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Transfemationsof Strings

The ideaof transfaming strings of symiols is ancient.
It is the basisfor

gramma
cryptography(seeH. Prodinger)
mechanicalcomposition of music
automatic thearem proving
computeralgebra
guasicrystalgseeB. Solomak)
computergraphics

and many other subjects.
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Morphisms

We focus on transfamations whereeachsymtol is replacedby a
group of 0 or more symtols.

Thesetransfamations are calledmorphisms but alsogo by other
names:

I substitutions(mathematics)
I in ation rules(physics)
I L-systemg(biology)
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MorphismsDe ned

Formally, a morphismisa maph : ! , Where ; are
alphatets, suchthat h(xy) = h(x)h(y) for all stringsx;y 2

If =, wecaniterate h.
By h?(x) | meanh(h(x)).

More generallyn®(x) = x and h"(x) = h(h" (x)).
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Typesof Morphisms

I A marphismh : ! is k-unifarm if jh(a)j = k for all
az2 .

I A marphismis uniform if it is k-uniform for somek.
I A coding is a 1-unifam morphism.
I A marphismis nonerasingf h(a) 6 for alla2 .

I A marphismis primitive if there existsan integern suchthat
for all lettersa;b 2 , aappeasin h"(b).

5/ 58



Typesof Morphisms

Leta2 beasymbol. A mophismh is saidto be prolongableif
it satis esthe two conditions

() h(a) = ax for somex 2 ;
(i) h"(x) 6 foralln O.
If h is prolongable,we cande ne anin nite word in ' asfollows:

h' (a) = ax h(x) h?(x) h3(x)

Note that

h(h' (8)) = h(ax h(x) h*(x) h*(x) )
= h(a) h(x) h?(x) h3(x)
= ax h(x) h?(x) h3(x)
= h'(a);

soh' (a) isa xed point of h.
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The Thue-Mase Morphism

For example,considerthe morphism mapping

0! 01;
1! 10

If we start with O and iterate this morphism, we get successively

°%0 = 0
o) = o1
2(0) = 0110

3(0) = 01101001
40) = 0110100110010110
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The Thue-Mase Morphism

Since is prolongable,thereis a well-de ned in nite word
' (0) = 01101001100101101001
of which all the (0) are pre xes.

We call thisword t = tptyto  , the Thue-Mase word.
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Thue and Morse

Figure: Marston Morse (1892{1977)
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The Thue-Mase Sequence

De ne a sequencedf stringsof 0's and 1's asfollows:

For examplewe nd
Xo
X1
X2
X3
X4

Thenlimp, Xy = t.

X():O

Xn+1 = Xn Xn
wherex meanschangeall the 0's in x to 1's and vice-versa.

0

01

0110

01101001
0110100110010110
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Let's prove "(0) = Xp by inductionon n.
Actually, it turns out to be easierto provethis togetherwith the
claim "(1) = X.

Theseclaimsare clealy true for n = 0. Now assumethey are true
for n; let's provethem for n+ 1. We have

") = " (0)
"(01)
"(0) (1)
= Xn Xn

= Xns1:

Similaly
@ o= " ()
= "(10)
= "1 "0
= Xn Xn

= Xnp+1:
n+1 11/ 58



AnotherDe nition

Givena number n we canwrite it in base2,

We de ne the \sum of digits" function s;(n) to be the sum of the
g. So
$(43)= 1+ 0+ 1+ 0+ 1+ 1= 4
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Thent, = s(n) mod 2.
Let's prove this by induction. It's evidentlytrue for n = 0. Now
assumait is true for all n°< n.

Dene k by 2K n< 2k+1,

Thent, isthe n'th symbol of Xy+1 .

Soit isthe (n 2%)'th symtol of Xy.

In other words, th, = (t,, o« + 1) mod 2.

By induction we havet,, x = S(n 2¢) mod 2.
Since2¥ n< 21 wehavesy(n) = s(n 2¢) + 1.
It followsthat t, = s(n) mod 2.

The de nition in terms of s;(n) is good becausewe can e ciently
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Repetitionsin Strings

A squae is a string of the form xx. Examplesinclude
I murmur
| hotshots

I chercher
I couscous
I rentrent

I tenten
I kerker

A word is squaefreeif it containsno subword (block of
consecutivesymtols) that is a squae. Note that squaefreeis not
squaefree,but squae is.

