
Proving Results About OEIS Sequences with Walnut

Jeffrey Shallit

School of Computer Science
University of Waterloo

Waterloo, ON N2L 3G1 Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

Jeffrey Shallit Walnut and the OEIS CICM 2023 1 / 30

The OEIS

Neil Sloane

The On-Line Encyclopedia of Integer Sequences
(OEIS) is an enormous database of mathematical

information, containing over 364,000 integer
sequences and theorems, conjectures, and citations

to papers about them.

We owe Neil Sloane a huge debt of gratitude for his
work on this.

And also to all the volunteers who edit the database!

106 thanks to everyone!

Jeffrey Shallit Walnut and the OEIS CICM 2023 2 / 30

This talk

What I will do in this talk:

discuss a theorem prover called Walnut that can “automatically”
prove many results about sequences in the OEIS

illustrate its use in proving some theorems

talk about its limitations

Jeffrey Shallit Walnut and the OEIS CICM 2023 3 / 30

What is Walnut?

Hamoon Mousavi

Free software, written in Java.

Originally designed by Hamoon
Mousavi.

Additions and changes by Aseem Raj
Baranwal, Laindon C. Burnett, Kai
Hsiang Yang, and Anatoly Zavyalov.

Available at https://cs.uwaterloo.
ca/~shallit/walnut.html.

Rigorously proves theorems about the
natural numbers and sequences.

Has been used in 70 papers in the
literature, to prove dozens of theorems
(and even correct some incorrect ones
in the literature!)

Jeffrey Shallit Walnut and the OEIS CICM 2023 4 / 30

https://cs.uwaterloo.ca/~shallit/walnut.html
https://cs.uwaterloo.ca/~shallit/walnut.html

What can Walnut do?

It can rigorously prove theorems about sequences.

But not all sequences! Just a special class called (generalized)
automatic sequences.

Examples of sequences in this class include the Thue-Morse sequence,
the Rudin-Shapiro sequence, the infinite Fibonacci word, the infinite
Tribonacci word, Sturmian words, paperfolding words, overlap-free
words etc.

But not all theorems! You have to state the theorem in first-order
logic, and you can only use operations such as addition, subtraction,
comparison of natural numbers, and indexing into the sequence.

You can also use the existential (∃) and universal (∀) quantifiers.
However, you can’t do multiplication by variables, or division, square
root, arbitrary real numbers, primes, etc.
You can multiply or divide by a constant, however.

Jeffrey Shallit Walnut and the OEIS CICM 2023 5 / 30

Other limitations

The running time and space require-
ments of Walnut in the worst-case
are extraordinarily high, so sometimes
Walnut proofs fail because it runs out
of space or would take years to com-
plete the proof.

Even so, you can do a lot with it.

Self-promotion: I wrote a book, en-
titled The Logical Approach to Auto-
matic Sequences: Exploring Combina-
torics on Words with Walnut, which
has just been published by Cambridge
University Press.

Jeffrey Shallit Walnut and the OEIS CICM 2023 6 / 30

A very simple example: odd plus odd gives even

Let’s use Walnut to prove this theorem:

Theorem. The sum of two odd natural numbers is even.

The first thing you need to do is to translate the theorem into a more
precise formulation in the language of first-order logic.

So we will need to define what it means to be “odd” and “even”.

Jeffrey Shallit Walnut and the OEIS CICM 2023 7 / 30

A very simple example: odd plus odd gives even

Here are those definitions:

odd(n) := ∃k n = 2k + 1

even(n) := ∃k n = 2k .

Here ∃ is the symbol for “there exists”.

Next, we restate the desired theorem in first-order logic:

∀m, n (odd(m) ∧ odd(n)) =⇒ even(m + n).

Here ∀ is the symbol for “for all”, ∧ is the symbol for “and”, =⇒ is the
symbol for implication.

Now we simply translate these into a form Walnut can understand.

Jeffrey Shallit Walnut and the OEIS CICM 2023 8 / 30

A very simple example: odd plus odd gives even

∀m, n (odd(m) ∧ odd(n)) =⇒ even(m + n).

