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Transformationsof Strings

The ideaof transforming stringsof symbols is ancient.
It is the basisfor

I grammar
I cryptography(seeH. Prodinger)
I mechanicalcomposition of music
I automatic theorem proving
I computeralgebra
I quasicrystals(seeB. Solomyak)
I computergraphics

and many other subjects.
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Morphisms

We focuson transformationswhereeachsymbol is replacedby a
group of 0 or more symbols.

Thesetransformationsare calledmorphisms, but alsogo by other
names:

I substitutions(mathematics)
I in
ation rules(physics)
I L-systems(biology)
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MorphismsDe�ned

Formally, a morphismis a map h : � � ! � � , where� ; � are
alphabets, suchthat h(xy) = h(x)h(y) for all stringsx; y 2 � � .

If � = �, we can iterate h.

By h2(x) I meanh(h(x)).

More generallyh0(x) = x and hn(x) = h(hn� 1(x)).
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Typesof Morphisms

I A morphismh : � � ! � � is k-uniform if jh(a)j = k for all
a 2 �.

I A morphismis uniform if it is k-uniform for somek.
I A coding is a 1-uniform morphism.
I A morphismis nonerasingif h(a) 6= � for all a 2 �.
I A morphismis primitive if there existsan integern suchthat

for all letters a; b 2 �, a appears in hn(b).
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Typesof Morphisms
Let a 2 � be a symbol. A morphismh is said to be prolongableif
it satis�es the two conditions

(i) h(a) = ax for somex 2 � � ;
(ii) hn(x) 6= � for all n � 0.

If h is prolongable,we can de�ne an in�nite word in � ! as follows:

h! (a) = a x h(x) h2(x) h3(x) � � � :

Note that

h(h! (a)) = h(a x h(x) h2(x) h3(x) � � � )

= h(a) h(x) h2(x) h3(x) � � �

= a x h(x) h2(x) h3(x)

= h! (a);

so h! (a) is a �xed point of h.
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The Thue-MorseMorphism
For example,considerthe morphism� mapping

0 ! 01;

1 ! 10:

If we start with 0 and iterate this morphism,we get successively

� 0(0) = 0

� 1(0) = 01

� 2(0) = 0110

� 3(0) = 01101001

� 4(0) = 0110100110010110
...
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The Thue-MorseMorphism

Since� is prolongable,there is a well-de�ned in�nite word

� ! (0) = 01101001100101101001� � �

of which all the � i (0) are pre�xes.

We call this word t = t0t1t2 � � � , the Thue-Morseword.
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Thue andMorse

Figure: Axel Thue (1863{1922)

Figure: Marston Morse(1892{1977)
9 / 58



The Thue-MorseSequence
De�ne a sequenceof stringsof 0's and 1's as follows:

X0 = 0

Xn+1 = Xn Xn

wherex meanschangeall the 0's in x to 1's and vice-versa.

For example,we �nd

X0 = 0

X1 = 01

X2 = 0110

X3 = 01101001

X4 = 0110100110010110
...

Then limn!1 Xn = t .
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Let's prove � n(0) = Xn by induction on n.
Actually, it turns out to be easierto prove this togetherwith the
claim � n(1) = Xn.

Theseclaimsare clearly true for n = 0. Now assumethey are true
for n; let's prove them for n + 1. We have

� n+1 (0) = � n(� (0))

= � n(01)

= � n(0)� n(1)

= Xn Xn

= Xn+1 :

Similarly

� n+1 (1) = � n(� (1))

= � n(10)

= � n(1)� n(0)

= Xn Xn

= Xn+1 :
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AnotherDe�nition

Givena number n we can write it in base2,

n =
X

0� i � k

ai 2i :

We de�ne the \sum of digits" function s2(n) to be the sumof the
ai . So

s2(43) = 1 + 0 + 1 + 0 + 1 + 1 = 4:
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Then tn = s2(n) mod 2.
Let's prove this by induction. It's evidentlytrue for n = 0. Now
assumeit is true for all n0 < n.

