_1 f_2} \cdots$, defined as follows:

$$\mathbf{P}_{\varepsilon} = \varepsilon;$$
$$\mathbf{P}_{f_0 \cdots f_{i+1}} = \mathbf{P}_{f_0 \cdots f_i} f_{i+1} \overline{\mathbf{P}_{f_0 \cdots f_i}^R}.$$

For example, if $\mathbf{f}=000\cdots$, we get the simplest paperfolding sequence

 $\mathbf{p} = 0010011000110110001001110011011 \cdots$.

Resolve previously-unsolved conjectures

Narad Rampersad once conjectured that if **f** and **g** are two distinct infinite sequences of unfolding instructions, then the paperfolding sequences P_f and P_g have only finitely many common factors.

Theorem

For all finite sequences of unfolding instructions f and g, if f differs from g in the k'th position, then $\mathbf{P_f}$ and $\mathbf{P_g}$ have no factors of length $14 \cdot 2^k$ in common.

We can prove this with Walnut, but it takes a bit of work.

The basic idea (due to Luke Schaeffer) is to find a *single* finite automaton that encodes *all* the *uncountably many* paperfolding sequences simultaneously.

Let r(k, A, n) denote the number of representations of n as a sum of k elements of a set $A \subseteq \mathbb{N}$.

In 2002, Dombi conjectured that if A is co-infinite, then the sequence $(r(3, A, n))_{n \ge 0}$ cannot be strictly increasing.

Using Walnut, we gave an explicit counterexample where $\mathbb{N} \setminus A$ is co-infinite, and even has positive lower density, but $(r(3, A, n))_{n \ge 0}$ is strictly increasing.

Find counterexamples to conjectures

Sketch of proof: Let $F = \{3, 12, 13, 14, 15, 48, 49, 50, ...\}$ be the set of natural numbers whose base-2 expansion (ignoring leading zeros) is of even length and begins with 11.

Set $A = \mathbb{N} \setminus F$.

Using Walnut, find a linear representation for d(n), the first difference of the number of representations as sum of 3 elements of A. We want d(n) > 0.

Then we show $f(n) := d(n) - 4d(\lfloor n/4 \rfloor)$ is an automatic sequence, and we can explicitly determine the automaton for it.

This automaton gives the inequality

$$d(n) \geq 4d(\lfloor n/4 \rfloor) - 18,$$

which is enough to show by induction that d(n) > 0 for all n.

How does Walnut work?

- The logical formula is parsed and compiled into a deterministic finite automaton.
- The automaton has the property that it accepts exactly the values of the free variables (in parallel) that make the formula true.
- Addition is performed with an automaton with three inputs that verifies the relation x + y = z. Easy in base *b*, harder for Zeckendorf representation.
- ∃ is achieved by projection of the transitions corresponding to the named variables. A transition on [x_i, y_i] becomes a transition on y_i after applying ∃x. This can result in an NFA, so the automaton is determinized and minimized.
- \forall is achieved by using de Morgan's law.
- Worst-case running time is a tower of exponentials corresponding to number of quantifier alternations.

Cloitre's sequence a(n)

Invented by Benoit Cloitre in May 2005.

1

Let $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ be the Fibonacci numbers. Define

$$a(n) = \begin{cases} n, & \text{if } n \leq 1; \\ F_{j+1} - a(n - F_j), & \text{if } F_j < n \leq F_{j+1} \text{ for } j \geq 2. \end{cases}$$
$$\frac{n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15}{a(n) \quad 0 \quad 1 \quad 1 \quad 2 \quad 4 \quad 4 \quad 7 \quad 7 \quad 6 \quad 12 \quad 12 \quad 11 \quad 9 \quad 9 \quad 20 \quad 20}$$

It is sequence $\underline{A105774}$ in the OEIS (On-Line Encyclopedia of Integer Sequences).

The graph of Cloitre's sequences a(n)

The sequence has an intricate fractal structure:

Cloitre's sequence a(n)

1 2 3 4 5 6 7 8 9 10 11 12 13 0 14 15 n 1 2 4 4 7 7 6 12 a(n)0 1 12 11 g g 20 20

The kinds of things we might want to know include

- Which integers do not appear in it?
- How often does each integer appear in it?
- Which integers appear only once?
- What are upper and lower bounds on the growth rate of a(n)?
- When do consecutive equal terms appear?
- What are values at special indices, like F_n ?
- What about the sequence arising by sorting the terms in ascending order?

Believe it or not, we can answer these questions using automata theory!

