Using Automata to Prove Theorems about Sequences

Jeffrey Shallit
 (Joint work with Benoit Cloitre)

School of Computer Science University of Waterloo Waterloo, ON N2L 3G1 Canada shallit@uwaterloo.ca
https://cs.uwaterloo.ca/~shallit/

A new use for automata theory

Everybody here knows about using automata for

- pattern-matching
- lexical analysis
- analysis of finite-state systems
- etc.

In this talk, I will discussing using automata in a new way: to discover and rigorously prove certain kinds of theorems in number theory, discrete mathematics, and combinatorics on words.

Walnut

The basic idea:

- We can prove results about \mathbb{N}, the natural numbers.
- State the result you want to prove in first-order logic
- Compile the first-order logic formula into an automaton accepting the representation of those natural numbers n making the formula true
- Deduce the answer by examining the automaton.

We use a free software package called Walnut to do this.
It uses an extension of Presburger arithmetic called Büchi arithmetic.
Walnut has been used in over 80 papers published in the peer-reviewed literature so far. See
https://cs.uwaterloo.ca/~shallit/walnut.html.

What can you do with Walnut?

People have used Walnut to

- find new, conceptually simple proofs of results for which previously only a long, case-based proof was known;
- find and prove entirely new results;
- improve existing results;
- find counterexamples to published claims;
- resolve previously-unsolved conjectures;
- find counterexamples to conjectures.

Find new, conceptually simple proofs of results for which

 previously only a long, case-based proof was knownExample: Thue's 1912 result on overlap-free sequences.
An overlap is a word of the form axaxa, where a is a single symbol and x is a (possibly empty) block.

Thue proved that the Thue-Morse word

$$
\mathbf{t}=0110100110010110 \cdots,
$$

the fixed point of $0 \rightarrow 01$ and $1 \rightarrow 10$, is overlap-free.

Find new, conceptually simple proofs of results for which

 previously only a long, case-based proof was knownIf \mathbf{t} has an overlap axaxa, then it must begin at some position i and we must have $|a x|=n$ for some $n \geq 1$:

So an overlap in \mathbf{t} means there are i, n such that

$$
(n \geq 1) \text { and } \mathbf{t}[i . . i+n]=\mathbf{t}[i+n . . i+2 n]
$$

or in other words

$$
\exists i, n(n \geq 1) \wedge \forall s(0 \leq s \leq n) \Longrightarrow \mathbf{t}[i+s]=\mathbf{t}[i+s+n] .
$$

Find new, conceptually simple proofs of results for which

 previously only a long, case-based proof was knownThis logical formula asserts the existence of an overlap in \mathbf{t} :

$$
\exists i, n(n \geq 1) \wedge \forall s(0 \leq s \leq n) \Longrightarrow \mathbf{t}[i+s]=\mathbf{t}[i+s+n] .
$$

This formula can be translated into Walnut as follows:

```
[Walnut]$ eval hasolap "Ei,n (n>=1) & As (s<=n)
    => T[i+s]=T[i+s+n]";
computed ~:1 states - 35ms
computed ~:2 states - 2ms
```

FALSE
and Walnut returns FALSE. So there is no overlap.

Walnut syntax explained

$$
\begin{aligned}
& \text { eval hasolap "Ei,n (n>=1) \& As (s<=n) } \\
& \quad \Rightarrow T[i+s]=T[i+s+n] " ;
\end{aligned}
$$

- def defines an automaton for future use
- eval determines if formula with no free variables is TRUE or FALSE
- E is an abbreviation for \exists, "there exists"
- A is an abbreviation for \forall, "for all"
- \& is logical AND
- => is logical implication
- ~ is logical NOT
- T is Walnut's way of writing the Thue-Morse sequence

Find and prove entirely new results

Example: Avoidance of $x x x^{R}$.
Can one construct an aperiodic infinite binary word with no instances of the pattern $x x x^{R}$?