14/ 58



Cubes

A cube is a string of the form xxx. Examplesn Englishinclude
I hahaha
I shshsh

The nameof a certain Dutch mathematiciancontainsa cube. Do
you know who?

Carnelis Lekkerkerker

A word is cubefreeif it containsno subword that is a cube.
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Fourth Powers

A fourth power is a string of the form xxxx. The only examplel
know of in Englishis

I tratratratra
which is an extinct lemur from Madagasca
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Overlaps

A overlapis a string of the form axaxawherea is a singleletter
andx is a string. Examplesnclude

|

I entente

I koekoek
A word is overlap-fredf it containsno word that is an overlap.
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No SquaefreeWords Overf O; 1g

Theaem
There are no squaefreestringsof 0's and 1's of length 4.

Proof.

Assumex is squaefreeandjxj 4. Thenwithout lossof generaliy
we may assumethe rst symtol of x is 0. Then the second
symiol must be 1, for otherwisewe would havethe squae 00.
Then the third symkol must be 0, for otherwisewe would havethe
squae 11. Thusthe rst three symtols are 010, and whatever
symbol we choosenext givesa squae. Contradiction. O]
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AvoidingSquaesOverLarger Alphakets

But how about overlarger alphalets? Are there large squaefree
words over three symlols?

A backtrackingalgaithm gives
0102012021

and seemgo go on forever.
But how canwe provethat there existsan in nite squaefreeword?
This is what Thue did.

The Thue-Marseword plays a critical role.
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AvoidingOverlaps

As a rst steplet's show that t is overlap-free:it containsno
subword of the form axaxa with a a singleletter and x a string.

Theaem
The Thue-Masein nite word t is overlap-free.

Proof. Observethat to, = t, andtoner =1 th, forn 0.

Assume contrary to what we want to prove, that t containsan
overlap.
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2 — 2

t = u a X a X a Vv
to % ti+m tk+2m

Figure: Hypothesizedoverlapin t

Then we would be ableto write t = uaxaxa for some nite strings
u; X, anin nite stringv, and a letter a.

In other words, we would havetyj = tx+j+m for O j  m, where

m = jaxj andk = juj. Assumem 1 isassmallaspossible.Then
there are two cases:(i) m is even;and (i) m is odd.
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(i) If miseven,thenlet m= 2m® Againthere are two cases:(a)
k is even;and (b) k is odd.

(a) If k iseven,thenlet k = 2k% Then we know ty+j = ty+j+m
forO j m, soit iscertainlytrue that tyipjo = tyspjorm for
0 j% m=2. Hencetyoizjo = taorzjoramo for 0 jO mS and
SOtkosjo = txorjormo for 0 j©  m0 But this contradictsthe
minimality of m.

(b) If k is odd, then let k = 2k°+ 1. Then asbefare we have
tk+2j0 = tk+2j0+m for O jO m=2.
Hencetakorzjorn = takorzjorzmors for 0 j% md andso
tiorjo = tyosjormo for 0 j©  mY againcontradictingthe
minimality of m.
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(i) If mis odd, then there are three cases:

(@ m 5
(b) m= 3; and
(c) m= 1.

Forn 1,wedeneb,= (t,+ t, 1) mod 2.

Note that ban+2 = (tan+2 + tan+1) mMod 2.

Sincethe base-2representationsof 4n+ 2 and 4n + 1 are identical,
exceptthat the last two bits are switched,we havetsn«> = tan+1,
andsobyn+p = 0.

On the other hand, bon+1 = (ton+1 + ton) mod 2, and the base-2
representationsof 2n + 1 and 2n are identical exceptfor the last
bit; hencebon+1 = 1.
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(@) modd, 5. Wehaveby+j = bx+j+m forl j m. Since
m 5, we canchoosej suchthat k+j 2 (mod 4). Then for
this valueof k + j, we havefrom abovethat by.j = 0, but
k+ ]+ misodd, sobg+j+m = 1, a contradiction.

(b) m= 3. Again, by+j = by+j+3 for 1 j 3. Choosej such
thatk+j 2or3(mod4). Ifk+j 2(mod 4), thenthe
reasoningof the previouscaseapplies. Otherwise
k+]j 3(mod 4), andthenby.j = 1, while bg+j+3 = 0.

