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A new use for automata theory

Everybody here knows about using automata for

pattern-matching

lexical analysis

analysis of finite-state systems

etc.

In this talk, I will discussing using automata in a new way: to discover and
rigorously prove certain kinds of theorems in number theory, discrete
mathematics, and combinatorics on words.
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Walnut

The basic idea:

We can prove results about N, the natural numbers.

State the result you want to prove in first-order logic

Compile the first-order logic formula into an automaton accepting the
representation of those natural numbers n making the formula true

Deduce the answer by examining the automaton.

We use a free software package called Walnut to do this.

It uses an extension of Presburger arithmetic called Büchi arithmetic.

Walnut has been used in over 80 papers published in the peer-reviewed
literature so far. See
https://cs.uwaterloo.ca/~shallit/walnut.html.
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What can you do with Walnut?

People have used Walnut to

find new, conceptually simple proofs of results for which previously
only a long, case-based proof was known;

find and prove entirely new results;

improve existing results;

find counterexamples to published claims;

resolve previously-unsolved conjectures;

find counterexamples to conjectures.
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Find new, conceptually simple proofs of results for which
previously only a long, case-based proof was known

Example: Thue’s 1912 result on overlap-free sequences.

An overlap is a word of the form axaxa, where a is a single symbol and x
is a (possibly empty) block.

Thue proved that the Thue-Morse word

t = 0110100110010110 · · · ,

the fixed point of 0 → 01 and 1 → 10, is overlap-free.
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Find new, conceptually simple proofs of results for which
previously only a long, case-based proof was known

If t has an overlap axaxa, then it must begin at some position i and we
must have |ax | = n for some n ≥ 1:

So an overlap in t means there are i , n such that

(n ≥ 1) and t[i ..i + n] = t[i + n..i + 2n]

or in other words

∃i , n (n ≥ 1) ∧ ∀s (0 ≤ s ≤ n) =⇒ t[i + s] = t[i + s + n].
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Find new, conceptually simple proofs of results for which
previously only a long, case-based proof was known

This logical formula asserts the existence of an overlap in t:

∃i , n (n ≥ 1) ∧ ∀s (0 ≤ s ≤ n) =⇒ t[i + s] = t[i + s + n].

This formula can be translated into Walnut as follows:

[Walnut]$ eval hasolap "Ei,n (n>=1) & As (s<=n)

=> T[i+s]=T[i+s+n]";

computed ~:1 states - 35ms

computed ~:2 states - 2ms

_____

FALSE

and Walnut returns FALSE. So there is no overlap.

Jeffrey Shallit Using Automata to Prove Theorems One World FLAT Seminar 5-8-24 7 / 48



Walnut syntax explained

eval hasolap "Ei,n (n>=1) & As (s<=n)

=> T[i+s]=T[i+s+n]";

def defines an automaton for future use

eval determines if formula with no free variables is TRUE or FALSE

E is an abbreviation for ∃, “there exists”

A is an abbreviation for ∀, “for all”
& is logical AND

=> is logical implication

~ is logical NOT

T is Walnut’s way of writing the Thue-Morse sequence
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Find and prove entirely new results

Example: Avoidance of xxxR .

Can one construct an aperiodic infinite binary word with no instances of
the pattern xxxR?

Idea: guess that there is an automatic sequence generated by a “small”
automaton with the desired property, search for it with breadth-first
search, and then verify it with Walnut.

A breadth-first search quickly finds a candidate automaton FB with 8
states.
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Find and prove entirely new results

0/0

0 1/0
1

2/10
3/0

0

4/0

1

5/1
0

6/1

10

0
7/1

1

0

0

Then we can verify this automaton FB generates a sequence
001001101 · · · with the desired property with Walnut as follows:

eval claim1 "?msd_fib ~Ei,p p>0 & At (t>i) => FB[t]=FB[t+p]":

eval claim2 "?msd_fib ~Ei,n n>0 & At (t<n) => (FB[i+t]=FB[i+n+t]

& FB[i+t]=FB[(i+3*n)-(t+1)])":
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Improve existing results

Example: unbordered factors of the Thue-Morse word t and the
Currie-Saari result.