Idea: guess that there is an automatic sequence generated by a "small" automaton with the desired property, search for it with breadth-first search, and then verify it with Walnut.

A breadth-first search quickly finds a candidate automaton FB with 8 states.

Find and prove entirely new results

Then we can verify this automaton FB generates a sequence $001001101 \cdots$ with the desired property with Walnut as follows:

```
eval claim1 "?msd_fib ~Ei,p p>0 & At (t>i) => FB[t]=FB[t+p]":
eval claim2 "?msd_fib ~Ei,n n>0 & At (t<n) => (FB[i+t]=FB[i+n+t]
    & FB[i+t]=FB[(i+3*n)-(t+1)])":
```


Improve existing results

Example: unbordered factors of the Thue-Morse word \mathbf{t} and the Currie-Saari result.

A word w is said to be bordered if there exist words x, y with x nonempty such that $w=x y x$. Otherwise it is unbordered.
Currie and Saari were interested in the lengths of unbordered factors of the Thue-Morse word \mathbf{t}.

They proved: an unbordered factor exists provided $n \not \equiv 1(\bmod 6)$. However, this criterion is sufficient but not necessary: 0011010010110100110010110100101 is a factor of length 31 that is unbordered.

We can ask Walnut to create an automaton for the lengths for which unbordered factors exist.

Improve existing results

def tmfactoreq "At $\mathrm{t}<\mathrm{n}=\mathrm{T}[\mathrm{i}+\mathrm{t}]=\mathrm{T}[\mathrm{j}+\mathrm{t}]$ ":
Given i, j, n, assert that the length- n factors beginning at position i and j of \mathbf{t} are the same.
def tmbord "j>=1 \& $j<n$ \& \$tmfactoreq(i,(i+n)-j,j)":
Given i, j, n, assert that the length- n factor beginning at position i has a border of length j.
def tmunblength "Ei Aj ~\$tmbord(i,j,n)":
Given n, assert that there is some length- n factor having no borders of any length.

Improve existing results

```
def tmfactoreq "At t<n => T[i+t]=T[j+t]":
def tmbord "j>=1 & j<n & $tmfactoreq(i,(i+n)-j,j)":
def tmunblength "Ei Aj ~$tmbord(i,j,n)":
```

This generates the following automaton:

So we have proved a necessary and sufficient condition:
Theorem. The Thue-Morse word \mathbf{t} has an unbordered factor of length n if and only if $(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10 * 1$.

Find counterexamples to published claims

A paper once claimed that "Every length- k factor of the Thue-Morse word \mathbf{t} appears as a factor of every length- $(8 k-1)$ factor of \mathbf{t}."

This claim is false in general. Let's determine those k for which it is true. def al "Ai,j El (l>=j) \& (l+1<=j+7*k) \& As (s<k) => T[i+s]=T[l+s]":

Resolve previously-unsolved conjectures

Example: Rampersad's conjecture on generalized paperfolding sequences
A paperfolding sequence $\mathbf{P}_{\mathbf{f}}$ is an infinite binary sequence $p_{1} p_{2} p_{3} \cdots$ specified by an infinite sequence of binary unfolding instructions $f_{0} f_{1} f_{2} \cdots$, as the limit of the infinite words $\mathbf{P}_{f_{0} f_{1} f_{2} \ldots \text {, defined as follows: }}$

$$
\begin{aligned}
\mathbf{P}_{\varepsilon} & =\varepsilon ; \\
\mathbf{P}_{f_{0} \cdots f_{i+1}} & =\mathbf{P}_{f_{0} \cdots f_{i}} f_{i+1} \overline{\mathbf{P}_{f_{0} \ldots f_{i}}^{R}} .
\end{aligned}
$$

For example, if $\mathbf{f}=000 \cdots$, we get the simplest paperfolding sequence

$$
\mathbf{p}=0010011000110110001001110011011 \cdots
$$

Resolve previously-unsolved conjectures

Narad Rampersad once conjectured that if \mathbf{f} and \mathbf{g} are two distinct infinite sequences of unfolding instructions, then the paperfolding sequences $\mathbf{P}_{\mathbf{f}}$ and $\mathbf{P}_{\mathbf{g}}$ have only finitely many common factors.