I De�ne k by 2k � n < 2k+1 .
I Then tn is the n'th symbol of Xk+1 .
I So it is the (n � 2k )'th symbol of Xk .
I In other words, tn = (tn� 2k + 1) mod 2.
I By induction we havetn� 2k = s2(n � 2k ) mod 2.
I Since2k � n < 2k+1 , we haves2(n) = s2(n � 2k ) + 1.
I It follows that tn = s2(n) mod 2.

The de�nition in terms of s2(n) is good becausewe can e�ciently
computetn without havingto computet0; t1; : : : ; tn� 1.
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Repetitions in Strings

A square is a string of the form xx. Examplesinclude
I murmur
I hotshots

I chercher
I couscous
I rentrent

I tenten
I kerker

A word is squarefreeif it containsno subword (block of
consecutivesymbols) that is a square. Note that squarefreeis not
squarefree,but square is.
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Cubes

A cube is a string of the form xxx. Examplesin Englishinclude
I hahaha
I shshsh

The nameof a certain Dutch mathematiciancontainsa cube. Do
you know who?

CornelisLekkerkerker

A word is cubefreeif it containsno subword that is a cube.

15 / 58



Fourth Powers

A fourth power is a string of the form xxxx. The only exampleI
know of in Englishis

I tratratratra

which is an extinct lemur from Madagascar.
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Overlaps

A overlapis a string of the form axaxawherea is a singleletter
and x is a string. Examplesinclude

I alfalfa
I entente
I koekoek

A word is overlap-freeif it containsno word that is an overlap.
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No SquarefreeWords Overf 0; 1g

Theorem
There are no squarefreestringsof 0's and 1's of length � 4.

Proof.
Assumex is squarefreeand jxj � 4. Then without lossof generality
we may assumethe �rst symbol of x is 0. Then the second
symbol must be 1, for otherwisewe would havethe square 00.
Then the third symbol must be 0, for otherwisewe would havethe
square 11. Thus the �rst three symbols are 010, and whatever
symbol we choosenext givesa square. Contradiction.
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AvoidingSquaresOverLargerAlphabets

But how about over larger alphabets? Are there large squarefree
words over three symbols?

A backtrackingalgorithm gives

0102012021� � �

and seemsto go on forever.

But how can we provethat there existsan in�nite squarefreeword?

This is what Thue did.

The Thue-Morseword plays a critical role.
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AvoidingOverlaps

As a �rst step let's show that t is overlap-free:it containsno
subword of the form axaxa, with a a singleletter and x a string.

Theorem
The Thue-Morse in�nite word t is overlap-free.

Proof. Observethat t2n = tn and t2n+1 = 1 � tn for n � 0.

Assume,contrary to what we want to prove, that t containsan
overlap.
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tkt0

kz }| {
mz }| {

� � �xxau aa

tk+2 mtk+ m

t = v

Figure: Hypothesizedoverlapin t

Then we would be able to write t = uaxaxav for some�nite strings
u; x, an in�nite string v, and a letter a.

In other words, we would havetk+ j = tk+ j + m for 0 � j � m, where
m = jaxj and k = juj. Assumem � 1 is assmallaspossible.Then
there are two cases:(i) m is even;and (ii) m is odd.
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(i) If m is even,then let m = 2m0. Again there are two cases:(a)
k is even;and (b) k is odd.

(a) If k is even,then let k = 2k0. Then we know tk+ j = tk+ j + m

for 0 � j � m, so it is certainly true that tk+2 j 0 = tk+2 j 0+ m for
0 � j 0 � m=2. Hencet2k0+2 j 0 = t2k0+2 j 0+2 m0 for 0 � j 0 � m0, and
so tk0+ j 0 = tk0+ j 0+ m0 for 0 � j 0 � m0. But this contradictsthe
minimality of m.

(b) If k is odd, then let k = 2k0+ 1. Then as before we have
tk+2 j 0 = tk+2 j 0+ m for 0 � j 0 � m=2.
Hencet2k0+2 j 0+1 = t2k0+2 j 0+2 m0+1 for 0 � j 0 � m0, and so
tk0+ j 0 = tk0+ j 0+ m0 for 0 � j 0 � m0, againcontradicting the
minimality of m.
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(ii) If m is odd, then there are three cases:

(a) m � 5;

(b) m = 3; and

(c) m = 1.