A word w is said to be bordered if there exist words x , y with x nonempty
such that w = xyx . Otherwise it is unbordered.

Currie and Saari were interested in the lengths of unbordered factors of the
Thue-Morse word t.

They proved: an unbordered factor exists provided n ̸≡ 1 (mod 6).

However, this criterion is sufficient but not necessary:
0011010010110100110010110100101 is a factor of length 31 that is
unbordered.

We can ask Walnut to create an automaton for the lengths for which
unbordered factors exist.
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Improve existing results

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

Given i , j , n, assert that the length-n factors beginning at position i and j
of t are the same.

def tmbord "j>=1 & j<n & $tmfactoreq(i,(i+n)-j,j)":

Given i , j , n, assert that the length-n factor beginning at position i has a
border of length j .

def tmunblength "Ei Aj ~$tmbord(i,j,n)":

Given n, assert that there is some length-n factor having no borders of any
length.
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Improve existing results

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

def tmbord "j>=1 & j<n & $tmfactoreq(i,(i+n)-j,j)":

def tmunblength "Ei Aj ~$tmbord(i,j,n)":

This generates the following automaton:

0

0

1
1

2
0

3

1

0

1

0

4
1

5
0, 1

0, 1

So we have proved a necessary and sufficient condition:
Theorem. The Thue-Morse word t has an unbordered factor of length n if
and only if (n)2 ̸∈ 1(01∗0)∗10 ∗ 1.
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Find counterexamples to published claims

A paper once claimed that “Every length-k factor of the Thue-Morse word
t appears as a factor of every length-(8k − 1) factor of t.”

This claim is false in general. Let’s determine those k for which it is true.

def al "Ai,j El (l>=j) & (l+1<=j+7*k) & As (s<k) => T[i+s]=T[l+s]":

0

0

1
1

2

0

3

1

4

0

5
1

0, 1

0

61

1

7

0
1

8

0

9
1

1

0
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Resolve previously-unsolved conjectures

Example: Rampersad’s conjecture on generalized paperfolding sequences

A paperfolding sequence Pf is an infinite binary sequence p1p2p3 · · ·
specified by an infinite sequence of binary unfolding instructions f0f1f2 · · · ,
as the limit of the infinite words Pf0f1f2···, defined as follows:

Pε = ε;

Pf0···fi+1
= Pf0···fi fi+1 PR

f0···fi .

For example, if f = 000 · · · , we get the simplest paperfolding sequence

p = 0010011000110110001001110011011 · · · .
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Resolve previously-unsolved conjectures

Narad Rampersad once conjectured that if f and g are two distinct infinite
sequences of unfolding instructions, then the paperfolding sequences Pf

and Pg have only finitely many common factors.

Theorem

For all finite sequences of unfolding instructions f and g , if f differs from
g in the k ’th position, then Pf and Pg have no factors of length 14 · 2k in
common.

We can prove this with Walnut, but it takes a bit of work.

The basic idea (due to Luke Schaeffer) is to find a single finite automaton
that encodes all the uncountably many paperfolding sequences
simultaneously.
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Find counterexamples to conjectures

Let r(k ,A, n) denote the number of representations of n as a sum of k
elements of a set A ⊆ N.

In 2002, Dombi conjectured that if A is co-infinite, then the sequence
(r(3,A, n))n≥0 cannot be strictly increasing.

Using Walnut, we gave an explicit counterexample where N \ A is
co-infinite, and even has positive lower density, but (r(3,A, n))n≥0 is
strictly increasing.
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Find counterexamples to conjectures

Sketch of proof: Let F = {3, 12, 13, 14, 15, 48, 49, 50, . . .} be the set of
natural numbers whose base-2 expansion (ignoring leading zeros) is of
even length and begins with 11.

Set A = N \ F .