Theorem

For all finite sequences of unfolding instructions f and g, if f differs from g in the k 'th position, then $\mathbf{P}_{\mathbf{f}}$ and $\mathbf{P}_{\mathbf{g}}$ have no factors of length $14 \cdot 2^{k}$ in common.

We can prove this with Walnut, but it takes a bit of work.
The basic idea (due to Luke Schaeffer) is to find a single finite automaton that encodes all the uncountably many paperfolding sequences simultaneously.

Find counterexamples to conjectures

Let $r(k, A, n)$ denote the number of representations of n as a sum of k elements of a set $A \subseteq \mathbb{N}$.

In 2002, Dombi conjectured that if A is co-infinite, then the sequence $(r(3, A, n))_{n \geq 0}$ cannot be strictly increasing.

Using Walnut, we gave an explicit counterexample where $\mathbb{N} \backslash A$ is co-infinite, and even has positive lower density, but $(r(3, A, n))_{n \geq 0}$ is strictly increasing.

Find counterexamples to conjectures

Sketch of proof: Let $F=\{3,12,13,14,15,48,49,50, \ldots\}$ be the set of natural numbers whose base-2 expansion (ignoring leading zeros) is of even length and begins with 11 .

Set $A=\mathbb{N} \backslash F$.
Using Walnut, find a linear representation for $d(n)$, the first difference of the number of representations as sum of 3 elements of A. We want $d(n)>0$.

Then we show $f(n):=d(n)-4 d(\lfloor n / 4\rfloor)$ is an automatic sequence, and we can explicitly determine the automaton for it.

This automaton gives the inequality

$$
d(n) \geq 4 d(\lfloor n / 4\rfloor)-18
$$

which is enough to show by induction that $d(n)>0$ for all n.

How does Walnut work?

- The logical formula is parsed and compiled into a deterministic finite automaton.
- The automaton has the property that it accepts exactly the values of the free variables (in parallel) that make the formula true.
- Addition is performed with an automaton with three inputs that verifies the relation $x+y=z$. Easy in base b, harder for Zeckendorf representation.
- \exists is achieved by projection of the transitions corresponding to the named variables. A transition on $\left[x_{i}, y_{i}\right]$ becomes a transition on y_{i} after applying $\exists x$. This can result in an NFA, so the automaton is determinized and minimized.
- \forall is achieved by using de Morgan's law.
- Worst-case running time is a tower of exponentials corresponding to number of quantifier alternations.

Cloitre's sequence $a(n)$

Invented by Benoit Cloitre in May 2005.
Let $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ be the Fibonacci numbers.
Define

$$
a(n)= \begin{cases}n, & \text { if } n \leq 1 ; \\ F_{j+1}-a\left(n-F_{j}\right), & \text { if } F_{j}<n \leq F_{j+1} \text { for } j \geq 2\end{cases}
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$a(n)$	0	1	1	2	4	4	7	7	6	12	12	11	9	9	20	20

It is sequence A105774 in the OEIS (On-Line Encyclopedia of Integer Sequences).

The graph of Cloitre's sequences $a(n)$

The sequence has an intricate fractal structure:

Cloitre's sequence $a(n)$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$a(n)$	0	1	1	2	4	4	7	7	6	12	12	11	9	9	20	20

The kinds of things we might want to know include

- Which integers do not appear in it?
- How often does each integer appear in it?
- Which integers appear only once?
- What are upper and lower bounds on the growth rate of $a(n)$?
- When do consecutive equal terms appear?
- What are values at special indices, like F_{n} ?
- What about the sequence arising by sorting the terms in ascending order?
Believe it or not, we can answer these questions using automata theory!