(c) m= 1. Thenty = tk+1 = tk+2. Hencetyy = toneg for
n = dk=2e, a contradiction.

This completesthe proof.
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Usingthe fact that t is overlap-freewe may now constructa
squaefreein nite word overthe alphaket 3= f0;1;2g.

Theaem
For n 1, de ne ¢, to be the number of 1's betweenthe nth and
(n+ 1)st occurrenceof O in the word t. Setc = cicc3 . Then

c= 210201 isaninnite squaefreeword overthe alphatet 3.

Proof.

First, observethat c is overthe alphaket f0; 1; 2g. For if there
werethree or more 1's betweentwo consecutiveoccurrencef 0
in t, thent would not be overlap-freea contradiction.

Next, assumethat c is not squaefree. Thenit containsa squae of
the form xx, with X = XX X, andn 1. Then, from the

de nition of ¢, the word t would contain a subword of the form

010120 01010120 01*0

which constitutesan overlap,a contradiction. O]
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Avoidabiliyy in Words

Thue'sresultis just the rst stepin a large and active theary:
avoidability in words.

Obviousgeneralization:avoid fractional powers. We sa& X is a p=q
power if X is of length p and period g. Thus outshoutis an
8=5-power.

The critical exponent of a word w is the supemumoverall , such
that w containsan -power.
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RecentResultsin Avoidability
Somerecentresults:

I (Karhumeki & JOS) There are only polynomiallymany binary
words of length n that avoid -powers, for 7=3;

I (Karhumeki & JOS) There are exponentially many binary
words of length n that avoid (7=3+ )-powers.

I (Rampersad) The Thue-Maseword and its complementare
the only words that are the xed points of a non-trivial
morphismand avoid -powersfor 2 < 7=3.

I (Brown, Rampersad,Vasiga,& JOS) If you changeany nite
number of bits in the Thue-Maseword, it hasan overlap.

I (Krieger) The critical exponentfor uniform binary morphisms
is rational, and for non-erasingnorphismsis algebaic.

I (Kreiger & JOS) For eachreal > 1 thereexistsan in nite
word with  ascritical exponent.
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More About Thue-Mase: An Amazingin nite Product

Considerthe sequence

1= 1=2 9=10
1 122 3=, 3= _1F2,
2 3=4’ 5%’ 5% 134"
798 78 15716

What doesthis convergeto?
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An Amazingln nite Product

We nd

= 1500

NI =

2=3= 666

t

=
11
N

7=10= :700

2514
QIO | A

Numerically the limit seemso be 0:7071

p_
Let's prove that this sequenceonvergego 72
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An Amazingln nite Product

First, we observethat the limit is

)in

Y on+1 (1
n+ 2

1)

wheret, is the sumof the bits (mod 2) in the binary expansionof
n.
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An Amazingln nite Product

We now usea trick of Allouche: let

Y oon+q (U7

P=
"o 2n+ 2
and de ne v (1
2n "
Q= 2n+ 1
n 1
Clealy
1Y n ( Do
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An Amazingln nite Product

Now breakthis in nite product into sepaate products over odd
and evenindices;we nd

1Y p (7

P =
Q 2 n+1
n 1l
1Y on+1 (DY on (D7
2no 2n+ 2 - 2n+ 1
1
= 2P 1qQ:
> Q

It follows that P2 = 1.

But how about Q? Isit irrational? Transcendental?
| o er 20 Eurosfor the answver to this question.
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The MultigradesProblem

The multigradesproblemis the following: let | and J be disjoint
sets. Canone nd \short" solutionsto the systemof equations

i21 j2J

fork=0;1;2;:::;t?

For example,onesolutionfor t = 2 is the identity
0K+ 3K+ 5+ 6= 14 2+ 4+ 7K
for k = 0;1; 2.
In 1851,the FrenchmathematicianEtienne Prouhetgavethe

following generalsolution.
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The MultigradesProblem

Theaem

The Thue-Masesequencd = (t,)n o hasthe following property.