Using Walnut, find a linear representation for d(n), the first difference of
the number of representations as sum of 3 elements of A. We want
d(n) > 0.

Then we show f (n) := d(n)− 4d(⌊n/4⌋) is an automatic sequence, and
we can explicitly determine the automaton for it.

This automaton gives the inequality

d(n) ≥ 4d(⌊n/4⌋)− 18,

which is enough to show by induction that d(n) > 0 for all n.
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How does Walnut work?

The logical formula is parsed and compiled into a deterministic finite
automaton.

The automaton has the property that it accepts exactly the values of
the free variables (in parallel) that make the formula true.

Addition is performed with an automaton with three inputs that
verifies the relation x + y = z . Easy in base b, harder for Zeckendorf
representation.

∃ is achieved by projection of the transitions corresponding to the
named variables. A transition on [xi , yi ] becomes a transition on yi
after applying ∃x . This can result in an NFA, so the automaton is
determinized and minimized.

∀ is achieved by using de Morgan’s law.

Worst-case running time is a tower of exponentials corresponding to
number of quantifier alternations.
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Cloitre’s sequence a(n)

Invented by Benoit Cloitre in May 2005.

Let F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 be the Fibonacci numbers.

Define

a(n) =

{
n, if n ≤ 1;

Fj+1 − a(n − Fj), if Fj < n ≤ Fj+1 for j ≥ 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a(n) 0 1 1 2 4 4 7 7 6 12 12 11 9 9 20 20

It is sequence A105774 in the OEIS (On-Line Encyclopedia of Integer
Sequences).
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The graph of Cloitre’s sequences a(n)

The sequence has an intricate fractal structure:
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Cloitre’s sequence a(n)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a(n) 0 1 1 2 4 4 7 7 6 12 12 11 9 9 20 20

The kinds of things we might want to know include

Which integers do not appear in it?

How often does each integer appear in it?

Which integers appear only once?

What are upper and lower bounds on the growth rate of a(n)?

When do consecutive equal terms appear?

What are values at special indices, like Fn?

What about the sequence arising by sorting the terms in ascending
order?

Believe it or not, we can answer these questions using automata theory!
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Fibonacci (Zeckendorf) representation

The Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

In analogy with base-2 representation, we can represent every
non-negative integer n in the form

n =
∑

0≤i≤t

ϵiFi+2 with ϵi ∈ {0, 1}.
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Fibonacci (Zeckendorf) representation

But then some integers have multiple representations, e.g.,
14 = 13 + 1 = 8 + 5 + 1 = 8 + 3 + 2 + 1

So to get uniqueness of the representation, we impose the additional
condition that ϵiϵi+1 = 0 for all i : never use two adjacent Fibonacci
numbers.

Usually we write the representation in the form

(n)F = ϵtϵt−1 · · · ϵ0,

with most significant digit first. So, for example, (19)F = 101001.
This is called Zeckendorf representation.

Édouard Zeckendorf
(1901–1983), Belgian amateur

mathematician
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An automaton for the sequence

Now that we have Zeckendorf representation, we can deal with automata
that compute functions of the natural numbers: the inputs to the
automata are Zeckendorf representations of N.

Amazing thing: there is a finite automaton that computes a(n) in the
following sense: it takes the Zeckendorf representations of n and x as
inputs, in parallel, and accepts if and only if x = a(n).

(We might have to pad the shorter with leading zeroes, to make the
representations of n and a(n) the same length.)
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An automaton for the sequence

Here it is:

0

[0,0]

1

[1,0]

2[1,1]

3
[0,1]

4

[0,0]

5[0,0]

6

[0,0]
7

[1,0]

8
[0,1]

9
[1,1]

10

[0,0]
11[0,1]

12[1,1]

13

[0,0]

14[0,1]

[0,0] [1,0]

15
[0,0]

[0,0]

[0,1]

[0,0] [1,0]

[1,1]

[0,0]

[0,0]

[0,0]

Figure 1: Automaton computing a(n).

