Additive Number Theory via Automata

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1 Canada
shallit@uwaterloo.ca
https://cs.uwaterloo.ca/~shallit/

Joint work with

Jason Bell

Kathryn Hare

P Madhusudan

Dirk Nowotka

Aayush Rajasekaran

Tim Smith

Additive number theory

Let *S* be a subset of the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$.

The **principal problem** of additive number theory is to determine whether every natural number (or every sufficiently large natural number) can be written as the sum of some **constant** number of elements of *S*.

Probably the most famous example is **Lagrange's theorem** (1770):

- (a) every natural number is the sum of four squares; and
- (b) three squares do not suffice for numbers of the form $4^a(8k+7)$.

(Conjectured by Bachet in 1621.)

Additive bases

Let $S \subseteq \mathbb{N}$.

We say that a subset S is an **basis of order** h if every natural number can be written as the sum of h elements of S, not necessarily distinct.

We say that a subset S is an **asymptotic basis of order** h if every sufficiently large natural number can be written as the sum of h elements of S, not necessarily distinct.

Gauss's theorem for triangular numbers

A triangular number is a number of the form n(n+1)/2.

Gauss wrote the following in his diary on July 10 1796:

i.e., The triangular numbers form an additive basis of order 3

Waring's problem for powers

Edward Waring (1770) asserted, without proof, that every natural number is

- the sum of 4 squares
- the sum of 9 cubes
- the sum of 19 fourth powers
- "and so forth".

9. Omnis integer numerus vel est cubus, vel e duobus, tribus, 4, 5, 6,7, 8, vel novem cubis compositus: est etiam quadrato-quadratus; vel e duobus, tribus, &c. usque ad novemdecim compositus, &c sic deinceps: consimilia etiam affirmari possunt (exceptis excipiendis) de eodem numero quantitatum earundem dimensionum.

Waring's problem

Let g(k) be the least natural number m such that every natural number is the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large natural number is the sum of m k'th powers.

Proving that g(k) and G(k) exist, and determining their values, is **Waring's problem**.

By Lagrange we know g(2) = G(2) = 4.

Hilbert proved in 1909 that g(k) and G(k) exist for all k.

By Wieferich and Kempner we know g(3) = 9.

We know that $4 \le G(3) \le 7$, but the true value is still unknown.

Other additive bases?

What other sets can be additive bases?

Not the powers of 2 - too sparse.

Need a set whose natural density is at least $N^{1/k}$ for some k.

How about numbers with palindromic base-b expansions?

Palindromes

- A palindrome is any string that is equal to its reversal
- Examples are radar (English), ressasser (French), and 10001.
- We call a natural number a base-b palindrome if its base-b representation (without leading zeroes) is a palindrome
- Examples are $16 = [121]_3$ and $297 = [100101001]_2$.
- Binary palindromes (b = 2) form sequence A006995 in the *On-Line Encyclopedia of Integer Sequences* (OEIS):

$$0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, \dots$$

• They have density $\Theta(N^{1/2})$.

The problem

Do the base-b palindromes form an additive basis, and if so, of what order?

William Banks (2015) showed that every natural number is the sum of at most 49 base-10 palindromes. (INTEGERS 16 (2016), #A3)

Javier Cilleruelo, Florian Luca, and Lewis Baxter (2017) showed that for all bases $b \ge 5$, every natural number is the sum of three base-b palindromes. (*Math. Comp.* (2017), to appear)

What we proved

However, the case of bases b = 2, 3, 4 was left unsolved. We proved

Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number 4 is optimal.

For example,

$$\begin{split} 10011938 &= 5127737 + 4851753 + 32447 + 1 \\ &= [10011100011111000111001]_2 + [1001010000010000101001]_2 + \\ &+ [111111010111111]_2 + [1]_2 \end{split}$$

4 is optimal: 10011938 is not the sum of 2 binary palindromes.

Previous proofs were complicated (1)

Excerpt from Banks (2015):

2.4. Inductive passage from $\mathbb{N}_{\ell,k}(5^+;c_1)$ to $\mathbb{N}_{\ell-1,k+1}(5^+;c_2)$.

Lemma 2.4. Let $\ell, k \in \mathbb{N}, \ell \geqslant k+6$, and $c_\ell \in \mathcal{D}$ be given. Given $n \in \mathbb{N}_{\ell,k}(5^+; c_1)$, one can find digits $a_1, \ldots, a_{18}, b_1, \ldots, b_{18} \in \mathcal{D} \setminus \{0\}$ and $c_2 \in \mathcal{D}$ such that the number

$$n - \sum_{j=1}^{18} q_{\ell-1,k}(a_j,b_j)$$

lies in the set $\mathbb{N}_{\ell-1,k+1}(5^+; c_2)$.