Fibonacci (Zeckendorf) representation

• The Fibonacci numbers: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

• In analogy with base-2 representation, we can represent every non-negative integer *n* in the form

$$n = \sum_{0 \le i \le t} \epsilon_i F_{i+2}$$
 with $\epsilon_i \in \{0, 1\}.$

Fibonacci (Zeckendorf) representation

- But then some integers have multiple representations, e.g., 14 = 13 + 1 = 8 + 5 + 1 = 8 + 3 + 2 + 1
- So to get uniqueness of the representation, we impose the additional condition that ε_iε_{i+1} = 0 for all i: never use two adjacent Fibonacci numbers.
- Usually we write the representation in the form

$$(n)_F = \epsilon_t \epsilon_{t-1} \cdots \epsilon_0,$$

with most significant digit first. So, for example, $(19)_F = 101001$. This is called *Zeckendorf representation*.

Édouard Zeckendorf (1901–1983), Belgian amateur mathematician Now that we have Zeckendorf representation, we can deal with automata that compute functions of the natural numbers: the inputs to the automata are Zeckendorf representations of \mathbb{N} .

Amazing thing: there is a finite automaton that computes a(n) in the following sense: it takes the Zeckendorf representations of n and x as inputs, in parallel, and accepts if and only if x = a(n).

(We might have to pad the shorter with leading zeroes, to make the representations of n and a(n) the same length.)

An automaton for the sequence

Here it is:

Figure 1: Automaton computing a(n).

Example: a(15) = 20, $(15)_F = 100010$, $(20)_F = 101010$, and the automaton accepts [1, 1][0, 0][0, 1][0, 0][1, 1][0, 0].

Jeffrey Shallit

Using Automata to Prove Theorems

We *guessed* the automaton using a version of the Myhill-Nerode theorem, as follows:

We guess that $\{[0,0]^*(n,x)_F : x = a(n)\}$ is regular.

The Myhill-Nerode theorem tells us that each state of the minimal automaton for a regular language *L* corresponds to the language $L_x = \{y : xy \in L\}.$

Of course we cannot compute L_x from empirical data alone, but we can compute sets like $L_{x,c} = \{y : |y| \le c \text{ and } xy \in L\}.$

How did we find the automaton?

If we assume that (say) $L_x = L_y$ if and only if $L_{x,c} = L_{y,c}$ for some small integer c, we can guess the automaton.

We can compute the number of states needed for c = 1, 2, 3, ... until this number stabilizes.

This gives a conjectured automaton A for L.

But it is just a guess...so far.

How did we find the automaton?

How can we verify that our guessed automaton is correct?

First step: we need to verify that A really computes a function, that is, for each n there is exactly one x such that (n, x) is accepted.

Then we need to verify that the function it computes obeys the defining recurrence: $a(n) = F_{j+1} - a(n - F_j)$ if $F_j < n \le F_{j+1}$ for $j \ge 2$.

Both of these claims can be phrased in first-order logic.

For example, to say that an automaton a(n,x) computes a function means

$$\forall n \exists x a(n,x)$$

and

$$\neg \exists n, x, y \ x \neq y \ \land \ a(n, x) \ \land \ a(n, y).$$

Let's check a computes a function:

and Walnut returns TRUE for both assertions.

Here ?msd_fib is a bit of jargon saying that all numbers are expressed in Zeckendorf representation.

How did we verify the automaton?

Next we must verify that our automaton obeys the defining recurrence $a(n) = F_{j+1} - a(n - F_j)$ if $F_j < n \le F_{j+1}$ for $j \ge 2$.

and Walnut returns TRUE. At this point we know that our guessed automaton is correct.

Which integers don't appear in (a(n))?

They are

```
3, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42, \ldots
```

def dont_appear "?msd_fib ~Ek \$a(k,n)":

And this gives the automaton below.

Which integers don't appear in (a(n))?

Do you recognize those numbers

 $3, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42, \ldots$?

No? Then look them up in the OEIS:

Search: seq:3,5,8,10,13,16,18,21,24,26,29,31,34,37	
Displaying 1-1 of 1 result found.	page 1
Sort: relevance references number modified created Format: long short data	
<u>A004937</u> $a(n) = round(n*phi^2)$, where phi is the golden ratio, <u>A001622</u> .	+30
0, 3 , 5 , 8 , 10 , 13 , 16 , 18 , 21 , 24 , 26 , 29 , 31 , 34 , 37 , 39, 42, 45, 47, 50, 52 55, 58, 60, 63, 65, 68, 71, 73, 76, 79, 81, 84, 86, 89, 92, 94, 97, 99, 102, 105, 107, 113, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 141, 144, 147, 149, 152, 154, 15 (list; graph; refs; lister; history; text; internal format)	110,

Which integers don't appear in (a(n))?

Now

$$\operatorname{rnd}(n \cdot \varphi^2) = \lfloor \varphi^2 n + 1/2 \rfloor$$
$$= \lfloor (\varphi^2 2n + 1)/2 \rfloor$$
$$= \lfloor (\lfloor \varphi^2 2n \rfloor + 1)/2 \rfloor.$$

So we can use the following Walnut code to verify our guess:

def a004937 "?msd_fib En,x \$phi2n(2*n,x) & z=(x+1)/2":
eval check_dont "?msd_fib An (n>0) =>
 (\$a004937(n) <=> (~Ek k>0 & \$a(k,n)))":

and Walnut returns TRUE.