[Walnut]$ def odd "Ek n=2*k+1";

[Walnut]$ def even "Ek n=2*k";

[Walnut]$ eval thm "Am,n ($odd(m) & $odd(n)) => $even(m+n)":

(odd(m))&odd(n))):2 states - 3ms

((odd(m))&odd(n)))=>even((m+n)))):1 states - 2ms

(A m , n ((odd(m))&odd(n)))=>even((m+n))))):1 states - 1ms

Total computation time: 33ms.

TRUE

The theorem is now proved.

But the real power of Walnut is only apparent when you use it to deal
with infinite sequences.

Jeffrey Shallit Walnut and the OEIS CICM 2023 9 / 30

A more serious example

Let’s do a more serious example. In preparing for this talk, I searched the
OEIS for “Fibonacci conjecture” and I quickly found one that Walnut can
handle.

Jeffrey Shallit Walnut and the OEIS CICM 2023 10 / 30

Solving the conjecture

First, we need something for the upper Wythoff sequence: this is the map

n→ bϕ2nc,

where ϕ = (1 +
√

5)/2 is the golden ratio.

Luckily, I already had some Walnut code for this. (I’ll explain how I got it,
later.)

In Walnut, though, the only functions that we can handle directly have
finite range.

So instead we use a subterfuge: we define a boolean function of two
arguments, n and x , such that the result is TRUE if and only if x = bϕ2nc.

In Walnut the assertion that x = bϕ2nc is then expressed as follows:

phi2n(n, x).

Jeffrey Shallit Walnut and the OEIS CICM 2023 11 / 30

Solving the conjecture

Next, we need code for the OEIS sequence A260317.

Its description in the OEIS says

“Numbers not of the form v(m) + v(n), where v = A001950 (upper
Wythoff numbers) and 1 ≤ m ≤ n − 1 for n ≥ 2”.

How shall we write this as a first-order statement?

Let’s see: we want something that that says a260317(z) is true iff z
belongs to A260317.

Jeffrey Shallit Walnut and the OEIS CICM 2023 12 / 30

https://oeis.org/A260317
https://oeis.org/A001950
https://oeis.org/A260317

Solving the conjecture

“Numbers not of the form v(m) + v(n), where v = A001950 (upper
Wythoff numbers) and 1 ≤ m ≤ n − 1 for n ≥ 2”.

In other words, a260317(z) should be TRUE iff
there do not exist m, n, x , y

such that phi2n(m, x) and phi2n(n, y)
and z = x + y

and 1 ≤ m and m ≤ n − 1
and n ≥ 2.

So we just write this as a first-order Walnut statement:

def a260317 "?msd_fib ~Em,n,x,y z=x+y & $phi2n(m,x)

& $phi2n(n,y) & 1<=m & m<=n-1 & n>=2":

Here ~ is logical NOT.

Jeffrey Shallit Walnut and the OEIS CICM 2023 13 / 30

https://oeis.org/A001950

Solving the conjecture

Now we need the gaps g between successive values of A260317.

To determine the gaps we say that
there exist t, v such that

t < v
and a260317(t) holds
and a260317(v) holds

but for all u between t and v , the assertion a260317(u) does not hold,
and the gap size g = v − t.

def gap "?msd_fib Et,v t<v & $a260317(t) & $a260317(v) &

(Au (u>t & u<v) => ~$a260317(u)) & g=v-t":

The result is an assertion gap(g) which is true if and only if g belongs to
A260311.

Jeffrey Shallit Walnut and the OEIS CICM 2023 14 / 30

https://oeis.org/A260317
https://oeis.org/A260311

Solving the conjecture

Finally, we assert that every gap is a Fibonacci number:

reg isfib msd_fib "0*10*":

eval thm "?msd_fib Ax $gap(x) => $isfib(x)":

and here is what we get:

[Walnut]$ eval thm "?msd_fib Ax $gap(x) => $isfib(x)":

(gap(x))=>isfib(x))):2 states - 44ms

(A x (gap(x))=>isfib(x)))):1 states - 11ms

Total computation time: 96ms.