De ne

l=f0 i< 2V :
J=f0 j<2V
Thenfor 0 k < N we have

0g

19

i21 j23

For example for N = 3 we havethe partition obtainedbefare:

0K+ 3K+ 5+ 6= 1+ 2+ 4+ 7K

for k = 0;1; 2.
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The MultigradesProblem

Proof.
We actually prove a more generalthearem by inductionon N. We
provethat if p is any polynomialof degree< N, then
X X
p(i) = p(i)
0 i<2N 0 j<2N
tj=0 tj=1

The desiredresult then follows by successivelgonsideringthe case
p(i) = 1, p(i) = i, p(i) = i?, etc.

The basecaseis N = 1. Then p is a constant, the result clealy
follows.
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The MultigradesProblem

Proof.
Now assumethe resulttrue for all polynomialsof degree< N. We

try to proveit for a polynomialp(x) of degreeN. Considerthe

polynomialp(x + 2N)  p(x). If

1

p(x) = anxN+ ay xN 1+ + ax+ a;

then p(x + 2N) = ay(x + 2V)N+ smallerdegreeterms, which by
the binomialthearem, is ay (xN+ smallerdegreeterms). So

p(x + 2N)  p(x) is actually a polynomialof degree< N. Sowe
can applyinductionto it. We get
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The MultigradesProblem

X . N . X . N .
p(i+2%) p(i) = p( +27%) p()
0 i<2N 0 j<2N
t;=0 Ij:l

So, rearanging, we %et «
p(i + 2V) + pQ)

0 i<2N 0 j<2N
t;=0 lj:l
X o X _
= p( + 27) + p(i):
0 j<2N 0 i<2N
tj=1 t;=0
Hence X . X _
p(i) = p(j):
0 i<2N+1 0 j<2N+1
t;=0 ti=1

]
We're done.

Exercise: nd the appropriate generalizatiorfor basedargerthan 2.
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An Open Problem

The Thue-Marse patition of f0;1;:::;2N  1gis not the
partition suchthat X X

fork=0;1;:::;N 1.
- - . - - - P . .N P ) .N ’7
But is it the partition that minimizes ;i 201" °

And if so,is it unique?
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AnotherDe nition
Yet anotherde nition of the Thue-Marse sequencd can be given
in terms of power series.Let X be anindeterminate. We have

@ x?)
i 0

1 X)1 XA XY

1 X X2+x3 x4

( 1)uXI:
i o
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AnotherDe nition

Somethingevenmore interestingariseswhenwe considerLaurent
seriesover GF(2), the nite eld with two elements.Basically we
do all arithmetic operationsas usual, but reducemodulo 2.

For example,considerthe Laurentseries

G(X)=X T+ X 2+ X 4+ X 8+

It turns out that this seriesis algelyaic over GF(2)(X). By this we
meanthat G is the analogueof an algelraic number, a number
satisfyingan algelraic equation.
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Formal Power Series
Let'stry to nd the equationthat

GX)= X T+ X 2+ X 4+X 8+
satis es.

What is G(X)?? If we computeit overthe integers,we get
X 242X 34X 442X °+2X O+ X 8+ 2x %+

Reducedmod 2, this is just
X 24X 44X 84X 164
More generally if we havea power seriesH(X), then
H(X)P = H(XP) over GF(p), wherep is a prime number.
To seethis, it su ces to rememlzr that
(a+ b)? a+ b (mod p):
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Formal Power Series

For G(X)=X 1+ X 2+ X 4+ X 8+  weget
G(X)?= G(X) X 1 andso

G?+G+X '=0

Thus G is quadratic.
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The Thue-Mase Power Series

Theaem

Let F(X) = |, otaX ™. Then, overGF(2), the LaurentseriesF
satis es a quadraticequationwith coe cients that are polynomials
in X. More precisely we have

1+ X)°F2+ X(1+ X)?F+ X2= 0 2)
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The Thue-Mase Power Series

Proof.

0

t2nX 2n+ t2n+1X 2n 1
0 n o

thX M+ X 1 @+t)Xx

X2 5
1+ X2+F

F2+ X 1

1+ X
1+ X2

+
X 1+ X)2
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The Thue-Mase Power Series

We have

1+ X X
F= F2+ = .
X (1+ X)2

Hence,multiplying through by X (1 + X)?, we obtain

1+ X)°F2+ X(1+ X)’F + X?= 0

The fact that F is not a rational function is an easyconsequence
of the overlap-freeproperty of the sequencs.
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Thue-Maseand ContinuedFractions