Elements appear at most twice

Proposition

No natural number appears three or more times in A105774.

Proof.

We use the following Walnut code.

```
eval test012 "?msd_fib ~Ex,y,z,n x<y & y<z & $a(x,n) & $a(y,n) & $a(z,n)":
```

and Walnut returns TRUE.

Elements appearing twice

Proposition

If a number appears twice in $(a(n))_{n\geq 0}$, the two occurrences are consecutive.

Proof.

We use the following Walnut code:

```
eval twice_consec "?msd_fib An,x,y (x<y & $a(x,n) & $a(y,n))
=> y=x+1":
```

and Walnut returns TRUE.

Fixed points

Proposition

We have a(n) = n for n > 0 if and only if $(n)_F \in 1(00100^*1)^* \{\epsilon, 01, 010, 0100\}.$

Proof.

```
We use the Walnut command
```

def fixed "?msd_fib \$a(n,n)":

and it produces the automaton below, from which we can directly read off the result.

Upper and lower bounds

The function a(n) seems very tightly bounded, above and below, by lines $\beta_1 n$ and $\beta_2 n$.

Jeffrey Shallit

Numerical experiments suggest the following result:

Proposition

For all $n \ge 0$ we have $\lfloor \frac{\varphi+2}{5}n \rfloor \le a(n) \le \lfloor \varphi n \rfloor$.

We can prove this with the following Walnut code:

```
eval lowerbound "?msd_fib An,x,y ($a(n,x) & $phin(n,y))
    => x>=(y+2*n)/5":
eval upperbound "?msd_fib An,x,y ($a(n,x) & $phin(n,y))
    => x<=y":</pre>
```

Now we need to show these bounds are tight. More precisely:

Proposition

We have
$$\liminf_{n\to\infty} a(n)/n = \frac{\varphi+2}{5}$$
 and $\limsup_{n\to\infty} a(n)/n = \varphi$.

Proving this requires a bit more cleverness, because the bounds are only approached rarely.

Upper and lower bounds

Recall the Lucas numbers: $L_0 = 2$, $L_1 = 1$, $L_n = L_{n-1} + L_{n-2}$.

We have $L_n = F_{n-1} + F_{n+1}$, so the Zeckendorf representation of L_n is 1010^{n-3} .

For the claim $\liminf_{n\to\infty} a(n)/n = \frac{\varphi+2}{5}$, using the well-known Binet formulas for the Fibonacci and Lucas numbers, it suffices to show that $a(L_k + 1) = F_{k+1} + 1$ for all $k \ge 3$.

reg lucfib msd_fib msd_fib "[0,0]*[1,1][0,0][1,0][0,0]*":
regular expression for the pair (L_k, F_{k+1}) for k>=3
eval chklow "?msd_fib Ax,y \$lucfib(x,y) => \$a(x+1,y+1)":

Upper and lower bounds

For the claim $\limsup_{n\to\infty} a(n)/n = \varphi$ it suffices to show that $a(F_k + 1) = F_{k+1} - 1$ for all $k \ge 2$.

This follows directly from the defining recurrence for a(n).

Or one can use Walnut:

eval chkup "?msd_fib Ax,y,m (\$adjfib(x,y) & \$a(x+1,m))
=> m+1=y":

More results on Cloitre's sequence

Many, many more results about Cloitre's sequence can be proved using Walnut.

See https://arxiv.org/abs/2312.11706 for more of them.

Conclusions

- Automata provide a *new tool* for solving certain kinds of problems number theory and combinatorics, and can give *rigorous proofs*.
- The method cannot deal with all sequences, but only sequences generated with automata.
- To be amenable, the problem must have a close relationship with some system of numeration, such as base 2 or Zeckendorf representation.
- Guessing the automaton and then checking it satisfies a definition often works in practice.
- The worst-case running time of deciding the needed formulas can be truly astonishingly large, but in many cases terminates quickly.

Our publicly-available prover, originally written by Hamoon Mousavi, is called Walnut and can be downloaded from

https://cs.uwaterloo.ca/~shallit/walnut.html .

There is a finite automaton of 97 states, that on input 10^n in Zeckendorf representation, outputs the *n*'th decimal digit of $\varphi = (1 + \sqrt{5})/2$!

Designer and Implementers of Walnut

Hamoon Mousavi—Designer and Implementer

Aseem Baranwal—implementer

Laindon C. Burnett—implementer Anatoly Zavyalov—implementer

For further reading

Available at a fine bookstore near you! London Mathematical Society Lecture Note Series 482

The Logical Approach to Automatic Sequences Exploring Combinatorics on Words with Walnut

Jeffrey Shallit

CAMBRIDGE

Using Automata to Prove Theorems