Example: a(15) = 20, (15)F = 100010, (20)F = 101010, and the
automaton accepts [1, 1][0, 0][0, 1][0, 0][1, 1][0, 0].
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How did we find the automaton?

We guessed the automaton using a version of the Myhill-Nerode theorem,
as follows:

We guess that {[0, 0]∗(n, x)F : x = a(n)} is regular.

The Myhill-Nerode theorem tells us that each state of the minimal
automaton for a regular language L corresponds to the language
Lx = {y : xy ∈ L}.

Of course we cannot compute Lx from empirical data alone, but we can
compute sets like Lx ,c = {y : |y | ≤ c and xy ∈ L}.
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How did we find the automaton?

If we assume that (say) Lx = Ly if and only if Lx ,c = Ly ,c for some small
integer c , we can guess the automaton.

We can compute the number of states needed for c = 1, 2, 3, . . . until this
number stabilizes.

This gives a conjectured automaton A for L.

But it is just a guess...so far.
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How did we find the automaton?

How can we verify that our guessed automaton is correct?

First step: we need to verify that A really computes a function, that is, for
each n there is exactly one x such that (n, x) is accepted.

Then we need to verify that the function it computes obeys the defining
recurrence: a(n) = Fj+1 − a(n − Fj) if Fj < n ≤ Fj+1 for j ≥ 2.

Both of these claims can be phrased in first-order logic.

For example, to say that an automaton a(n, x) computes a function means

∀n ∃x a(n, x)

and
¬∃n, x , y x ̸= y ∧ a(n, x) ∧ a(n, y).
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How did we verify the automaton?

Let’s check a computes a function:

eval check_at_least_one "?msd_fib An Ex $a(n,x)":

eval check_at_most_one "?msd_fib ~En,x,y x!=y & $a(n,x) &

$a(n,y)":

and Walnut returns TRUE for both assertions.

Here ?msd fib is a bit of jargon saying that all numbers are expressed in
Zeckendorf representation.
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How did we verify the automaton?

Next we must verify that our automaton obeys the defining recurrence
a(n) = Fj+1 − a(n − Fj) if Fj < n ≤ Fj+1 for j ≥ 2.

reg adjfib msd_fib msd_fib "[0,0]*[0,1][1,0][0,0]*":

# accepts (F_k, F_{k+1})

def trapfib "?msd_fib $adjfib(x,y) & x<k & y>=k":

# accepts (k,x,y) if x is the largest Fibonacci number

# less than k and y is the next largest Fib number

eval test105774 "?msd_fib Ak,x,y,z,t ($trapfib(k,x,y)

& $a(k,z) & $a(k-x,t)) => y=z+t":

and Walnut returns TRUE. At this point we know that our guessed
automaton is correct.
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Which integers don’t appear in (a(n))?

They are

3, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42, . . .

def dont_appear "?msd_fib ~Ek $a(k,n)":

And this gives the automaton below.

0

0

11

2
0

3
0

41 5

0

6
1

7
0

1

0

0

1
80 0

1
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Which integers don’t appear in (a(n))?

Do you recognize those numbers

3, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42, . . . ?

No? Then look them up in the OEIS:
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Which integers don’t appear in (a(n))?

Now

rnd(n · φ2) = ⌊φ2n + 1/2⌋
= ⌊(φ22n + 1)/2⌋
= ⌊(⌊φ22n⌋+ 1)/2⌋.

So we can use the following Walnut code to verify our guess:

def a004937 "?msd_fib En,x $phi2n(2*n,x) & z=(x+1)/2":

eval check_dont "?msd_fib An (n>0) =>

($a004937(n) <=> (~Ek k>0 & $a(k,n)))":

and Walnut returns TRUE.
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Elements appear at most twice

Proposition

No natural number appears three or more times in A105774.

Proof.

We use the following Walnut code.

eval test012 "?msd_fib ~Ex,y,z,n x<y & y<z & $a(x,n) &

$a(y,n) & $a(z,n)":

and Walnut returns TRUE.
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Elements appearing twice

Proposition

If a number appears twice in (a(n))n≥0, the two occurrences are
consecutive.