For n � 1, we de�ne bn = (tn + tn� 1) mod 2.
Note that b4n+2 = (t4n+2 + t4n+1 ) mod 2.
Sincethe base-2representationsof 4n + 2 and 4n + 1 are identical,
exceptthat the last two bits are switched,we havet4n+2 = t4n+1 ,
and so b4n+2 = 0.
On the other hand,b2n+1 = (t2n+1 + t2n) mod 2, and the base-2
representationsof 2n + 1 and 2n are identical exceptfor the last
bit; henceb2n+1 = 1.
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(a) m odd, � 5. We havebk+ j = bk+ j + m for 1 � j � m. Since
m � 5, we can choosej suchthat k + j � 2 (mod 4). Then for
this valueof k + j , we havefrom above that bk+ j = 0, but
k + j + m is odd, so bk+ j + m = 1, a contradiction.

(b) m = 3. Again, bk+ j = bk+ j +3 for 1 � j � 3. Choosej such
that k + j � 2 or 3 (mod 4). If k + j � 2 (mod 4), then the
reasoningof the previouscaseapplies.Otherwise
k + j � 3 (mod 4), and then bk+ j = 1, while bk+ j +3 = 0.

(c) m = 1. Then tk = tk+1 = tk+2 . Hencet2n = t2n+1 for
n = dk=2e, a contradiction.

This completesthe proof.
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Usingthe fact that t is overlap-free,we may now construct a
squarefreein�nite word over the alphabet � 3 = f 0; 1; 2g.

Theorem
For n � 1, de�ne cn to be the number of 1's betweenthe nth and
(n + 1)st occurrenceof 0 in the word t . Set c = c1c2c3 � � � . Then
c = 210201� � � is an in�nite squarefreeword over the alphabet � 3.

Proof.
First, observethat c is over the alphabet f 0; 1; 2g. For if there
werethree or more 1's betweentwo consecutiveoccurrencesof 0
in t , then t would not be overlap-free,a contradiction.
Next, assumethat c is not squarefree. Then it containsa square of
the form xx, with x = x1x2 � � � xn and n � 1. Then, from the
de�nition of c, the word t would contain a subword of the form

01x101x20 � � � 01xn01x101x20 � � � 01xn0

which constitutesan overlap,a contradiction.
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Avoidability in Words

Thue's result is just the �rst step in a large and active theory:
avoidability in words.

Obviousgeneralization:avoid fractional powers. We say x is a p=q
power if x is of length p and period q. Thus outshout is an
8=5-power.

The critical exponent of a word w is the supremumoverall � , such
that w containsan � -power.
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RecentResultsin Avoidability

Somerecentresults:

I (Karhum•aki & JOS) There are only polynomiallymany binary
words of length n that avoid � -powers, for � � 7=3;

I (Karhum•aki & JOS) There are exponentiallymany binary
words of length n that avoid (7=3 + � )-powers.

I (Rampersad)The Thue-Morseword and its complementare
the only words that are the �xed points of a non-trivial
morphismand avoid � -powersfor 2 < � � 7=3.

I (Brown, Rampersad,Vasiga,& JOS) If you changeany �nite
number of bits in the Thue-Morseword, it hasan overlap.

I (Krieger) The critical exponent for uniform binary morphisms
is rational, and for non-erasingmorphismsis algebraic.

I (Kreiger & JOS) For eachreal � > 1 there existsan in�nite
word with � as critical exponent.
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More About Thue-Morse: An AmazingIn�nite Product

Considerthe sequence

1
2

;
1=2
3=4

;
1=2
3=4
5=6
7=8

;
1=2
3=4
5=6
7=8

=
9=10
11=12
13=14
15=16

; � � �

What doesthis convergeto?
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An AmazingIn�nite Product

We �nd

1
2

:= :500

1=2
3=4

= 2=3 := :666

1=2
3=4
5=6
7=8

= 7=10 := :700

Numerically, the limit seemsto be 0:7071� � � .