Fibonacci (Zeckendorf) representation

- The Fibonacci numbers: $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$

- In analogy with base-2 representation, we can represent every non-negative integer n in the form

$$
n=\sum_{0 \leq i \leq t} \epsilon_{i} F_{i+2} \quad \text { with } \quad \epsilon_{i} \in\{0,1\}
$$

Fibonacci (Zeckendorf) representation

- But then some integers have multiple representations, e.g., $14=13+1=8+5+1=8+3+2+1$
- So to get uniqueness of the representation, we impose the additional condition that $\epsilon_{i} \epsilon_{i+1}=0$ for all i : never use two adjacent Fibonacci numbers.
- Usually we write the representation in the form

$$
(n)_{F}=\epsilon_{t} \epsilon_{t-1} \cdots \epsilon_{0},
$$

with most significant digit first. So, for example, $(19)_{F}=101001$. This is called Zeckendorf representation.

> Édouard Zeckendorf (1901-1983), Belgian amateur mathematician

An automaton for the sequence

Now that we have Zeckendorf representation, we can deal with automata that compute functions of the natural numbers: the inputs to the automata are Zeckendorf representations of \mathbb{N}.

Amazing thing: there is a finite automaton that computes $a(n)$ in the following sense: it takes the Zeckendorf representations of n and x as inputs, in parallel, and accepts if and only if $x=a(n)$.
(We might have to pad the shorter with leading zeroes, to make the representations of n and $a(n)$ the same length.)

An automaton for the sequence

Here it is:

Figure 1: Automaton computing $a(n)$.

Example: $a(15)=20,(15)_{F}=100010,(20)_{F}=101010$, and the automaton accepts $[1,1][0,0][0,1][0,0][1,1][0,0]$.

How did we find the automaton?

We guessed the automaton using a version of the Myhill-Nerode theorem, as follows:

We guess that $\left\{[0,0]^{*}(n, x)_{F}: x=a(n)\right\}$ is regular.
The Myhill-Nerode theorem tells us that each state of the minimal automaton for a regular language L corresponds to the language $L_{x}=\{y: x y \in L\}$.

Of course we cannot compute L_{x} from empirical data alone, but we can compute sets like $L_{x, c}=\{y:|y| \leq c$ and $x y \in L\}$.

How did we find the automaton?

If we assume that (say) $L_{x}=L_{y}$ if and only if $L_{x, c}=L_{y, c}$ for some small integer c, we can guess the automaton.

We can compute the number of states needed for $c=1,2,3, \ldots$ until this number stabilizes.

This gives a conjectured automaton A for L.
But it is just a guess...so far.

How did we find the automaton?

How can we verify that our guessed automaton is correct?
First step: we need to verify that A really computes a function, that is, for each n there is exactly one x such that (n, x) is accepted.

Then we need to verify that the function it computes obeys the defining recurrence: $a(n)=F_{j+1}-a\left(n-F_{j}\right)$ if $F_{j}<n \leq F_{j+1}$ for $j \geq 2$.

Both of these claims can be phrased in first-order logic.
For example, to say that an automaton $a(n, x)$ computes a function means

$$
\forall n \exists x \quad a(n, x)
$$

and

$$
\neg \exists n, x, y x \neq y \wedge a(n, x) \wedge a(n, y) .
$$

How did we verify the automaton?

Let's check a computes a function:

```
eval check_at_least_one "?msd_fib An Ex $a(n,x)":
eval check_at_most_one "?msd_fib ~En,x,y x!=y & $a(n,x) &
    $a(n,y)":
and Walnut returns TRUE for both assertions.
Here ?msd_fib is a bit of jargon saying that all numbers are expressed in
Zeckendorf representation.
```


How did we verify the automaton?