Proof.

We use the following Walnut code:

eval twice_consec "?msd_fib An,x,y (x<y & $a(x,n) & $a(y,n))

=> y=x+1":

and Walnut returns TRUE.
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Fixed points

Proposition

We have a(n) = n for n > 0 if and only if
(n)F ∈ 1(00100∗1)∗{ϵ, 01, 010, 0100}.

Proof.

We use the Walnut command

def fixed "?msd_fib $a(n,n)":

and it produces the automaton below, from which we can directly read off
the result.

0

0

11

20 30

4

1

51

60

7

0

80

1

0
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Upper and lower bounds

The function a(n) seems very tightly bounded, above and below, by lines
β1n and β2n.

Jeffrey Shallit Using Automata to Prove Theorems One World FLAT Seminar 5-8-24 38 / 48



Upper and lower bounds

Numerical experiments suggest the following result:

Proposition

For all n ≥ 0 we have ⌊φ+2
5 n⌋ ≤ a(n) ≤ ⌊φn⌋.

We can prove this with the following Walnut code:

eval lowerbound "?msd_fib An,x,y ($a(n,x) & $phin(n,y))

=> x>=(y+2*n)/5":

eval upperbound "?msd_fib An,x,y ($a(n,x) & $phin(n,y))

=> x<=y":
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Upper and lower bounds

Now we need to show these bounds are tight. More precisely:

Proposition

We have lim infn→∞ a(n)/n = φ+2
5 and lim supn→∞ a(n)/n = φ.

Proving this requires a bit more cleverness, because the bounds are only
approached rarely.
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Upper and lower bounds

Recall the Lucas numbers: L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.

We have Ln = Fn−1 + Fn+1, so the Zeckendorf representation of Ln is
1010n−3.

For the claim lim infn→∞ a(n)/n = φ+2
5 , using the well-known Binet

formulas for the Fibonacci and Lucas numbers, it suffices to show that
a(Lk + 1) = Fk+1 + 1 for all k ≥ 3.

reg lucfib msd_fib msd_fib "[0,0]*[1,1][0,0][1,0][0,0]*":

# regular expression for the pair (L_k, F_{k+1}) for k>=3

eval chklow "?msd_fib Ax,y $lucfib(x,y) => $a(x+1,y+1)":
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Upper and lower bounds

For the claim lim supn→∞ a(n)/n = φ it suffices to show that
a(Fk + 1) = Fk+1 − 1 for all k ≥ 2.

This follows directly from the defining recurrence for a(n).

Or one can use Walnut:

eval chkup "?msd_fib Ax,y,m ($adjfib(x,y) & $a(x+1,m))

=> m+1=y":
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More results on Cloitre’s sequence

Many, many more results about Cloitre’s sequence can be proved using
Walnut.

See https://arxiv.org/abs/2312.11706 for more of them.
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Conclusions

Automata provide a new tool for solving certain kinds of problems
number theory and combinatorics, and can give rigorous proofs.

The method cannot deal with all sequences, but only sequences
generated with automata.

To be amenable, the problem must have a close relationship with
some system of numeration, such as base 2 or Zeckendorf
representation.

Guessing the automaton and then checking it satisfies a definition
often works in practice.

The worst-case running time of deciding the needed formulas can be
truly astonishingly large, but in many cases terminates quickly.
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The Walnut Prover

Our publicly-available prover, originally written by Hamoon Mousavi, is
called Walnut and can be downloaded from

https://cs.uwaterloo.ca/~shallit/walnut.html .
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Lagniappe

There is a finite automaton of 97 states, that on input 10n in Zeckendorf
representation, outputs the n’th decimal digit of φ = (1 +

√
5)/2 !
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Designer and Implementers of Walnut

Hamoon Mousavi—Designer
and Implementer

Aseem Baranwal—implementer

Laindon C. Burnett—implementer Anatoly Zavyalov—implementer
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For further reading

Available at
a fine bookstore

near you!
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