Let's prove that this sequenceconvergesto
p

2
2 .
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An AmazingIn�nite Product

First, we observethat the limit is

Y

n� 0

�
2n + 1
2n + 2

� (� 1)tn

(1)

wheretn is the sumof the bits (mod 2) in the binary expansionof
n.
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An AmazingIn�nite Product

We now usea trick of Allouche: let

P =
Y

n� 0

�
2n + 1
2n + 2

� (� 1)tn

and de�ne

Q =
Y

n� 1

�
2n

2n + 1

� (� 1)tn

:

Clearly

PQ =
1
2

Y

n� 1

�
n

n + 1

� (� 1)tn

:
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An AmazingIn�nite Product
Now break this in�nite product into separate products overodd
and evenindices;we �nd

PQ =
1
2

Y

n� 1

�
n

n + 1

� (� 1)tn

=
1
2

Y

n� 0

�
2n + 1
2n + 2

� (� 1)t2n+1 Y

n� 1

�
2n

2n + 1

� (� 1)tn

=
1
2

P � 1Q:

It follows that P2 = 1
2 .

But how about Q? Is it irrational? Transcendental?
I o�er 20 Eurosfor the answer to this question.
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The MultigradesProblem

The multigradesproblemis the following: let I and J be disjoint
sets. Canone �nd \short" solutionsto the systemof equations

X

i 2 I

i k =
X

j 2 J

j k

for k = 0; 1; 2; : : : ; t ?

For example,onesolution for t = 2 is the identity

0k + 3k + 5k + 6k = 1k + 2k + 4k + 7k

for k = 0; 1; 2.

In 1851, the Frenchmathematician�EtienneProuhet gavethe
following generalsolution.
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The MultigradesProblem

Theorem
The Thue-Morsesequencet = (tn)n� 0 hasthe following property.
De�ne

I = f 0 � i < 2N : t i = 0g

J = f 0 � j < 2N : t j = 1g

Then for 0 � k < N we have
X

i 2 I

i k =
X

j 2 J

j k :

For example,for N = 3 we havethe partition obtainedbefore:

0k + 3k + 5k + 6k = 1k + 2k + 4k + 7k

for k = 0; 1; 2.
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The MultigradesProblem

Proof.
We actually provea more generaltheorem by induction on N. We
prove that if p is any polynomialof degree< N, then

X

0� i< 2N
t i =0

p(i ) =
X

0� j < 2N
t j =1

p(j )

The desiredresult then follows by successivelyconsideringthe case
p(i ) = 1, p(i ) = i , p(i ) = i 2, etc.

The basecaseis N = 1. Then p is a constant, the result clearly
follows.
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The MultigradesProblem

Proof.
Now assumethe result true for all polynomialsof degree< N. We

try to prove it for a polynomialp(x) of degreeN. Considerthe

polynomialp(x + 2N ) � p(x). If

p(x) = aN xN + aN� 1xN� 1 + � � � + a1x + a0;

then p(x + 2N ) = aN (x + 2N )N + smallerdegreeterms, which by
the binomial theorem, is aN (xN + smallerdegreeterms). So

p(x + 2N ) � p(x) is actually a polynomialof degree< N. So we
can apply induction to it. We get
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The MultigradesProblem

X

0� i< 2N
t i =0

�
p(i + 2N ) � p(i )

�
=

X

0� j < 2N
t j =1

�
p(j + 2N ) � p(j )

�

So, rearranging,we get
X

0� i< 2N
t i =0

p(i + 2N ) +
X

0� j < 2N
t j =1

p(j )

=
X

0� j < 2N
t j =1

p(j + 2N ) +
X

0� i< 2N
t i =0

p(i ):

Hence X

0� i< 2N+1
t i =0

p(i ) =
X

0� j < 2N+1
t j =1

p(j ):

We're done.

Exercise:�nd the appropriate generalizationfor baseslarger than 2.
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An Open Problem

The Thue-Morsepartition of f 0; 1; : : : ; 2N � 1g is not the unique
partition suchthat X

i 2 I

i k =
X

j 2 J

j k

for k = 0; 1; : : : ; N � 1.