TRUE

And the theorem is proved!

Jeffrey Shallit Walnut and the OEIS CICM 2023 15 / 30

How did we get phi2n?

We obtained the automaton for phi2n using a theorem in a paper of Don
Reble in the OEIS! (https://oeis.org/A007895/a007895.pdf)

Theorem. We have bnϕ2c = x + 2, where x is the number obtained by
taking the Fibonacci representation of n − 1 and concatenating two zeros
on the end.

What’s Fibonacci representation? Here we express a natural number as a
sum of distinct Fibonacci numbers, where no two consecutive Fibonacci
numbers are used.

This can be represented as a binary string coding which Fibonacci
numbers appear in the sum. Example: 20 = F7 + F5 + F3 = 13 + 5 + 2 is
represented by the binary string 101010.

Jeffrey Shallit Walnut and the OEIS CICM 2023 16 / 30

https://oeis.org/A007895/a007895.pdf

How does it work?

Internally, assertions such as gap and a260317 are stored as finite
automata.

A finite automaton is a simple model of a computer. There are two
variations that we use: an automaton with output (DFAO), that can
compute a function of its input, and an automaton (DFA) as
accepter/rejecter of its input.

With each logical formula f , we associate a DFA. The DFA has one or
more inputs; these are the variables of the formula. The DFA accepts
exactly those natural number values of the variables that make the formula
f true.

Jeffrey Shallit Walnut and the OEIS CICM 2023 17 / 30

How does it work?

Walnut compiles a logical formula into the appropriate automaton. Each
logical and arithmetic operation corresponds to some well-studied
automaton transformation that can be carried out.

Some of these operations only increase the automaton size by a small
amount. For example, AND and OR only multiply the sizes of the two
automata.

Other operations, like ∀, can blow up the size of the automata
exponentially.

This means that if there are t quantifier alternations, then the resulting
automaton could be, in the worst case, of size something like

222···2
n

.

Jeffrey Shallit Walnut and the OEIS CICM 2023 18 / 30

How are numbers represented?

Numbers in Walnut are represented in some numeration system.

Typically, the numeration system has to be geared to the problem in some
way.

Walnut can handle

base-k representation for any fixed k ≥ 2

Fibonacci representation (aka Zeckendorf representation), where
numbers are represented as sums of Fibonacci numbers

Tribonacci representation

Pell representation

Ostrowski representation

base-(−k) representation

Jeffrey Shallit Walnut and the OEIS CICM 2023 19 / 30

How does it work?

In automaton diagrams, states are represented by circles or ovals.

A DFA starts in a start state (denoted by a headless arrow coming into the
state).

It processes the symbols of the input one-by-one, following the arrow
labeled with the symbol.

If, after processing the whole input, it is in a final state (denoted by double
circle), the input is accepted. Otherwise it is rejected.

By contrast, a DFAO returns an output specified in the state last reached
when processing the input.

Jeffrey Shallit Walnut and the OEIS CICM 2023 20 / 30

The automaton for phi2n

Here is the DFA for phi2n.

For example, phi2n(10,26) is true. Check with input
[0, 1][0, 0][1, 0][0, 1][0, 0][1, 0][0, 0]. ([0010010]F = 10; [1001000]F = 26)

Jeffrey Shallit Walnut and the OEIS CICM 2023 21 / 30

Going further

So we proved that all members of the gap sequence A260311 are
Fibonacci numbers.

But we can get even more. How is gap stored? It is a finite automaton
that accepts the Fibonacci representation of those gaps g that are
elements of A260311. Namely:

0

0

11 20 30 40

By examining that automaton, we actually obtain a new result:

Theorem. The only possible gaps in A260311 are 1, 2, 3, 5.