Next we must verify that our automaton obeys the defining recurrence $a(n)=F_{j+1}-a\left(n-F_{j}\right)$ if $F_{j}<n \leq F_{j+1}$ for $j \geq 2$.
reg adjfib msd_fib msd_fib " [0,0]*[0,1][1,0] [0,0]*":
\# accepts (F_k, F_\{k+1\})
def trapfib "?msd_fib \$adjfib(x,y) \& x<k \& y>=k":
\# accepts (k,x,y) if x is the largest Fibonacci number \# less than k and y is the next largest Fib number eval test105774 "?msd_fib Ak,x,y,z,t (\$trapfib(k,x,y) \& \$a(k,z) \& \$a(k-x,t)) => y=z+t":
and Walnut returns TRUE. At this point we know that our guessed automaton is correct.

Which integers don't appear in $(a(n))$?

They are
$3,5,8,10,13,16,18,21,24,26,29,31,34,37,39,42, \ldots$ def dont_appear "?msd_fib ${ }^{\sim} E k \$ a(k, n) ":$

And this gives the automaton below.

Which integers don't appear in $(a(n))$?

Do you recognize those numbers

$$
3,5,8,10,13,16,18,21,24,26,29,31,34,37,39,42, \ldots \text { ? }
$$

No? Then look them up in the OEIS:

Search: $\mathbf{s e q}: \mathbf{3 , 5 , 8 , 1 0 , 1 3 , 1 6 , 1 8 , 2 1 , 2 4 , 2 6 , 2 9 , 3 1 , 3 4 , 3 7}$
Displaying 1-1 of 1 result found.
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data
A004937 $\mathrm{a}(\mathrm{n})=$ round $\left(\mathrm{n}^{*} \mathrm{phi}^{\wedge} 2\right)$, where phi is the golden ratio, $\underline{\mathrm{A} 001622}$.
$0,3,5,8,10,13,16,18,21,24,26,29,31,34,37,39,42,45,47,50,52$, $55,58,60,63,65,68,71,73,76,79,81,84,86,89,92,94,97,99,102,105,107,110$, 113, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 141, 144, 147, 149, 152, 154, 157
(list; graph; refs; listen; history; text; internal format)

Which integers don't appear in $(a(n))$?

Now

$$
\begin{aligned}
\operatorname{rnd}\left(n \cdot \varphi^{2}\right) & =\left\lfloor\varphi^{2} n+1 / 2\right\rfloor \\
& =\left\lfloor\left(\varphi^{2} 2 n+1\right) / 2\right\rfloor \\
& =\left\lfloor\left(\left\lfloor\varphi^{2} 2 n\right\rfloor+1\right) / 2\right\rfloor .
\end{aligned}
$$

So we can use the following Walnut code to verify our guess:
def a004937 "?msd_fib En,x \$phi2n(2*n,x) \& $z=(x+1) / 2 ":$
eval check_dont "?msd_fib An ($n>0$) =>
(\$a004937(n) <=> (~Ek k>0 \& \$a(k,n)))":
and Walnut returns TRUE.

Elements appear at most twice

Proposition
No natural number appears three or more times in A105774.
Proof.
We use the following Walnut code.
eval test012 "?msd_fib ~Ex,y,z,n x<y \& y<z \& \$a(x,n) \& $\$ \mathrm{a}(\mathrm{y}, \mathrm{n}) \& \$ \mathrm{a}(\mathrm{z}, \mathrm{n}) \mathrm{l}$:
and Walnut returns TRUE.

Elements appearing twice

Proposition
If a number appears twice in $(a(n))_{n \geq 0}$, the two occurrences are consecutive.

Proof.
We use the following Walnut code:
eval twice_consec "?msd_fib An, $x, y(x<y \& \$ a(x, n) \& \$ a(y, n))$ => $y=x+1 ":$
and Walnut returns TRUE.

Fixed points

Proposition

We have $a(n)=n$ for $n>0$ if and only if $(n)_{F} \in 1\left(00100^{*} 1\right)^{*}\{\epsilon, 01,010,0100\}$.

Proof.
We use the Walnut command
def fixed "?msd_fib \$a(n,n)":
and it produces the automaton below, from which we can directly read off the result.

Upper and lower bounds

The function $a(n)$ seems very tightly bounded, above and below, by lines $\beta_{1} n$ and $\beta_{2} n$.