But is it the partition that minimizes
�
�
�
P

i 2 I iN �
P

j 2 J j N
�
�
�?

And if so, is it unique?
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AnotherDe�nition

Yet anotherde�nition of the Thue-Morsesequencet can be given
in terms of power series.Let X be an indeterminate.We have

Y

i � 0

(1 � X 2i
) = (1 � X )(1 � X 2)(1 � X 4) � � �

= 1 � X � X 2 + X 3 � X 4 � � �

=
X

j � 0

(� 1)t j X j :
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AnotherDe�nition

Somethingevenmore interestingariseswhenwe considerLaurent
seriesoverGF(2), the �nite �eld with two elements.Basically, we
do all arithmetic operationsas usual,but reducemodulo 2.

For example,considerthe Laurent series

G(X) = X � 1 + X � 2 + X � 4 + X � 8 + � � � :

It turns out that this seriesis algebraic overGF(2)(X ). By this we
meanthat G is the analogueof an algebraic number, a number
satisfyingan algebraic equation.

40 / 58



Formal Power Series
Let's try to �nd the equationthat

G(X) = X � 1 + X � 2 + X � 4 + X � 8 + � � �

satis�es.

What is G(X)2? If we computeit over the integers,we get

X � 2 + 2X � 3 + X � 4 + 2X � 5 + 2X � 6 + X � 8 + 2X � 9 + � � � :

Reducedmod 2, this is just

X � 2 + X � 4 + X � 8 + X � 16 + � � � :

More generally, if we havea power seriesH(X), then
H(X)p = H(X p) overGF(p), wherep is a prime number.

To seethis, it su�ces to remember that

(a + b)p � ap + bp (mod p):
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Formal Power Series

For G(X) = X � 1 + X � 2 + X � 4 + X � 8 + � � � we get
G(X)2 = G(X) � X � 1, and so

G2 + G + X � 1 = 0:

Thus G is quadratic.
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The Thue-MorsePower Series

Theorem
Let F(X ) =

P
n� 0 tnX � n. Then, overGF(2), the Laurent seriesF

satis�es a quadraticequationwith coe�cients that are polynomials
in X . More precisely, we have

(1 + X)3F2 + X(1 + X)2F + X 2 = 0: (2)

43 / 58



The Thue-MorsePower Series
Proof.

F =
X

n� 0

tnX � n

=
X

n� 0

t2nX � 2n +
X

n� 0

t2n+1 X � 2n� 1

=
X

n� 0

tnX � 2n + X � 1
X

n� 0

(1 + tn)X � 2n

= F2 + X � 1
�

X 2

1 + X 2 + F2
�

=
�

1 + X
X

�
F2 +

X
1 + X 2

=
�

1 + X
X

�
F2 +

X
(1 + X)2 :
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The Thue-MorsePower Series

We have

F =
�

1 + X
X

�
F2 +

X
(1 + X)2 :

Hence,multiplying through by X(1 + X)2, we obtain

(1 + X)3F2 + X(1 + X)2F + X 2 = 0:

The fact that F is not a rational function is an easyconsequence
of the overlap-freeproperty of the sequencet .
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Thue-MorseandContinuedFractions

Recallthat an expressionof the form

a0 +
1

a1 +
1

a2 + � � � +
1
an

is calleda continuedfraction.

It is usuallyabbreviatedas [a0; a1; a2; : : : ; an].

We can alsoconsiderin�nite expressionsof the form

a0 +
1

a1 +
1

a2 + � � �

which is abbreviated[a0; a1; a2; : : :].

The terms ai are positive integers,exceptfor a0, which may be any
integer.
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Thue-MorseandContinuedFractions

A continuedfraction wherethe terms include0 can be converted
into the ordinary form usingthe identity

[: : : ; a; 0; b; : : :] = [: : : ; a + b; : : :]:

Now considerthe continuedfraction wherethe terms are the
Thue-Morsesequence:

[0; 1; 1; 0; 1; 0; 0; 1; 1; 0; 0; 1; 0; 1; 1; 0; : : :]:

Usingthe collapsingrule gives

[0; 1; 2; 1; 1; 2; : : :]:

This number is transcendental.