Jeffrey Shallit Walnut and the OEIS CICM 2023 22 / 30

https://oeis.org/A260311
https://oeis.org/A260311
https://oeis.org/A260311

What kind of sequences can Walnut prove results about?

Walnut can prove first-order logical statements about automatic
sequences.

These are sequences that are expressible as the outputs of DFAO’s where
the input is one of the 6 types of numeration system listed above.

In particular, Walnut can handle words that are images (under a coding)
of a fixed point of a k-uniform morphism.

We’ll see an example of this in the next slide.

Jeffrey Shallit Walnut and the OEIS CICM 2023 23 / 30

Another example: Shevelev’s problem

Let us use Walnut to solve a previously-unsolved problem of Vladimir
Shevelev.

Shevelev’s problem was about the Thue-Morse sequence

t = t(0)t(1)t(2) · · · = 0110100110010110 · · · .

This famous sequence is defined as t(i) = the parity of the number of
1-bits in the base-2 representation of i .

Jeffrey Shallit Walnut and the OEIS CICM 2023 24 / 30

Another example: Shevelev’s problem

Shevelev observed that for the Thue-Morse sequence there do not exist
two integers 0 < i < j such that

t(n) ∈ {t(n + i), t(n + j)}

for all n.

We can prove this with Walnut as follows:

eval shev1 "Ei,j 0<i & i<j & An (T[n]=T[n+i]|T[n]=T[n+j])":

and Walnut returns FALSE.

Jeffrey Shallit Walnut and the OEIS CICM 2023 25 / 30

Another example: Shevelev’s problem

However, there do exist three integers 0 < i < j < k such that

t(n) ∈ {t(n + i), t(n + j), t(n + k)}

for all n.

Shevelev asked for a characterization of these valid triples (i , j , k).

We can solve this problem by finding an automaton that accepts all valid
triples, as follows:

def shev2 "0<i & i<j & j<k &

An (T[n]=T[n+i]|T[n]=T[n+j]|T[n]=T[n+k])":

This was a big computation in Walnut! It used 6432 seconds of CPU time
and 18 Gigs of RAM. The largest intermediate automaton had 2952594
states.

Jeffrey Shallit Walnut and the OEIS CICM 2023 26 / 30

Another example: Shevelev’s problem

The resulting automaton shev2 has 53 states, and encodes all the valid
triples (i , j , k).

With it we can easily determine if a given triple has the desired property.

We can also use it to prove various results of Shevelev, such as

Theorem. All triples of the form (a, a + 2j , a + 2k) for a ≥ 1, 0 ≤ j < k ,
are valid.

Jeffrey Shallit Walnut and the OEIS CICM 2023 27 / 30

Limitations

Can’t use Walnut to prove Lagrange’s theorem that all integers are a
sum of four squares:

∀n ∃w , x , y , z n = w2 + x2 + y2 + z2

because it uses an unsupported operation (squaring).

Indeed, as soon as we allow squaring, we get an undecidable logical
theory.

Can’t use Walnut to prove Goldbach’s conjecture:

∀n (n ≥ 2) =⇒ ∃p, q 2n = p + q ∧ prime(p) ∧ prime(q)
...because there is no way to express prime(p) in the logical theory.

Jeffrey Shallit Walnut and the OEIS CICM 2023 28 / 30

Tips for using Walnut

Using the Myhill-Nerode theorem, one can often “guess” an
automaton that generates a sequence, and then verify its correctness
using Walnut.

There are often different ways to translate the same logical statement
into Walnut. Some can take much longer to translate than others.

There are often multiple characterizations of the same property. Some
may be first-order expressible, some may not.

Sometimes being more general takes much more time and space than
being specific.

Jeffrey Shallit Walnut and the OEIS CICM 2023 29 / 30

A final word

Walnut is free and downloadable from
https://cs.uwaterloo.ca/~shallit/walnut.html.

If you use it to solve a problem, please let me know about it!

Jeffrey Shallit Walnut and the OEIS CICM 2023 30 / 30

https://cs.uwaterloo.ca/~shallit/walnut.html

