
The Critical Exponent is Computable for

Automatic Sequences

Jeffrey Shallit
School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
Canada

shallit@cs.uwaterloo.ca

http://www.cs.uwaterloo.ca/~shallit

1 / 27

Powers in words

A square is a nonempty word of the form xx .

Examples include

I murmur and hotshots in English

I jenjen and taktak in Czech

Similarly, a cube is a nonempty word of the form xxx .

2 / 27

Fractional powers

We can extend the notion of integer power of a word to fractional

powers.

A word w is a fractional power if it can be written in the form
w = xnx ′, where n ≥ 1 and x ′ is a prefix of x .

We say w has period |x | and exponent |w |/|x |. The shortest
period is the period and the largest exponent is the exponent.

For example, the exponent of the English word alfalfa is 7/3.

The exponent of the Czech words jajaj and jejej is 5/2.

3 / 27

Morphisms

Let h : Σ∗ → Σ∗ be a morphism.

If there exists k such that |h(a)| = k for all a ∈ Σ, then we say h is
k-uniform.

If h is 1-uniform, it is called a coding .

If there is a letter a ∈ Σ such that
(a) h(a) = ax for some x ∈ Σ∗; and

(b) hi (x) 6= ε for all i ≥ 0

then we say h is prolongable on a.

4 / 27

Prolongable morphisms and fixed points

If h is prolongable, we can generate an infinite fixed point of h by
iteration:

hω(a) := lim
i→∞

hi (a)

= a x h(x) h2(x) h3(x) · · ·

5 / 27

Classes of morphic words

If an infinite word w is generated by iterating a morphism, it is
called pure morphic.

If w = τ(x) for a pure morphic word x, and a coding τ , it is called
morphic.

If an infinite word w is generated by iterating a uniform morphism,
it is called pure uniform morphic.

If w = τ(x) for a k-uniform morphic word x, and a coding τ , it is
called k-automatic.

6 / 27

Automatic sequences

By Cobham’s theorem, we know that automatic sequences can be
characterized in two different ways:

- as the image (under a coding) of the fixed point of a k-uniform
morphism

- as the infinite word generated by an automaton taking the base-k
expansion of n as input, and producing the n’th term of the
sequence as output

7 / 27

Exponent of an infinite word

The critical exponent of an infinite word is defined to be the sup,
over all factors, of the exponent of that factor.

It could be infinite: consider 010101010101 · · · .
It could be irrational: it is known that the critical exponent of the
Fibonacci word 01001010 · · · generated by iterating 0→ 01 and
1→ 0, is (3 +

√
5)/2 (Mignosi & Pirillo, 1992).

It can be rational & attained: the critical exponent of the
Thue-Morse word t = 01101001 · · · , generated by iterating 0→ 01
and 1→ 01, is 2, and it is attained.

It can be rational & not be attained: the word
210201210120210201202101210 · · · , which counts the run lengths
of 1’s in t, and is generated by 2→ 210, 1→ 20, and 0→ 1, has
critical exponent 2, but it is not attained.

8 / 27

Critical exponents

More generally: any real number > 1 can be the critical exponent
of a word (over a sufficiently large finite alphabet) (Krieger & JOS,
2007).

Any real number ≥ 2 can be the critical exponent of a binary word
(Currie and Rampersad, 2008).

Further, for words that are fixed points of morphisms, the critical
exponent lies in the field extension generated by the eigenvalues of
the associated incidence matrix (Krieger, 2006).

9 / 27

Computing the critical exponent

- rational and computable for fixed points of uniform binary
morphisms (Krieger, 2009)

- computable in many cases for pure morphic words (Krieger)

- it is decidable, for an infinite word generated by iterating an
arbitrary morphism, if its critical exponent is <∞ (Ehrenfeucht &
Rozenberg, 1983)

- in this talk: it is rational and computable for all k-automatic
sequences

10 / 27

Morphic, pure morphic, and automatic sequences

11 / 27

Encoding natural numbers

Fix an integer k ≥ 2, and let Σk = {0, 1, 2, . . . , k − 1}.
We can represent natural numbers n ≥ 0 in base-k. A
representation is canonical if it has no leading zeroes.

If m is a natural number, then (m)k denotes its canonical
representation.

If w is a word, then [w]k is the integer it represents in base k.

This gives a 1–1 correspondence between N and elements of
{ε} ∪ (Σk − {0})Σ∗

k .

12 / 27

Encoding pairs of natural numbers

A pair of natural numbers (m, n) can be encoded as a word over
the larger alphabet Σ2

k .

To do so, we take the base-k representations of m and n, and pad
the shorter with leading zeroes, if necessary, so it is the same
length as the longer.

Then we pair up the digits and consider them as elements of Σ2
k .

For example, if m = 23 and n = 10, then (m)2 = 10111 and
(n)2 = 1010. We pad the representation of n to get 01010 and
then pair up with the digits of m to get

(23, 10)2 = [1, 0][0, 1][1, 0][1, 1][1, 0].