Proof. Fix $n \in \mathbb{N}_{\ell,k}(5^+;c_1)$, and let $\{\delta_j\}_{j=0}^{\ell-1}$ be defined as in (1.1) (with $L:=\ell$). Let m be the three-digit integer formed by the first three digits of n; that is,

$$m := 100\delta_{\ell-1} + 10\delta_{\ell-2} + \delta_{\ell-3}.$$

Clearly, m is an integer in the range $500 \le m \le 999$, and we have

$$n = \sum_{j=k}^{\ell-1} 10^{j} \delta_{j} = 10^{\ell-3} m + \sum_{j=k}^{\ell-4} 10^{j} \delta_{j}.$$
 (2.4)

Let us denote

$$S := \{19, 29, 39, 49, 59\}.$$

In view of the fact that

$$9\mathcal{S} := \underbrace{\mathcal{S} + \dots + \mathcal{S}}_{\text{nine copies}} = \{171, 181, 191, \dots, 531\},$$

it is possible to find an element $h \in 9S$ for which $m - 80 < 2h \le m - 60$. With h fixed, let s_1, \ldots, s_9 be elements of S such that

$$s_1 + \cdots + s_9 = h$$
.

Previous proofs were complicated (2)

Excerpt from Cilleruelo et al. (2017)

II.2 $c_m = 0$. We distinguish the following cases:

II.2.i) $y_m \neq 0$.

δ_m	δ_{m-1}	δ_m	δ_{m-1}
0	0	 1	1
*	y_m	 *	$y_m - 1$
*	*	*	*

II.2.ii) $y_m = 0$.

II.2.ii.a) $y_{m-1} \neq 0$.

δ_m	δ_{m-1}	δ_{m-2}
0	0	*
y_{m-1}	0	y_{m-1}
*	z_{m-1}	z_{m-1}

The above step is justified for $z_{m-1}\neq g-1$. But if $z_{m-1}=g-1$, then $c_{m-1}\geq (y_{m-1}+z_{m-1})/g\geq 1$, so $c_m=(z_{m-1}+c_{m-1})/g=(g-1+1)/g=1$, a contradiction.

II.2.ii.b) $y_{m-1} = 0, z_{m-1} \neq 0.$

δ_m	δ_{m-1}	δ_{m-2}	\rightarrow	δ_m	δ_{m-1}	δ_{m-2}
0	0	*		0	0	*
0	0	0		1	1	1
*	z_{m-1}	z_{m-1}		*	$z_{m-1} - 1$	$z_{m-1} - 1$

II.2.ii.c) $y_{m-1} = 0$, $z_{m-1} = 0$.

If also $c_{m-1} = 0$, then $\delta_{m-1} = 0$, which is not allowed. Thus, $c_{m-1} = 1$.

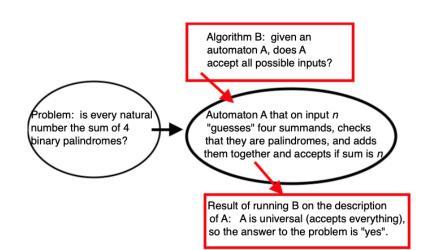
Previous proofs were complicated (3)

- Proofs of Banks and Cilleruelo et al. were long and case-based
- Difficult to establish
- Difficult to understand
- Difficult to check, too: the original Cilleruelo et al. proof had some minor flaws that were only noticed when the proof was implemented as a Python program
- Idea: could we automate such proofs?

The main idea of our proof

- Construct a finite-state machine (automaton) that takes natural numbers as input, expressed in the desired base
- Allow the automaton to nondeterministically "guess" a representation of the input as a sum of palindromes
- The machine accepts an input if it "verifies" its guess
- Then use a decision procedure to establish properties about the language of representations accepted by this machine (e.g., universality – does it accept every possible input?)