The terms of this continuedfraction, disregarding the initial 0,
form the run-lengthsof the symbols in the Thue-Morsesequence.
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An Open Problem

Characterizeall in�nite sequencesof 0's and 1's suchthat when0's
are collapsed,the result is the run lengthsof the original sequence,
shifted by one.

48 / 58



The Thue-MorseSequenceandChess

According to o�cial rule (10.12) of the gameof chess,a player can
claim a draw if \at least50 consecutivemoveshavebeenmadeby
eachsidewithout the captureof any pieceand without the
movementof any pawn". Actually, this is not enoughfor certain
positions,suchas King + Rook + BishopversusKing + 2
Knights, so the rule alsostipulatesthat \This number of 50 moves
can be increasedfor certainpositions,providedthat this increasein
number and thesepositionshavebeenclearly announcedby the
organisersbefore the eventstarts."
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The Thue-MorseSequenceandChess

Another rule (10.10) allows a draw to be claimedif the same
position occursfor the third time. By \same position" we mean
that the piecesare in the sameposition, includingthe rights to
castleor capturea pawn en passant. Without thesetwo rules,
in�nite gamesare clearly possible.However,can rule (10.10) be
weakenedand still disallow in�nite chessgames?
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The Thue-MorseSequenceandChess
Considerthe following alternativerule: a draw occursif the same
sequenceof movesoccurstwice in successionand is immediately
followed by the �rst moveof a third repetition.
Canan in�nite gameof chessoccur under this rule?

The questionwas answeredby Max Euwe, the Dutch chessmaster
(and world championfrom 1935{1937)in 1929.

Figure: Max Euwe (1901{1981)
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The Thue-MorseSequenceandChess

Euwe's constructionusedthe Thue-Morsesequence!(He
discoveredit independently.)

Oneway to do this is to take the Thue-Morsesequenceand map 0
to a sequenceof moves,and 1 to anothersequenceof moves.For
example,oneway is as follows:

0 !
Ng1 � f3 Ng8 � f6
Nf3 � g1 Nf6 � g8

1 !
Nb1 � c3 Nb8 � c6
Nc3 � b1 Nc6 � b8
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The Thue-MorseSequenceandMusic

The Thue-Morsesequencehasevenbeenusedin composingmusic!

Tom Johnson,a Paris-basedcomposer,hasusedthe Thue-Morse
sequenceand other sequencesformed by iterated morphisms,in his
work.

Figure: Tom Johnson
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The Thue-MorseSequenceandMusic

& Ïb Ï ä Ï# Ï ä Ï Ï Ï Ï ä Ï Ï Ï Ï Ï Ï Ï Ï ä
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

& Ï# Ï Ïb Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï ä
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

Figure: Compositionby Tom Johnson
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Per N�rg�ard
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Per N�rg�ard

Somecompositionsbasedon the \in�nit y series"

0; 1; � 1; 2; 1; 0; � 2; 3; � 1; 2; 0; 1; 2; � 1; � 3; 4; 1; : : :

de�ned by

c0 = 0

c2n = � cn

c2n+1 = cn + 1:

Note that cn � tn (mod 2).
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For Further Reading

Jean-Paul Alloucheand Je�rey Shallit, Automatic Sequences:
Theory, Applications,Generalizations, Cambridge University Press,
2003.
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For Further Reading

Jean-Paul Alloucheand Je�rey Shallit, The ubiquitous
Prouhet-Thue-Morsesequence,in C. Ding, T. Helleseth,and H.
Niederreiter,eds.,Sequencesand Their Applications: Proceedings
of SETA '98, Springer-Verlag,1999,pp. 1-16. Also availableat

http://www.cs.uwaterloo.ca/~shallit/papers.html

http://www.swets.nl/jnmr/vol24 2.html

http://tom.johnson.org

http://www.pernoergaard.dk
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