Recallthat an expressionof the form

1
a + 1
a + 1
a + + —
an
is calleda continuedfraction.
It is usuallyablreviatedas[ag; a;; ap;:::;an]

We can alsoconsiderin nite expessionof the form

PR -
1
a t+

a +
whichis ablreviated[ag; a1; a;: : 1]

The terms g are positiveintegers,exceptfor ag, which may be any

integer.
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Thue-Maseand ContinuedFractions

A continuedfraction wherethe termsincludeO can be converted
into the ordinary form usingthe identity

[:na0b;::c]=La+t by

Now considerthe continuedfraction wherethe terms are the
Thue-Marse sequence:

[0;1;1;0;1;0;0; 1, 1,0;0; 1, 0; 1; 1, O; - = 2]
Usingthe collapsingrule gives
[0;1;2;1;2;2;::1):
This number is transcendental.

The terms of this continuedfraction, disregading the initial O,
form the run-lengthsof the symiolsin the Thue-Mase sequence.
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An Open Problem

Chaacterizeall in nite sequencesf 0's and 1's suchthat whenQ's
are collapsedthe resultis the run lengthsof the original sequence,
shifted by one.
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The Thue-Mase Sequencand Chess

Accading to o cial rule (10.12) of the gameof chessa player can
claima draw if \at least50 consecutivanoveshavebeenmadeby
eachsidewithout the capture of any pieceand without the
movementof any pawn". Actually, this is not enoughfor certain
positions,suchasKing + Rook + BishopversusKing + 2
Knights, so the rule alsostipulatesthat \This number of 50 moves
canbe increasedor certain positions,providedthat this increasen
number and thesepositionshavebeenclealy announcedby the
organisersbefare the eventstarts.”

49/ 58



The Thue-Mase Sequencand Chess

Another rule (10.10) allows a draw to be claimedif the same
position occursfor the third time. By \same position” we mean
that the piecesare in the sameposition, includingthe rights to
castleor capturea pawn en passant Without thesetwo rules,
in nite gamesare clealy possible.However,canrule (10.10) be
wealenedand still disallav in nite chessgames?
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The Thue-Mase Sequencand Chess

Considerthe following alternativerule: a draw occursif the same
sequencef movesoccurstwice in successiorand is immediately
followed by the rst moveof a third repetition.

Cananin nite gameof chessoccur underthis rule?

The questionwas ansveredby Max Euwe, the Dutch chessmaster
(and world championfrom 1935{1937)in 1929.

Figure: Max Euve (1901{1981)
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The Thue-Mase Sequencand Chess

Ewve's constructionusedthe Thue-Mase sequencel(He
discoveredt independently)

Oneway to do this is to take the Thue-Mase sequenceand map 0
to a sequencef moves,and 1 to anothersequencef moves. For
example,oneway is asfollows:

Ngl f3 Ng8 f6
Nf3 gl Nf6 g8

Nbl «c3 Nb8 c6
Nc3 bl Nc6 b8

52/ 58



The Thue-Mase Sequencand Music

The Thue-Mase sequencéasevenbeenusedin composingmusic!

Tom Johnson,a Paris-basedcomposer,hasusedthe Thue-Marse
sequenceand other sequence$ormed by iterated marphisms,in his
work.

Figure: Tom Johnson
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The Thue-Mase Sequencand Music

Figure: Compositionby Tom Johnson
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PerN rgard
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PerN rgard

Somecompositionsbasedon the \in nit y series"

01, 1;2,1;0;, 23, 1;2,0;1;2; 1, 3:4,1;:::

de ned by
co = 0
Cn = Cn
Cn+1 = Cpt L

Note that ¢, t, (mod 2).
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For Further Reading
Jean-Raul Alloucheand Je rey Shallit, Automatic Sequences:

Theay, Applications,GeneralizationsCamlridge Universiy Press,
2003.
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For Further Reading

Jean-Raul Alloucheand Je rey Shallit, The ubiquitous
Prouhet-Thue-Mase sequencein C. Ding, T. Helleseth,and H.
Niederreiter,eds.,Sequenceand Their Applications: Proceedings
of SETA '98, Sgringer-\erlag, 1999, pp. 1-16. Also availableat
http://www.cs.uwaterloo.ca/~shallit/papers.html

http://www.swets.nl/jnmr/vol24 _2.html
http://tom.johnson.org

http://www.pernoergaard.dk
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