Our proof strategy



Basics of automata

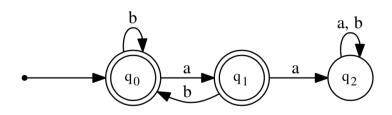
- An automaton is a mathematical model of a very simple computer
- It takes as input a finite list of symbols $x = a_1 a_2 \cdots a_n$, called a "string" or "word")
- The automaton does some computation and then either "accepts" or "rejects" its input
- The set of all accepted strings is called the language recognized by the automaton

Parts of an automaton

- The finite set of states: each state corresponds to some knowledge that has been gained about the input
- The start state
- The set of accepting states
- The transition function that specifies, for each state and each input symbol, which state to enter

Example of an automaton

A double circle represents an accepting state.

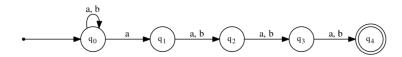


What is the language accepted by this automaton?

It is the set of all strings having no two consecutive a's.

Different kinds of automata

- Some have extra storage, in the form of a stack ("last in, first out");
 they are called "pushdown automata"
- One very powerful tool: nondeterminism
- Here the automaton is allowed to "guess" what moves to make, and then "verify" that its guess is correct
- Example: accept those strings where the 4th symbol from the end is an a



Decision algorithms for automata

- Given an automaton, we can decide various things about the language it recognizes.
- For example, is the language empty? Or infinite?
- Here "decide" means there is an algorithm that, given the automaton as input, halts and says (for example) either "language is empty" or "language is not empty".
- In some cases, we can also decide universality: the property of accepting all strings.

Picking an automaton for palindromes

What kind of automaton should we choose?

- it should be possible to check if the guessed summands are palindromes
 - can be done with a pushdown automaton (PDA)
- it should be possible to add the summands and compare to the input
 - can be done with a finite automaton (DFA or NFA)

However

- Can't add summands with these machine models unless they are guessed in parallel
- Can't check if summands are palindromes if they are wildly different in length & presented in parallel
- Universality is not decidable for PDA's

What to do?

Visibly pushdown automata (VPA)

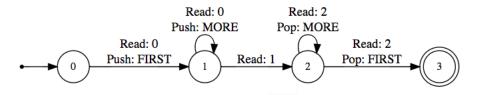
- Use visibly-pushdown automata!
- Popularized by Alur and Madhusudan in 2004, though similar ideas have been around for longer
- VPA's receive an input string, and read the string one letter at a time
- They have a (finite) set of states and a stack
- Upon reading a letter of the input string, the VPA can transition to a new state, and might modify the stack

Using the VPA's stack

- The VPA can only take very specific stack actions
- ullet The input alphabet, Σ , is partitioned into three disjoint sets
 - Σ_c , the push alphabet
 - Σ_I , the local alphabet
 - Σ_r , the pop alphabet
- If the letter of the input string we read is from the push alphabet, the VPA pushes exactly one symbol onto its stack
- If the letter of the input string we read is from the pop alphabet, the VPA pops exactly one symbol off its stack
- If the letter of the input string we read is from the local alphabet, the VPA does not consult its stack at all

Example VPA

A VPA for the language $\{0^n12^n : n \ge 1\}$:



The push alphabet is $\{0\}$, the local alphabet is $\{1\}$, and the pop alphabet is $\{2\}$.

Determinisation and Decidability

- A nondeterministic VPA can have several matching transition rules for a single input letter
- Nondeterministic VPA's are as powerful as deterministic VPA's
- VPL's are closed under union, intersection and complement. There are algorithms for all these operations.
- Testing emptiness, universality and language inclusion are decidable problems for VPA's
- But a nondeterministic VPA with n states can have as many as $2^{\Theta(n^2)}$ states when determinized!

Proof strategy

- We build a VPA that nondeterministically "guesses" strings representing integers that are of roughly the same size, in parallel
- It checks to see that the guesses are palindromes
- It adds the guessed numbers together and verifies that the sum equals the input number.
- There are some complications due to the VPA restrictions.

More details of the proof strategy

- To prove our result, we built 2 VPA's A and B:
 - A accepts all n-bit odd integers, $n \ge 8$, that are the sum of three binary palindromes of length either
 - n, n-2, n-3, or
 - n-1, n-2, n-3.
 - B accepts all valid representations of odd integers of length $n \ge 8$
- We then prove that all inputs accepted by B are accepted by A
- We used the ULTIMATE Automata Library
- Once A and B are built, we simply have to issue the command

in ULTIMATE.