Upper and lower bounds

Numerical experiments suggest the following result:
Proposition
For all $n \geq 0$ we have $\left\lfloor\frac{\varphi+2}{5} n\right\rfloor \leq a(n) \leq\lfloor\varphi n\rfloor$.
We can prove this with the following Walnut code:
eval lowerbound "?msd_fib An,x,y (\$a(n,x) \& \$phin(n,y))

$$
\Rightarrow x>=(y+2 * n) / 5 ":
$$

eval upperbound "?msd_fib An, x, y ($\$ \mathrm{a}(\mathrm{n}, \mathrm{x}) \& \$ \operatorname{phin}(\mathrm{n}, \mathrm{y}))$
=> x<=y":

Upper and lower bounds

Now we need to show these bounds are tight. More precisely:
Proposition
We have $\lim \inf _{n \rightarrow \infty} a(n) / n=\frac{\varphi+2}{5}$ and $\lim \sup _{n \rightarrow \infty} a(n) / n=\varphi$.
Proving this requires a bit more cleverness, because the bounds are only approached rarely.

Upper and lower bounds

Recall the Lucas numbers: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$.
We have $L_{n}=F_{n-1}+F_{n+1}$, so the Zeckendorf representation of L_{n} is 1010^{n-3}.

For the claim $\lim \inf _{n \rightarrow \infty} a(n) / n=\frac{\varphi+2}{5}$, using the well-known Binet formulas for the Fibonacci and Lucas numbers, it suffices to show that $a\left(L_{k}+1\right)=F_{k+1}+1$ for all $k \geq 3$.
reg lucfib msd_fib msd_fib " $[0,0] *[1,1][0,0][1,0][0,0] * ":$ \# regular expression for the pair ($L_{-} k, F_{-}\{k+1\}$) for $k>=3$ eval chklow "?msd_fib Ax,y \$lucfib(x,y) => \$a(x+1,y+1)":

Upper and lower bounds

For the claim $\lim \sup _{n \rightarrow \infty} a(n) / n=\varphi$ it suffices to show that $a\left(F_{k}+1\right)=F_{k+1}-1$ for all $k \geq 2$.

This follows directly from the defining recurrence for $a(n)$.
Or one can use Walnut:

$$
\begin{aligned}
& \text { eval chkup "?msd_fib Ax,y,m (\$adjfib(x,y) \& \$a(x+1,m)) } \\
& \quad=>~ m+1=y ": ~
\end{aligned}
$$

More results on Cloitre's sequence

Many, many more results about Cloitre's sequence can be proved using Walnut.

See https://arxiv.org/abs/2312.11706 for more of them.

Conclusions

- Automata provide a new tool for solving certain kinds of problems number theory and combinatorics, and can give rigorous proofs.
- The method cannot deal with all sequences, but only sequences generated with automata.
- To be amenable, the problem must have a close relationship with some system of numeration, such as base 2 or Zeckendorf representation.
- Guessing the automaton and then checking it satisfies a definition often works in practice.
- The worst-case running time of deciding the needed formulas can be truly astonishingly large, but in many cases terminates quickly.

The Walnut Prover

Our publicly-available prover, originally written by Hamoon Mousavi, is called Walnut and can be downloaded from
https://cs.uwaterloo.ca/~shallit/walnut.html .

Lagniappe

There is a finite automaton of 97 states, that on input 10^{n} in Zeckendorf representation, outputs the n 'th decimal digit of $\varphi=(1+\sqrt{5}) / 2$!

Designer and Implementers of Walnut

Hamoon Mousavi-Designer and Implementer

Laindon C. Burnett-implementer

Aseem Baranwal-implementer

Anatoly Zavyalov—implementer

For further reading

The Logical Approach to Automatic Sequences

Available at
a fine bookstore
Available at
a fine bookstore near you!

Exploring Combinatorics
on Words with Walnut

Jeffrey Shallit