13 / 27

Encoding sets of integers and pairs

A language L ⊆ Σ∗
k encodes a set S of integers as follows: n ∈ S if

and only if the canonical base-k representation of n is contained in
L.

If L is regular, we get the class of k-automatic sets.

In a similar way, we can encode a set of pairs of integers as a
language over (Σ2

k)
∗.

14 / 27

Representing rational numbers

We can represent a rational number p/q as the base-k encoding of
the pair (p, q).

Note that we do not insist that p/q be in lowest terms.

We define f ((p, q)k) = p/q.

Similarly, we can encode a set of rationals as a language L over
(Σ2

k)
∗.

A given rational may have one or more representations in L.

15 / 27

The main theorem

Theorem. Suppose L ⊆ (Σ2
k)

∗ is a regular language. Then

α := sup
x∈L

f (x)

is either infinite or rational.

Further, given an automaton for L, we can compute α.

16 / 27

Outline of the proof

1. We assume that α = supx∈L f (x) is finite and irrational and L is
accepted by a DFA of n states.

2. Therefore we can find x ∈ L with f (x) arbitrarily close to α.

3. Using the pumping lemma, we construct x ′ ∈ L with f (x ′) > α,
a contradiction.

17 / 27

A useful lemma

Let u, v ,w be words over (Σ2
k)

∗.

Then exactly one of the following cases holds:
(a) f (uv iw) = f (uv i+1w) for all i ≥ 0;
(b) f (uv iw) < f (uv i+1w) for all i ≥ 0;
(c) f (uv iw) > f (uv i+1w) for all i ≥ 0.

This allows us to construct an x ′ with f (x ′) > α, a contradiction.

18 / 27

Computability

The same argument shows that α = supx∈L f (x) lies in an easily
describable set, so it is computable.

More precisely,

α ∈ S1

⋃

S2,

where

S1 = {p/q : 0 ≤ p < kn, 1 ≤ q < kn}

S2 = {
[u1]k +

[v1]k
ka−1

[u2]k +
[v2]k
ka−1

: |u1v1| ≤ n, |u2v2| ≤ n, |u1| = |u2|,

|v1| = |v2| = a ≥ 1}.

where n is the number of states in the minimal DFA accepting L.

19 / 27

Applications of the lemma

1. The critical exponent of k-automatic words is either infinite or
rational. Furthermore, it is computable.

2. The optimal constant for linear recurrence of k-automatic words
is either infinite or rational. Furthermore, it is computable.

3. The quantities lim supn→∞ F (n)/n and lim infn→∞ F (n)/n are
computable for automatic sequences, where F denotes subword
complexity.

20 / 27

Application to the critical exponent

Given an automaton generating the k-automatic sequence
a = a0a1 · · · , we transform it into an automaton M accepting

L = {(p, q)k : ∃ a factor of a of length q with period p }.

i + q − 1i + pi

q

ppp

a =

The idea is to nondeterministically choose an index i at which a
factor of length q begins in a, and then verify that a[j] = a[j + p]
for i ≤ j ≤ i + q − p − 1.
The critical exponent of a is then supx∈L f (x),
which is either rational or infinite.

21 / 27

Application to linear recurrence

A sequence a is recurrent if every factor that occurs, occurs
infinitely often.

It is linearly recurrent if there exists a constant C such that for all
` ≥ 0 and all factors x of length ` occurring in a, any two
consecutive occurrences of x are separated by at most C` positions.

Theorem.

If an automatic sequence a is linearly recurrent, then the optimal
constant C is rational and computable.

22 / 27

Sketch of the proof

Define

L = {(n, l)k : (a) there exists i ≥ 0 s. t. for all j , 0 ≤ j < ` we have

a[i + j] = a[i + n + j] and

(b) there is no t, 0 < t < n s. t. for all j , 0 ≤ j < ` we have

a[i + j] = a[i + t + j]}

a =

i i + `− 1 i + n i + n − 1 + `

Another way to say this is that L consists of the base-k
representation of those pairs of integers (n, `) such that (a) there
is some factor of length ` for which there is another occurrence at
distance n and (b) this occurrence is actually the very next
occurrence.

23 / 27

Sketch of the proof

Now from our Theorem we know sup{n/` : (n, `)k ∈ L} is either
infinite or rational. In the latter case this sup is computable, and
this gives the optimal constant C for the linear recurrence of a.

24 / 27

Applications to subword complexity

Let F (n) denote the number of distinct factors of length n in a
given k-automatic sequence (aka subword complexity).

The quantities
lim sup
n→∞

F (n)/n

and
lim inf
n→∞

F (n)/n

are computable.

The idea for lim sup is essentially the same as the idea for sup.

Hence their equality is computable (cf. Goldstein [2011]).

25 / 27

Open problems

– Extend these ideas to all morphic sequences, not just automatic
sequences.

– Is the theorem about supx∈L f (x) also true for context-free
languages?

26 / 27

For further reading

1. E. Charlier, N. Rampersad, and J. Shallit, Enumeration and
decidable properties of automatic sequences. In DLT 2011, pp.
165–179.

27 / 27