Finishing up the proof

- ullet Thus every odd integer \geq 256 is the sum of three binary palindromes.
- For even integers, we just include 1 as one of the summands.
- The numbers < 256 are easily checked by brute force.
- And so we've proved: every natural number is the sum of four binary palindromes.

Bases 3 and 4

- Unfortunately, the VPA's for bases 3 and 4 are too large to handle in this way.
- So we need a different approach.
- Instead, we use ordinary nondeterministic finite automata (NFA).
- But they cannot recognize palindromes...
- Instead, we change the input representation so that numbers are represented in a "folded" way, where each digit at the beginning of its representation is paired with its corresponding digit at the end.
- With this we can prove...

Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3 palindromes.

Theorem

Every natural number N > 64 is the sum of at most three base-4 palindromes.

This completes the classification for base-b palindromes for all $b \ge 2$.

More results

Using NFA's we can establish an analogue of Lagrange's four-square theorem.

- A square is any string that is some shorter string repeated twice
- Examples are hotshots (English), chercher (French), and 100100.
- We call an integer a *base-b square* if its base-*b* representation is a square
- Examples are $36 = [100100]_2$ and $3 = [11]_2$.
- The binary squares form sequence A020330 in the OEIS

 $3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, \dots$

Results

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares.

For example:

$$\begin{aligned} 10011938 &= 9291996 + 673425 + 46517 \\ &= [100011011100100011011100]_2 + [10100100011010010001]_2 \\ &+ [10110101101101]_2 \end{aligned}$$

We also have the following result

Theorem

Every natural number is the sum of at most two binary squares and at most two powers of 2.

Generalizing: Waring's theorem for binary k'th powers

Recall Waring's theorem: for every $k \ge 1$ there exists a constant g(k) such that every natural number is the sum of g(k) k'th powers of natural numbers.

Could the same theorem hold for binary k'th powers?

Two issues:

- 1 is not a binary k'th power, so it has to be "every sufficiently large natural number" and not "every natural number".
- The gcd g of the binary k'th powers need not be 1, so it actually has to be "every sufficiently large multiple of g".

gcd of the binary k'th powers

Theorem

The gcd of the binary k'th powers is $gcd(k, 2^k - 1)$.

Example:

The binary 6'th powers are

 $63, 2730, 4095, 149796, 187245, 224694, 262143, 8947848, 10066329, \dots$

with gcd equal to gcd(6,63) = 3.

Very recent results

Theorem

Every sufficiently large multiple of $gcd(k, 2^k - 1)$ is the sum of a constant number (depending on k) of binary k'th powers.

Obtained with Daniel Kane and Carlo Sanna.

Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

- choose a suitable power of 2, say 2^n , and express N in base 2^n .
- use linear algebra to change the basis and instead express N as a linear combination of $c_k(n), c_k(n+1), \ldots, c_k(n+k-1)$ where

$$c_k(n) = \frac{2^{kn}-1}{2^n-1}.$$

- Such a linear combination would seem to provide an expression for N
 in terms of binary k'th powers, but there are three problems to
 overcome:
 - ① the coefficients of $c_k(i)$, $n \le i < n + k$, could be much too large;
 - the coefficients could be too small or negative;
 - the coefficients might not be integers.

All of these problems can be handled with some work.

Other results

Call a set S of natural numbers b-automatic if the language of the base-b expansions of its members is regular (accepted by a finite automaton).

Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive basis (resp., asymptotic additive basis) of finite order.

If it does, the minimum order is also computable.

The proof uses, in part, a decidable extension of Presburger arithmetic.

An Open Problem

How many states are needed, in the worst case, for an automaton to accept one specified string w of length n, but reject another string x of the same length?

Best lower bound known: in some cases $\Omega(\log n)$ states are needed.

Best upper bound known: in all cases $O(n^{2/5}(\log n)^{3/5})$ states suffice.

These are widely separated!

I offer CDN \$ 200 for a solution to this problem.

For further reading

- A. Rajasekaran, J. Shallit, T. Smith, Additive number theory via automata theory, *Theor. Comput. Systems* (2019). Available at https://doi.org/10.1007/s00224-019-09929-9.
- P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit, Lagrange's theorem for binary squares, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), Article No. 18, pp. 18:1–18:14, Leibniz International Proceedings in Informatics, 2018.
- J. Bell, K. Hare, and J. Shallit, When is an automatic set an additive basis? Proc. Amer. Math. Soc. Ser. B 5 (2018), 50–63.
- D. M. Kane, C. Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, to appear, Combinatorica.